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Abstract / Executive Summary 
Operation centers rely on an interconnected process involving complex technological systems and human 
operators. Designers should account for issues at possible points of failure, including the human operators 
themselves. Compared to other system components, human operators can be error-prone and require 
different knowledge to design for. They also typically exhibit a wider range of performance than other 
system components. This document provides a design approach, methods, and design principles to use 
when designing to improving human performance within a complex system that is an operation center, 
and thus to improve the performance of the system itself. The principles are supplemented by text 
offering a primer on relevant literature on human cognition relevant to operation centers and example 
design documents. This report is designed to be useful to operation center designers and implementers.   
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1. Introduction 
Operations (Op) centers are a vital communication hub for the transfer of information to and 

from the frontlines of any situation. Within any given op center, there are going to be different 
priorities, tasks, and stakeholders that must be considered in their design. This book primarily 
examines operation centers that manage autonomous, asynchronous systems. 

This report is designed to be useful to op center designers and implementers.  Managers can 
use it to adjust the process to take account of a wider range of risks due to not supporting users 
and their tasks.  Designers can use it to manage the process and be aware of useful types of 
shared representations.  Implementers can use it to provide context for small decisions within an 
interface that are too small be described formally or have not been specified. Where we can, we 
also identify design principles. Design principles are aspects of the operator or interface or 
process that suggest prescriptive actions to create better interfaces.  

This introduction will first make the case for including users as part of the system and then part 
of the design process. It will then briefly describe a way to include them (the Risk-Driven Spiral 
Model) and how it could be applied to operation centers. The rest of the document will use an 
example system called the Water Detection System (WDS) to help illustrate the principles, 
concepts, and practical implications derived from the material covered. The introduction 
concludes with some example guidance that can be noted as an executive summary or a 
summary for readers who might not have time to read the whole book. The remainder of the 
book provides support for the guidelines. The appendices include a worked example. 

1.1 The role of operators 
Operators can greatly influence operation center success.  In a study of errors in Air Traffic 

Control, a type of control room, Jones and Endsley (1996) found that seven out of ten times 
system failure is due to operator error. The error analysis for aviation disasters organized the 
contributing errors into the Endsley’s (1995) theory of situation awareness. When the errors were 
organized into their stage of situational awareness, they found that misperception or non-
perception of the necessary information was the primary cause about 75% of the time. Going up 
in complexity, failures to successfully comprehend meaning or importance of information was 
the primary cause in only about 20% of air disasters. Finally, at the lowest error rate, projection 
of system state in the near-future is key in less than 5% of disasters. Breaking down these 
failures into more specific categories of failure cases shows that attentional failure (35%; 
operator has information but fails to attend to it), working memory failure (8.4%; operator 
attends to information but forgets it), and mental model failure (18%; operator’s understanding 
of the situation does not match reality) account for the most common causes of operator error in 
op centers. 

Operators of complex systems use a set of cognitive mechanisms that are fallible in predictable 
ways. System engineers, developers, and designers can begin mitigating the risks associated with 
fallible cognitive behavior by learning about the many factors and mechanisms that influence 
operator performance and reliability. Not all these mechanisms can be ameliorated by system 
design, but they do suggest areas where systems could support operators.  This report will 
suggest ways to do that. 

Modifying op center designs could help reduce these types of system failures by providing the 
information more clearly, more comprehensibly, requiring less attention (perhaps by reducing 
other less useful information), and appropriately matching and supporting the operator’s mental 
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model and tasks. How can these issues be addressed throughout the development cycle of 
complex systems? We propose a design process based on understanding the operator, their tasks, 
and the technology. 

1.2 How to improve designs 
The variety and complexity of work being performed in op centers prevents strict design 

guidelines from being a “silver bullet” for every system design issue. The different goals, 
priorities, and tasks across op centers will likely add up being nearly equal to the number of op 
centers itself. However, the common element across op centers is the role of human operators. 
Operators serve as the interface between the wide range of information sources and the higher 
command structure. This can involve a vast variety of tasks ranging from call intake and 
prioritization within an emergency response center to monitoring a radar for airborne threats. 
Furthermore, the task variety is compounded by having a single operator be responsible for 
multiple tasks. For example: an operator at a 911 dispatch center will often be simultaneously 
responsible for (a) providing emotional support and guidance to the caller, (b) recording crucial 
information about the situation, (c) alerting appropriate emergency responders, and (d) 
answering questions for emergency responders while en route.  

Simply providing a set of design guidelines will not suffice because one size does not fit all.  
Due to the varied nature of tasks and systems across operation centers, we will need to provide a 
suitable foundation for designers to guide their decision making when there is no clear solution.  
Thus, this report summarizes a best practice process and design issues to keep in mind when 
designing operations centers. This report goes further, however, by providing a worked example 
of design and design steps for an example system.   

This report spends more time defining a useful interface design process than giving simple 
guidelines for design. This user-and-task-oriented process should lead to better interfaces that 
support operators and do this in a better way than simply providing and following a set of 10 
‘rules’ about font size, which might need to vary, and which will conflict at times with rules 
about how many objects to put on a screen.  And, yet, in providing background knowledge about 
operators and their tasks, there will inevitably be nuggets of results that look like and work like 
guidelines.  

The complexity and variety of tasks within an op center means that the system designers will 
need to know their users, their users’ tasks, and the technology and then combine these using 
their own judgment within the design process.  They will have to use judgment when aspects of 
the users and their tasks are not fully known. They will also have to use judgement to prioritize 
tasks or user types and to balance different design requirements. 

The design recommendations offered by this report will often provide “safe” recommendations 
for designers. Design recommendations will be accompanied by brief supporting details meant to 
substantiate the information. This self-contained document will provide system designers with a 
framework for improving user experience and performance by incorporating human-centered 
design principles into the design and implementation of critical systems.  

System designers will benefit greatly from understanding the foundational concepts and 
literature that support this guidance. This report provides a simple review of the literature to 
support this guidance. This review serves several purposes: (a) offering motivation for including 
the topics chosen, (b) describing the related research that has contributed to the high-level 
guidance, and (c) providing readers with a convenient method to learn more about a topic if 
needed. While not every system developer will choose to read this document, it provides 
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interested readers with a more condensed treatment than available from reading several books on 
user-centered design and users. The final review and guidance document will be detailed enough 
to provide further guidance in a standalone format.   

1.3 Risk-Driven Design 
The design and performance of an operation center will depend on financial considerations, 

task constraints, and the goals of the designers. However, clearly there are limitations to what is 
possible for any given design process (e.g., deadlines, access to user testing, ambiguous 
information).  In an ideal world, every project would have ample time, personnel, and funding to 
be able to create the best product possible: clearly this is an unrealistic scenario. Thus, designers 
and other stakeholders must make decisions about how to ensure project success throughout the 
design process.  

We propose that the Risk-Driven Incremental Commitment Model (RD-ICM) provides the best 
framework for creating systems including assessing the risks associated with design choices 
(Pew & Mavor, 2007).  Implementation of RD-ICM involves assessing the risk associated with a 
given decision. Boehm and Hansen (2001) define risks within the RD-ICM as “situations or 
possible events that can cause a project to fail.”  RD-ICM uses an iterative, flexible procedure to 
prompt the stakeholders to make candid assessments of what the risks are at each stage of the 
project. Implementing RD-ICM effectively may lead to decisions contrary to the dogmatic idea 
that user experience should be a priority at every stage.  The RD-ICM in spiral form is shown in 
Figure 1.   

 
Figure 1.  The RD-ICM model as a spiral of development.   

Reprinted from Pew and Mavor (2007). 
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The RD-ICM and risk-driven design require four key features:  
1. Systems should be developed through a process that considers and satisfices the needs of 

stakeholders, that is, provides a good and achievable but not necessarily best solution.  

2. Development is incremental and performed iteratively. The five stages (exploration, valuation, 
architecting, development, and operation) are performed for each project’s lifecycle.  

3. Development occurs concurrently across various project steps through simultaneous progress on 
individual aspects of the project, however effort towards each aspect varies over time.  

4. The process explicitly takes account of risks during system development and deployment to 
determine prioritization for resource deployment: Minimal effort for minimal risk decisions; high 
effort for high risk decisions.   

In addition, each stage has phases of (a) stakeholder evaluation and valuation, (b) determining 
objectives and alternatives, and constraints, (c) evaluate those alternatives and identify and 
resolve risks, and (d) develop and verify next level product.  This approach allows work on risks 
to proceed in parallel and comes back to value the alternatives with the stakeholders.   

Here is an example of how the RD-ICM could shape design choices. During the early design 
process of a complex system, the risks of not getting the system up and running (e.g., perceived 
project failure by management, or technical connection issues) may outweigh the risks associated 
with having a non-ideal interface design (e.g., frustrated users). Instead, the UX design choices 
could be pushed down the pipeline and then reassessed at a later stage. This would enable the 
engineering team to focus on creating something that “works.” However, once a functional 
system is formed, the team would reassess the risks. If the interface fails to convey critical 
information in a consistent manner to most users, now the risks of a user misinterpreting a signal 
may outweigh the benefits of adding further features to the system. Each stage has its own 
iterative assessments of how to successfully complete the project.  Further information on this 
approach is available from the National Research Council Report (Pew & Mavor, 2007), a 
special issue of the Journal of Cognitive Engineering and Decision Making (Pew, 2008), and an 
overview in the FDUCS textbook (Ritter, Baxter, & Churchill, 2014).  

So, if you accept a risk-driven process that includes human operator related risks, you still must 
be able to recognize and reduce these risks.  This report seeks to provide background knowledge 
to help developers judge and ameliorate the risks to system success that developers face during 
the design and implementation process of control rooms.  We hope to provide knowledge and 
guidance that can help designers understand how their design choices may affect task 
performance throughout the lifetime of the system. 

Thus, we suggest following a risk-driven spiral model.  This includes formal reviews with 
stakeholders at each cycle to assess risks, and work focused to reduce risks, not just build a 
system. This approach uses a range of design documents as shared representations between the 
stakeholders and the designers and implementers.  We include an example set in Appendix 1.  

1.4 The design problem space for op centers  
This document reviews how risks for failures due to human performance can be alleviated 

throughout the design process of interfaces within operations centers. Thus, designing an 
interface for an op center is the design problem.  We briefly review this design space and provide 
an overview of an example before addressing further risks and issues that are common based on 
users.   
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Op centers act as the nervous system within a larger body directed to monitor or respond to a 
set of events. The op center aggregates information input and output to facilitate a rapid response 
to changing conditions.  The specific procedures used are typically guided by senior staff while 
operators themselves will be responsible for interpreting information, transmitting orders, and 
following preset procedures for specific situations.  

There are three components to this design problem: the technology to support and implement 
the system, the users, and the users’ tasks. The first item is briefly noted as an important 
component that will support and constrain designs. The final two are the focus of this report so 
we address them together.   

1.4.1 Know your technology 
The most important aspect, as noted elsewhere, is perhaps that the system itself works.  That 

technology allows the information associated with the op center to be obtained and presented to 
an operator.  Most designers of technology will be familiar with these aspects.  So, the first issue 
in design is to know what the technology can and cannot do. This technology includes sensor and 
communication systems.  This technology also needs to include interface design and display 
systems.  These systems (technology and interface) are likely to be different from other 
technology systems and may require different designers and implementers. In addition, the 
interface tools need to be able to support the designers to create usable interfaces, which not all 
tools support well (Pew & Mavor, 2007; Ritter et al., 2014).  

Knowing these two technologies will help with the inevitable choices about fitting the man to 
the machine vs. fitting the machine to the man.  Sometimes, it will not be possible to produce fits 
in one of the two directions.  Knowing the technology will help reduce problems in both 
directions.  

1.4.2 Know your users and their tasks 
The focus of this report is to explain how to know the users of the op centers, the operators, and 

how to know their tasks.  Human operators and their tasks will in many cases be as complex as 
the technology.  The only difference is that many technology designers have been trained in 
technology, but not trained in the science of how operators think, learn, and do their tasks.  This 
report notes some of the literature, results, methods for understanding operators to help in design.  
Similarly, it will describe task analysis, which is a useful tool for specifying, implementing, and 
checking op center designs. 

The technology may be able to deliver, but will the operator be able to understand and use the 
system at speed?  Will the tasks, including their microstructure and dependencies be supported?  
Or, will the operator have to correct and store information (in a more fragile memory than 
computer memory)?  These types of mismatches between operator and system are a cause of 
system failure.   

The gold standard in design (Card, Moran, & Newell, 1983; Pew & Mavor, 2007; Ritter et al., 
2014) is to know the operators, know what tasks they are trying to perform, and then use the 
technology as best it can be used, to support the tasks based on the operator’s capabilities.  
Designers that use themselves or their use of their own systems as a reference instead of the 
actual users commit a fundamental error, that leads to operators not knowing how to use a 
system. This can be called the fundamental attribution error of design (Baxter, Churchill, & 
Ritter, 2014), which is where the designer assumes the user is like themselves.  As we note in our 
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example case in this report, this would often be a mistake and lead to problems in usability 
because the designer and the operator have different knowledge, skills, and abilities.   

In addition, leaving out tasks or making them less easy to perform, making state information 
visible only upon query, are all mistakes that are easily avoided, but require knowing the 
operator and their tasks.   

Knowing the frequency and importance of tasks is also important, so that common and 
important tasks should be more easily and safely accomplished than less common and less 
important tasks.  When these two factors collide, frequency and importance, then that is where 
design choices are available, and sometimes it is appropriate to ask the stakeholders to answer 
these more nuanced questions.   

There are numerous guidelines on how to create task analyses (e.g., Ritter et al, Ch. 11, 2014). 
There are tools to support TA (i.e., Cogulator1), but often plain text documents provide the best 
value and are useful enough for most designs.  TA is a lot like pizza–while the balance of 
contents may vary in approaches, most versions are usable and enjoyable.    

1.4.3 Test designs broadly and with cognitive walkthroughs 
During design and implementation there may be unknown aspects of the user, their tasks, or the 

interaction of these two components with the system.  A way to reduce the risk of system failure 
is to test the resulting system.  This test can be quite simple, for example, simply to see if the 
tasks can be performed, but it could also include many more formal types of tests.  Pew and 
Mavor (2007) review the range of these tests, and there are multiple textbooks describing them 
(e.g., Cairns & Cox, 2008; Lewis & Rieman, 1994). These tests reduce a range of usability risks 
and take a wide range of types and amounts of resources.  

The simplest test is to have naïve operators use the interface and observe them.  This approach 
is explained in many textbooks, including Ritter, Baxter, and Churchill (Ch. 13, 2014).  They can 
take from 10 min. and cost next to nothing, when you ask a colleague to use the interface and 
take away a small insight to $100k when you formally run many users at their own site and 
prepare a formal report.   

We also suggest using what is called a cognitive walkthrough (Polson, Lewis, Rieman, & 
Wharton, 1992) to see that the tasks indeed be performed. Cognitive walkthroughs are a method 
for evaluating the learnability and usability of an interface by simulating the cognitive activities 
of the user during normal tasks. The typical method for performing cognitive walkthroughs 
begins with describing goals and tasks that are required by the system. First, the goal structure of 
the model is generated from expert interviews, prior research, and other forms of information 
gathering. The goal structure, like a task analysis or using a task analysis, is arranged in a 
hierarchy. The top goals represent the overall task. Each top goal is composed of intermediate 
level goals (i.e., subtasks), each of which is composed of a set of individual actions.  

Cognitive walkthroughs, when performed successfully, should determine whether the operator 
of a system is making the correct connections between each level of the goal. That is, the analyst 
applies the goals to the interface to produce the behavior.  If the analyst cannot make the 
mapping, it suggests an area for improving the interface.  If the analyst is too familiar with the 
interface, then they will not see problems users will see, at least novice users.  The data collected 
from cognitive walkthroughs can enable developers to provide supplementary “clues” or signals 
to the operator at specific locations to ensure that each goal, sub goal, and individual action 

                                                
1 http://cogulator.io/ 
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provide a coherent information set capable of being understood and followed by the operator 
(Blackmon, Polson, Kitajima, & Lewis, 2002; Polson et al., 1992).  

Cognitive walkthroughs require a task analysis, and then appear to take between an hour and a 
short day to perform.  The length of time is based on the number of tasks and how difficult they 
are to perform.  They may require domain knowledge, and thus may be done in teams, the 
analyst working through the task analysis and the domain expert making the decisions.   

Where detailed time predictions are useful, we recommend using the Keystroke Level Model 
by Card, Moran, and Newell (1980; 1983).  This approach provides time estimates based on the 
keystrokes, mouse moves, mental operators, system response time, and other operators.  The 
times are engineering estimates (i.e., +/- 20%), but are basically allow fair comparisons of 
different interfaces and make suggestions about where time is being spent and could be reduced. 
The regularity of the interactions across subtasks also suggests how much needs learned by the 
users and where knowledge may be misapplied.  

There are numerous ways to reduce system failure due to usability problems. This section 
noted a few and how to find more. Next, an example system is introduced to ground this 
discussion with examples of how potentially abstract principles can be put into practice.   

1.5 Example task: The Mars Water Detection System 
This paper will use a hypothetical use case to provide context for readers. The scenario is based 

on designing an op center for command and control of a remote Water Detection System (WDS) 
to accompany a manned mission to Mars. The WDS will arrive alongside the mission team and 
begin operation following its assembly by the team. Following its activation and an initial system 
check, the op center on Earth will take over sole command of the WDS for a 10-year mission. 
Scientists in the program office will make large-scale decisions to support the mission of finding 
water, while the Earth-based operators implement action-plans and monitor the various systems 
for any current or upcoming issues. We next detail select information to offer an overview of the 
example scenario. A more detailed description is found in Appendix 1.  

1.5.1 Operation center organization 
The WDS is one part within the larger structure of an op center hosting dozens of systems that 

require constant oversight. While the WDS is important for the mission, it may not be the 
primary focus for the workers at any given time. The command structure of the op center 
involves bi-directional communication between scientists from the Program Office who funded 
the WDS and the operators responsible for direct interaction with the systems. Figure 2 shows 
example possible interface designs for a system like the WDS. While the design will vary 
depending on the needs of the system, these systems often will present many different metrics for 
system performance. Operators will monitor the system, pass along alerts, and update the alerts 
depending on their risk assessment for a given situation. Scientists will take this information and 
pass back commands for the operators to transmit. Certain tasks will be able to be completed 
without direct contact with a supervisor, while others will need direct response from supervisors 
prior to action.   
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Figure 2: Two example interface designs for the Water Detection System monitoring screen.  

1.5.2 Water Detection System structure 
The WDS is comprised of several subsystems. The core system in the WDS is the Main 

Control Element (MCE). The MCE acts as the brain in the field by enacting orders from earth, 
monitors other subsystems, and linking the subsystems together. The additional subsystems each 
perform specialized tasks (e.g., communicating with Earth, navigating the WDS, or collecting 
physical samples), however, all subsystems share a set of key features that the operators may 
interact with over the course of the mission. These features are shown in Table 1.  
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Table 1.  Key features built into each subsystem of the WDS. 

Feature Description 
Status The current state and functionality of the subsystem, subsystem-specific 

information, and environmental measures. The MCE checks and stores the 
status of other subsystems until information is passed to earth. 

Event Logs Each subsystem records detailed event logs from all executed commands. 
Event logs are periodically transferred to the MCE before being passed to 
earth. 

Configuration Subsystems maintain a set of configuration fields that determine how the 
subsystem performs its tasks. For example, the MCE will have a modifiable 
field for checking a subsystem’s status that determines how long to wait for 
a response before initiating troubleshooting procedures. 

Commands Commands for subsystems will include a time reference and may include 
additional data if needed. Commands are first sent to the MCE before being 
passed to the appropriate subsystem. 

Redundancy Nearly every subsystem has an A and B side to provide a backup element in 
case of any issues, however only one side of each subsystem operates at any 
given time. These redundant systems are an identical copy of the original 
system. 

1.5.3 Example issues 
System designers may be unable to anticipate every problem within a system; however, the 

risk-driven incremental commitment model drives the designers to try to understand what issues 
are most likely to arise. Table 2 shows some example problems that could arise throughout the 
lifecycle of the WDS system, the risk of these problems occurring, the solution, and who handles 
them.  

The WDS is designed to autonomously handle most issues that arise, but human interaction is 
required on a regular basis. Many of these tasks are simple maintenance and acknowledgement 
of warnings. For example, when batteries are low, the operator is required to acknowledge the 
low battery threshold. No action is required other than clearing the notification. Occasionally, 
however, the WDS will face an urgent problem that requires human input. These scenarios are 
rare, so the operator has limited training in how to address the issues.  
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Table 2.  Example problems faced by the WDS that require operator intervention.  

Problem Description Risk Solution Personnel 

WDS is navigating in a crater and 
gets stuck. The operators need to 
escalate the issue quickly because 
the WDS witnessed unexpected 
terrain. The mappings of Mars 
must be updated appropriately. 

High Operator from Earth takes over 
navigation and assumes manual 
control. The typical operator is 
not trained in this task, so the 
supervising manager must take 
control.  

Operator, 
Supervisor 

Dust storm prevents batteries from 
charging.  MCE cannot complete 
all the scheduled commands for 
the day. 

Moderate CE alerts the NASA operators 
of the low battery status.  
Operator must retask the day’s 
commands because the ANE 
would use all the remaining 
power. 

Operator, 
Supervisor 

Wall of Screens has many other 
systems represented at the same 
time.  If the WDS has a problem, it 
might take a few days for the 
engineers to remote in to fix the 
issue. Therefore, the overview 
screen will remain in degraded 
state. The problem arises when 
something else goes wrong on the 
system. 

Low Modify interface to facilitate 
proper information presentation. 
While issues may not be 
initially present, the possibility 
of other errors being missed due 
to clutter is increased. 

Operator 

1.6 Principles for design 
Based on the target system description, the example system, and the design process, we can 

provide an overview of the report as a set of design principles. These principles provide guidance 
on high-level concepts that the designers can use to improve the systems they create. Though 
generally directed towards improving performance across the human-machine interface, these 
principles will often apply to the entire process of designing complex systems. 

Principle 1: Don’t assume the user is how you think you are. 
One of most important considerations for designers is to dispel the assumption that your users 

are just like you or how you think you are (we make the distinction because you might not think 
or work exactly like you think you do). Unless your user is a software or systems engineer, you 
will in nearly every case need to adjust your design to meet the operator’s system-related needs, 
capabilities, and wants (in that order), and how they are different from you.  

Designers often (perhaps due to the ready availability of themselves and the unavailability of 
example operators) make the risky assumption that the operator is just like them—this is almost 
never the case. What this suggests, then, is to provide designers and engineers the ability to 
consult users and other stakeholders throughout the design process.  Knowing users can include 
talking with them, watching them work, having them use your interfaces, reading their 
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biographies, or watching movies about their work environments (whether documentaries or even 
fictional accounts).  

Understanding the operator enables engineers to mold the system design around the capabilities 
and constraints of its operators. Countless studies have shown that engineers often fail to 
understand their users. This knowledge is the foundation of user-centered design and leads to 
increased performance, financial savings, and safer systems (Lewis & Rieman, 1994; Pew & 
Mavor, 2007; Ritter et al., Ch1, 2014).    

Principle 2: All design choices have tradeoffs. Don’t go in blind.  
Most design choices have tradeoffs. This basic fact will provide engineers with difficult 

decisions throughout the design process. For example, a larger font means less on the screen; 
more on the screen is often helpful. How to resolve this design choice requires knowledge of the 
task and operators. Use of the risk-driven spiral model helps engineers make the best decision 
given the constraints by consulting with stakeholders and using what has been learned by others.  

For example, recognition memory is more robust than recall memory. While searching for files 
on a system, it is usually easy to point-and-click around a series of folders to find some item. 
Using a keystroke-based system (like a command line) might be faster but will require either 
more skilled users or more training.  

As another example, speed and accuracy have conflicting methods for improving performance. 
Emphasizing speed will often require sacrificing accuracy (i.e., more errors). While ideal 
solutions are not always possible, designers can meet expectations by understanding the 
expectations for task time and error rate.  

Many studies have explored how users’ decision making, reaction time, and error rate change 
in response to changing task decisions. The Hick-Hymen law predicts that choosing between 
more options (e.g., 3 choices in a menu vs. 5 choices) takes longer, but the menu is more likely 
to contain the correct choice. Signal detection theory shows a similar tradeoff between hits, 
misses, false alarms, and correct rejections. 

When possible, engineers should make informed decisions about the tradeoffs between 
outcomes caused by different design choices.   

Principle 3: Use multiple designs. 
When designing a new display or component, create and consider multiple versions. Get 

feedback on the possible designs from as objective a source as you can. 
When you create a new display, particularly high stakes or main displays, you should consider 

multiple versions.  Considering multiple versions of designs tend to lead to better designs at least 
in the tasks that have been studied (Dow, 2011). The best objective source for feedback is often 
actual users.  

Research by Steven Dow (originally at Stanford, then CMU and now UCSD), examined design 
in the egg drop task.  In this task, designers were given a set of materials and asked to design a 
protective cradle for the egg to be dropped in. Groups that designed more examples and that 
tested more often had reliably higher distances that their eggs could be dropped. He argues that 
this will apply to other design tasks, and we agree. 

1.7 Summary  
Throughout the design of an ops center such as the WDS system and interface, the engineers’ 

top priority will be the creation of a working product. However, engineers must account for the 
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risks associated with all aspects of the project. Often, the risks associated with some module’s 
reliability or function may trump the human element: human error requires a task that can be 
failed.  However, as the iterative design process advances, and the technology itself becomes 
more reliable, the human operator becomes more likely to be the point-of-failure within a 
system. System engineers will be neglecting a crucial component of their system if they do not 
account for the system’s compatibility with the human operators.  While this process will have 
any number of constraints and variations in its implementation, the designers should be confident 
that their system can be effectively used by the target population. The user interface should 
facilitate high performance without undue stress on the operators.  

Table 3 notes some questions that designers might have in mind when designing and 
implementing control rooms.  In the conclusion to this report we will note how the review has 
answered them. The book now describes the factors that give rise to the principles in Chapters 2 
and 3. An example application is provided in the appendices.  

 

Table 3.  Questions to be answered by this document for systems like the WDS 

Process Performance 

1) What user interface features reduce user stress and improve and maintain level of performance? 

2) Which user interface design factors mitigate performance degradation (speed, accuracy) during the 
execution of detailed procedures for trouble shooting? 

High Throughput Reaction Times 

3) What levels of fast and complex interfaces impair or enhance user reaction time and accuracy? 

4) What are the reaction time and accuracy for a user to react to an alert and respond to the alert with the 
correct actions using the task UI? What are the upper limits of number and speed of alerts before 
performance degrades?  

5) What are the reaction time and accuracy for a user to distinguish between levels of criticality using 
the task UI?  

6) What are the effects of time on reaction time and accuracy for a user using the system?   

Interface Generalizable and Individualized Effectiveness 

7) Which interface design elements vary and do not vary in effectiveness across various demographics? 

8) Which of the above questions are affected by age and prior education? 
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2. User-Centered Design and Situation Awareness  
The full gamut of factors that can contribute to the success of an interface is difficult to 

describe within a single report. Instead, we will identify some of the most significant factors that 
can be used by engineers during their design of an interface. For a more comprehensive review, 
we recommend: (a) Foundations for designing user-centered systems: What system designers 
need to know about people (Ritter et al., 2014), and (b) Designing for Situation Awareness: An 
Approach to User-Centered Design (Endsley, Bolte, & Jones, 2003). 

This report offers design guidelines for optimizing the performance of the human component of 
the operation centers for asynchronous, autonomous systems. User-centered design (UCD) 
provides the foundation for this task through basic tenets of its design philosophy. Designers can 
achieve UCD by designing for situation awareness (SA, explained below) in operators. 
Guidelines developed in these chapters will provide concise takeaways while selected 
information on related cognitive mechanisms will provide context.  

Thus, this paper will follow this logic. First, we describe the tenets of UCD. These provide 
high-level questions that engineers can apply to their system at any point in the design process. 
Next, the connection between operator performance and SA is explained. Performance levels of 
SA correspond with cognitive mechanisms used to perform a task. The final section describes the 
cognitive mechanisms, their influences, and offers design guidelines for ensuring compatibility 
between user capabilities and system interface.  

2.1 User-Centered Design 
The operator is a component of the system just like the sensors or underlying code. High-

performance systems will incorporate operator capabilities into their design. This requires 
creating a system that follows principles of user-centered design. Though UCD is often 
associated with user-experience, Designing for Situation Awareness: An Approach to User-
Centered Design (Endsley et al., 2003, p. 5) explains their difference in underlying philosophy:  
 

User-centered design challenges designers to mold the interface around the capabilities 
and needs of the operators. Rather than displaying information that is centered around 
the sensors and technologies that produce it, a user-centered design integrates this 
information in ways that fit the goals, tasks, and needs of the users. This philosophy is not 
borne primarily from a humanistic or altruistic desire, but rather from a desire to obtain 
optimal functioning of the overall human-machine system.  
 

The three primary tenets of UCD, shown in Table 4, describe the high-level goals of UCD. 
Each tenet is expanded over the next few pages alongside some explanation and examples.  

 

Table 4.  The Central Tenets of User-Centered Design as summarized 
 by Endsley, Bolte, et al., 2003. 

1. Organize	  design	  around	  the	  user’s	  goals,	  tasks,	  and	  abilities.	  

2. Technology	  should	  be	  organized	  around	  the	  way	  users	  process	  information	  and	  make	  decisions.	  	  

3. Technology	  must	  keep	  the	  user	  in	  control	  and	  aware	  of	  the	  state	  of	  the	  system.	  
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To illustrate these tenets, consider driving as an example. Figure 3 shows a car’s dashboard. 
With respect to Tenet 1, what are the primary and secondary goals of the user when using this 
interface? Design should reflect the importance of each goal. While operating a vehicle, the 
primary goal is to arrive safely at the location while balancing time as a secondary goal. 
Consider how the dashboard shown in Figure 3 matches the goals, tasks and abilities of the 
driver.  The speedometer is large and detailed, providing a quick reference of speed while 
driving. This is the primary gauge that will be used while in motion and prominence in the 
display.  The large tachometer provides instant feedback about the operator’s input on the 
system, but without the same detail as the speedometer. Broad markings and the red line provide 
simple indicators of system state.  Engine temperature, and gas level gauges are small because 
they have relatively minor or infrequent usage. Red lines indicate when direct action needs taken.  

 
Figure 3.  Images of a basic automobile dashboard 2. The full dashboard shows four gauges from left to right: 

tachometer, speedometer, fuel level, and temperature. 

What are the primary and secondary tasks that a user will perform on this interface?  The 
design should reflect the importance of each task. While driving, the primary task for this 
interface is checking the speed. Secondary tasks are monitoring the overall state of the vehicle. 
The speedometer has detailed markings to approximately match speed limits (10 mph 
increments).  The tachometer only provides broad details and a red line indicating a “unsafe 
state”, matching the detail that a user requires for monitoring the state. 

With respect to Tenet 2, the information in Figure 3 is makes the speed easy to see, both to find 
the indicator and to find the speed it represents.  The other information for less important tasks is 
given less room.  Where exact numbers are needed, such as miles traveled, this is provided as a 
number. Would a typical user be able to understand this system?  Users and designers are often 
not the same skill level. In the case of a car, the average driver is not a mechanic, so they often 
do not need detailed information on issues. An indicator to check your engine may be enough as 
the layman may not gain any value from additional information. Thus, Figure 3 shows Tenet 2 in 
practice for the dashboard of a car. For the average driver, the check engine light provides only 
the necessary information to solve further problems and nothing more. 

With respect to Tenet 3, the relevant information is provided to control the system. In this case, 
a user working through sequential information on a display expects the next area of focus to be 
                                                

2 Image from Free Images https://www.freeimages.com/photo/stock-in-car-dashboard-1421520 
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on a path from left-to-right, top-to-bottom (like when reading). For the state of a car, the water 
temperature and gas tank level are in a fine order.  More complex interfaces may require a 
different order, and power plant control rooms often order the displays based on their location in 
the plant.  

In Figure 3, if other information not related to driving the car, was presented, such distance 
from home, type of fuel in the tank, or brand of tire, the driver’s ability to drive would be less 
supported.  If the prominence and organization did not match the driver’s eye, for example a less 
clear (or smaller) font, or in a different order, then the driver’s performance could suffer.  
Finally, if the state of the car was less visible, or less appropriately matched to the frequency and 
importance of goals, performance would suffer.  

These tenets are not perfect, however, and do not always give clear guidance. Consider the 
display in Figure 4.  Here, the tenets do not provide direct guidance.  The choice between these 
two designs must be based on the details of the goals and task priorities. If these are not known, 
they must be obtained from stakeholders (in the best case) or guessed or inferred in the worst 
case.   

Together, the three tenets of UCD provide a foundation for how to frame the system design 
process around the goals, needs, and tasks of the operators. The various other elements within a 
complex system have their own design philosophies or guidelines (e.g., modular design, minimal 
complexity, easy replacement of components). The human-system interface is no different. The 
tenets of UCD provide an underlying set of principles that should shape the design process for 
creating complex systems.  

Implementing UCD within complex systems requires a method for understanding and assessing 
operator performance during complex work. Endsley’s (1995) theory of Situation Awareness 
(SA) fills this need by providing a framework for understanding performance and decision 
making. Describing the SA of an operator means describing the product of relevant cognitive 
mechanisms that are necessary to perform complex work like decision making and 
troubleshooting within an operation center.  
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Figure 4.  Two ways to present display of an automated target identifier. Each design has trade-offs in 

operator performance that must be weighed based on the goals and priorities of the system. Image redrawn 
and modified by authors. Original figure from Banbury, Selcon, Endsley, Gorton, & Tatlock (1998). 

2.2 Situational awareness: A key to UCD 
Human operators using complex systems must be able to correctly perceive useful information 

while ignoring other stimuli. Situational awareness (SA) provides a framework for describing 
human performance at these types of tasks. At its most basic level, an operator with SA 
understands what the objects are around them, what the objects are doing, and what the objects 
will do. With these types of knowledge, the operator understands the current state and can 
project their understanding into possible future states of the system.  

Describing an operator’s SA performance will use three iterative stages. Though specific 
performance benchmarks denoting each stage may vary depending on the task, the three stages 
of SA are typically known as (a) Perception, (b) Comprehension, and (c) Projection.  These are 
illustrated in Figure 4. First, an operator must be able to perceive the useful information from the 
task environment. Second, they integrate individual cues into a model of the current situation. 
Third, they use their model of the situation to predict likely outcomes based on their 
comprehension of the scenario. Figure 5 uses operating a car to provide an example of what 
types of information are associated with each stage. 
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Figure 5.  The three stages of SA applied to task of operating a car. Figure redrawn and modified by authors. 

Figure modified from Bolstad, Cuevas, Wang-Costello, Endsley, and Angell (2010). 

Thus, operator performance can be improved through incorporating the tenets of UCD in 
system design. Improving the UCD of a system requires improving the SA of operators using the 
human-system interface. The system design will impact how well operators can develop and 
maintain SA during work. Interface design will affect how quickly and easily operators can 
advance to each subsequent stage of SA performance and how accurate and complete the 
operator’s understanding is at each stage. Similar to shifting gears in a manual car, the stages 
progress on a continuous scale where mastery of lower levels of SA is required to advance to the 
next stage.  

The stages of SA provide a framework for assessing performance and identifying task and 
interface factors that can moderate SA performance. Progression through stages of SA will be 
impacted by operator characteristics (e.g., fatigue, personal capabilities), environmental effects 
(e.g., distractions), and task-related factors (e.g., cognitive resources required, task types, 
complexity; Boff & Lincoln, 1988). Each stage requires significantly more resources (e.g., 
knowledge, information, time) than the last. Stage 3 SA should not be expected as the norm for 
every operator or every task, however, it is the most useful.  

Next, we describe the stages of SA in more detail and provide principles for design based on 
using SA as a metaphor for work in op centers.  These principles are drawn from Endsley and 
colleagues (2003) but are created by us to apply SA to the design of op centers.  We include 
motivating examples for each stage. Tasks surrounding aviation were the original focus of SA 
research before it expanded to include a variety of complex tasks. The discussion of stages will 
refer to percentage of errors in each stage and these values refer to errors during common 
aviation tasks for pilots, air traffic controllers, and others. It would be reasonable to assume that 
similar results would be found for op centers.  

2.2.1 Stage 1 – Perception 
Perception is the most fundamental aspect of SA. During the common tasks within an op 

center, operators are bombarded with informational or perhaps more literally, there are many 
displays that they can view, and on each display, there is a lot of information. The situation and 
signal content can determine the best course of action regarding how and when to respond to a 
signal (if at all). Operators with Stage 1 SA will demonstrate the ability to detect important 
signals while discarding irrelevant ones. Given perception’s fundamental role in an operator’s 
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work, it is unsurprising that perceptual issues account for about 75% of errors in common SA 
work (Jones & Endsley, 1996). Causes of Stage 1 errors can be attributed primarily to human 
failures (e.g., attentional failure, misinterpretation of a signal), primarily to system failures 
(unclear or missing information), or some combination of the two.   

Some design principles and examples related to Stage 1 SA are shown in Table 5. For example, 
in the WDS (introduced in Ch1 and explained in detail in Appendix 1), a display can indicate 
that the battery will be unable to charge at the rover’s current position, so the rover will need to 
relocate. This interface needs to make the point clearly.  In a recent example, grades to be 
inputted were available only through an icon of a man pointing at a screen, rather than the word 
“Grades”.  The first icon was not interpretable but would have been clear if labeled “Grades”.  
Often words in interfaces are underused, but are readily interpretable (Chilton, 1996). 

 
Table 5.  Design principles related to Stage 1 SA.   

1) Make the information available. 

2) Make the information interpretable. 

3) Ensure the value and salience of each piece of information; eliminate or suppress unnecessary 
signals. 

4) Work around the limitations of human perception and cognition by reducing complexity and 
workload of the task. 

The first principle in this area us to make the information available. This means ensuring the 
value and salience of each piece of information is appropriate, and to actively drawing attention 
to important signals while minimizing extraneous stimuli. The second principle in this area is to 
make the information interpretable by using intuitive, sensible displays. The third principle 
extends the first two by promoting a hierarchy of signal significance to ensure that the perceived 
signals are the most useful at any given time. 

As an example, reconsider the car dashboard shown in Figure 3. Several design features 
facilitate Stage 1 SA during typical operation of the vehicle. Compare the prominence of the 
speedometer and tachometer to the temperature and gas gauges. The operator must update their 
awareness of speed and engine performance much more often than their awareness of 
temperature and fuel. Thus, key information is more salient than secondary information. 

The design also has a threshold for the gas gauge that provides two indicators of low fuel at 
dangerously low levels. First, the red line for gauging fuel level compared to the warning point, 
and second, a light that indicates dangerously low fuel levels. This draws more attention when 
necessary while always showing some information. 

For another example consider the WDS introduced in Chapter 1: when below a certain power 
threshold, the dashboard interface displaying the battery information will continually flash a red 
symbol indicating the risk to system power. If this alert continues until the battery is charged, the 
signal will waste the operator’s attention and cause unnecessary distraction. Why does the signal 
remain prominent, even after the solution has been implemented? Once the solution process 
begins, there is no need to draw attention to the signal until additional information is received. 
The signal’s visual appearance should be able to be muted until an update is needed.  

This principle has further implications for the details of displays.  It suggests eliminating or 
suppressing unnecessary signals and merging compatible signals. Simplify complex signals. For 
example, in the WDS an interface showing the overall WDS status may include orientation, 
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geographic location, battery level, and other information. This information is used by operators 
during periodic checks for unexpected changes in status. Reduce complexity and detail when 
possible. This can mean only showing integer values for orientation or showing battery level in 
whole percentage values rather than in the 10,000’s that are returned. If warranted, reduce 
complexity further by simplifying to a binary response for whether orientation is normal or not.  

The fourth principle in this area is to work with the limits of human cognition and perception. 
Human cognition has natural limits in how much it can process at once. Work around the 
limitations by reducing complexity and workload of the task.  

For example, a status update for the WDS may include hundreds or thousands of events in a 
data log that accompanies the basic system status report. Reserving a space on the interface to 
indicate critical or alarming events (e.g., imminent power failure) while hiding data related to 
non-important updates will reduce the amount of information necessary for the operator to 
perform the most useful tasks.   

As another example, some system is rarely interacted with during normal operations. The 
interface simply provides a status that is checked hourly by an operator. This interface was 
initially expected to be part of a multiple-monitor display for a seated operator, but now it is 
checked while standing several feet back. The operator must lean in or squint to read and 
understand the information.   

Consider physical aspects of how the operator uses the system. An operator sitting at a desk in 
front of the screen can effectively monitor more dense signals than someone five feet away. 
Ideally, the perceived details of an interface will smoothly transition as an operator views it from 
different distances.  

Books on visual design of interfaces can provide more information in this area (e.g., Kosslyn, 
2007; Tufte, 2001, 2006).  

2.2.2 Stage 2 – Comprehension  
The second stage of SA involves synthesizing Stage 1 cues into a useable mental model of the 

situation. A practiced operator will detect patterns from various stimuli and form a holistic view 
of the situation based on their experience with the task and the information presented. Errors 
arising from comprehension failure account for about 20.3% of errors (Jones & Endsley, 1996). 
Stage 2 errors are often attributed to misinterpretation of an information set, failure to maintain 
all the necessary information in working memory, misuse of their mental model, or over-reliance 
on default settings (i.e., failing to check a status hidden in a submenu). 

Some design principles related to Stage 2 SA are shown in Table 6.  The first principle is to 
design the system to prevent misinterpretation of signals. Signals should be unambiguous, 
consistent, and instantly recognizable.  

 
Table 6.  Design principles related to Stage 2 SA.   

(1) Actively design the system to prevent misinterpretation of signals. Signals should be  
unambiguous, consistent, and instantly recognizable.  

(2) Consider how the actual tasks will be done by the operators. If operators will be expected to 
multi-task, then build in features to accommodate this 

As an example of principle 6.1, the interface that provides the WDS status information may 
have a variety of information presented on it using textual and visual signals. Icons can help 
reduce text or provide a more grid-like design but should only be used if the operator 
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understands the meaning (so make sure that the operator understands the meaning through 
culture, training, pop-up names, or other means). 

Similarly, familiar symbols should have familiar effects. Using an ‘X’, particularly a red ‘X’, 
should close or exit something. Red and green follow cultural norms of stop/exit/bad and 
go/continue/good respectively. The Apple Design Guidelines3 give an example set of such 
guidelines. 

The second principle, 6.2, is to consider how the actual tasks will be done by the operators. 
Interruptions are a major source of error. If operators will be expected to multi-task, then build in 
features to accommodate this and include handling an interruption as a task in your task analysis. 
These features can include the ability to postpone the next task so that a task can be completed, 
or to remember the state of the suspended task until it can be returned to. In a control room, one 
solution could be to simply include a pad of paper (Trafton, Altmann, Brock, & Mintz, 2003). 

As an example, operators may have to multitask while monitoring the WDS. The WDS status 
interface provides many different pieces of information to an operator, but operators will 
typically not have any issues responding to routine events. However, once they need to respond 
to some situation, they must split their attention between the normal monitoring and the new 
task. This could lead to the operator missing an important warning.   

The system could support this task requirement and reduce risk by providing a simplistic view 
of critical information during times when the operator may be splitting attention across multiple 
tasks. When an operator pulls up a subsystem view alongside an overall status view, the overall 
status could have its detail reduced while offering a more salient signal for any changes that 
occur, or, simple ways to keep track of state like a pad of paper or a sticky note on the screen, 
that could allow the operator to save partial state before dealing with an interruption.   

Further information on how cognition is used to comprehend a situation is available in 
Endsley’s work (Endsley, Bolstad, Jones, & Riley, 2003; Endsley, Bolte, et al., 2003) and other 
books on human-computer interaction (Krug, 2005; Ritter et al., 2014).  

2.2.3 Stage 3 – Projection  
The third stage of SA is achieved through projecting the model of the situation into possible 

outcomes. For example, an air traffic controller could anticipate a dangerous situation based on 
how two aircraft are likely to maneuver while changing course and act to avert the future 
situation. Though difficult, this type of expertise is essential for high performance in some 
complex tasks (Endsley, 2000).  

Stage 3 failures account for about 3% of errors in aviation, but the complexity of Stage 3 SA 
makes generalizable causes of error difficult to isolate. General causes may include over-taxation 
of mental resources, insufficient knowledge of the domain, or over-projecting current trends 
(Jones & Endsley, 1996). This type of expertise is difficult to plan around for the engineers 
during early stages, thus will be given less focus in this document. Obviously, systems that help 
predict the future of object or systems would help operators.  Support in this area could include 
trend or spark lines showing system state (Tufte, 2006).  

One of the most effective ways to design for Stage 3 SA is by eliminating barriers preventing 
Stages 1 and 2 SA from being effectively supported. Thus, designers are advised to focus on 
solving issues with perception and comprehension before specifically addressing methods for 
improving an operator’s ability to project into future states. However, further information about 

                                                
3 https://developer.apple.com/design/human-interface-guidelines/ 
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supporting projection can be find in Endsley’s work (Endsley, Bolstad, et al., 2003; Endsley, 
Bolte, et al., 2003), and work on mental models (Besnard, Greathead, & Baxter, 2004; Kieras & 
Bovair, 1984; Moray, 1996; Ritter et al., 2014). 

2.3 Summary: Cognitive mechanisms for situation awareness 
The three stages of SA provide a broad classification for the performance of operators during 

complex tasks. This section only briefly describes SA. This overview gives engineers the tools 
needed to consider how SA applies to the systems they design. Next, the cognitive mechanisms 
that drive operator performance are described and connected to SA.   

This section briefly covers significant cognitive mechanisms used in SA as a way to describe 
and summarize them. These mechanisms and their role in SA get more comprehensive coverage 
in Chapter 3.  We explain there here because these mechanisms can be simulated in a computer 
(Anderson, 2007), but can also be productively simulated in the designer’s head to make 
predictions about how that part of the system will be used by the operator will perform a task.  
Figure 6 shows these mechanisms as they are implemented in the ACT-R cognitive architecture 
(Ritter et al., 2014, Ch 1). These components can be seen as distinct subsystems with semi-
independent operations.  

As shown in Figure 6, the process of situation awareness will often start with Perception, the 
intake and processing of competing sensory cues (or signals) into usable information. In this 
approach, perception does not necessarily lead to detection of a signal or to understanding.  The 
perceptual process requires attention from cognition.  Cognition, the central process, directs 
processing or focus on the task relevant information while ignoring or not processing the rest. 
Attention is a limited resource that must be distributed across appropriate features and is 
probably best seen as a process rather than a single buffer.   

 
Figure 6.  A schematic of the components of a computational model (ACT-R) of the human operator (Taken 

from Ritter et al., 2014). 

Top-Down attention is goal-directed towards some feature(s) for the goal while avoiding focus 
on distracters (e.g., monitoring speed and position but ignoring billboards while driving).  
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Bottom-up attention is driven by any of the common features that indicate activity (bright 
colors/lights, motion, and others). 

Memory is used to perform the task, recruited from the declarative memory buffer or activated 
from long term memory (here, in the declarative buffer and the goal buffer), which might be 
called Working Memory (WM), which operates as the “RAM” for cognition by storing and 
manipulating information chunks for short periods.  This stored information has to be maintained 
through use, manipulated, and stored in long-term memory, or it is lost.  Human memory is more 
similar to old drum or plated wire memory, which needed to be continually refreshed, than it is 
to current solid-state RAM, which can sit without use and without decay.  

Directed attention captures information to be stored in WM.  Dual-tasks can be performed well 
if each uses only/primarily one WM type or store. For example, remembering a set of numbers is 
easier to do while looking at a scene than while solving math problems.  

The operator’s mental model is the operator’s internal representation of an external situation. 
Their mental model provides the framework that they use handle information for decision 
making. This model is stored in memory, which means it can be learned, or partially forgotten, 
and might not match the designer’s representation used to understand the system and to create 
the interface.   

The operator’s mental model of a situation provides the tools needed to handle large amounts 
of information. They use their experience from long-term memory to scaffold the intake of new 
information, noting what to pay attention to, what to discard, and what to remember for a given 
situation.  Mental models also include what to do in a situation.  

Thus, situation awareness, the awareness of the state of the world, and what is happening and 
what will happen, is only possible through an operator’s mental model and its use by a set of 
mechanisms similar to what is in Figure 6. 

This approach, when applied to op center design, suggests that each stage of the operator’s 
processing and response is important for successful system operation. The operator needs to be 
able to see and process the stimuli.  They need to be able to have attention and time to 
understand it, and knowledge that the stimuli is important. They need to have an appropriate 
mental model to place the perception into relationship, the mental model, with previous 
perceptions as well as current goals.  They need to know what to do, and how to respond.  

Situation awareness thus provides a way to organize a designer’s model of the operator.  It 
makes strong suggestions about design when combined with knowing the operator’s capabilities, 
their tasks and task priorities, and their mental model of the world, both the longer term and 
semantic model as well as the ongoing and evolving model of what is happening at any point in 
time.  

The next chapter explains these components in more detail to help a designer understand how 
an operator might run and apply their mental model.  
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3. Cognition and Operator Performance 
This chapter explains in more detail the primary cognitive mechanisms used by operators to 

perform their tasks. This section should help designers have a better mental model of operators.  
These details should help a designer understand how an operator does their tasks and thus 
support the operator better.  

In this approach, based on the cognitive architecture shown in Figure 5, cognition can be 
described as an emergent phenomenon arising from a collection of mechanisms. The 
mechanisms can be seen as components of an information processing system in the same way 
that a computer has components.   

The component mechanisms can be described in isolation (visual processing of an object) with 
some degree of useful truth. However, it is important to understand that this is a practical 
consideration. In truth, cognition relies on an extremely complex, highly interconnected 
neurological system.  

This chapter explains these mechanisms in detail to help a designer. The mechanisms discussed 
here include visual perception, attention (which is perhaps emergent from other systems 
interaction and work), memory, and briefly learning. In each section, we note further design 
principles to summarize the results to aid design.  

3.1 Perception 
The most basic level of cognition for operators is the perception of stimuli. While we may be 

able to receive signals from a variety of sources, visual stimuli provide the proportional 
supermajority of signals. Auditory comes in second, followed in a distant third by tactile (which 
does not appear to be used nor needed currently in most control rooms). We will follow this 
natural system order in our analysis. Thus, we will primarily focus our discussion on visual 
perception.  

3.1.1 Visual processing 
Understanding the nuances of visual processing enables system designers to build their 

interface around the natural capabilities and limitations of the operators. At a basic level, visual 
processing is the process of capturing light on some visual sensor and transmitting this 
information to the processing system. For many robotic systems, this is a relatively 
straightforward process where information only flows one direction. In contrast, human 
processing is a bi-directional process including feature detection, goal-directed attention, pre-
attentive assessment of stimuli, and active interpretation of the signals. The complex system 
allows us to make a sensible, coherent world out of small snapshots of information without the 
need for detailed processing.  While humans may excel at particular tasks like pattern detection, 
we also can be easily tricked by unconscious misapplication of the heuristics (visual illusions, 
misrecognition, not seeing target objects). While some sources of errorful behavior can be 
inhibited or corrected through conscious effort, others are essentially reflexive actions without 
any reasonable method for self-regulation.  

A classic example of our failure to inhibit automatic processing is the Stroop Task (Stroop, 
1935). The task is simple. A subject is presented with a color word (i.e., red, blue, yellow) 
written in one of those same colors. The task is to name the color of the ink. The experiment has 
two conditions, congruous and incongruous. When congruous, the ink color and word will match 
(i.e. “red” written in red ink). When incongruous, the ink color and word will not match (i.e. 
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“red” written in yellow ink). This task seems simple in the congruous condition, but when the 
incongruous condition is tested, and the word and its color differ, the subject will typically 
stumble through responses, be significantly slower, and make many more mistakes—once we 
learn how to read, we simply cannot inhibit the natural response to read text. The mechanistic 
explanation is that the reading skill is practiced so much more than the naming skill, thus the 
reading skill has to be suppressed to name the color. During the Stroop Task, reading, a normally 
beneficial process, is a detriment to our performance.  

A more comprehensive overview of low-level visual processing as well as additional resources 
can be found in the chapter “Behavior: Basic Psychology of the User” (Ritter et al., 2014, Ch. 4).   

3.1.2 Color blindness 
Color blindness is a particularly salient concern for designers due to its prevalence among the 

population. For the Western population, about 7% of men and 0.5% of women have some form 
of red-green color blindness. This causes affected individuals to have difficulty differentiating 
red from green. Individuals may also have blue-yellow color blindness, or even total color 
blindness but these are significantly more rare than red-green color blindness (Ritter et al., 2014).   

There are many different forms of color blindness based on the specific deficiency in the visual 
system, but the general design recommendations that alleviate their effects are the same. Good 
design will avoid using only color as a signal for an operator. Instead, the design should 
incorporate multiple signals into a cohesive message for the operator. For example, an important 
alarm could flash bolded text information, have red coloring, and use textual indicators like 
exclamation marks to ensure that the message is clear. 

Thus, better designs will dual-code results.  That is, meaning will not just be encoded by color, 
but color and font, or line thickness and name, or line type and texture.  Dual-coding stimuli 
makes them faster to be recognized and discriminated (Garner, 1974).  It may be useful to check 
designs against this deficit.  There are tools online to show how color-blind individuals perceive 
images and interfaces4. They typically take a URL or image file and show how color-blind 
individuals would see it. Given the prominence of color-blindness among the general population 
(8% of men and 1% of women; National Eye Institute), dual-coding signals and ensuring color-
blind compliance would be well-advised for any system that requires human operators.    

3.1.3 Visual search 
The visual system can be broadly broken up into two subsystems based on their role. The eye 

handles stimulus detection and the brain (in specialized regions) handles stimulus-interpretation. 
Stimulus detection occurs within the eye, but the process itself is driven by a combination of 
goal-directed attention from the mind (top-down) and automatic processing of salient features 
(bottom-up). Top-down and bottom-up directives guide the visual processing and integration of 
the environment that occur during visual search.   

Visual search of the information displayed on an interface is a core activity for operators, 
regardless of the task. As their attention is oriented to the task at hand, the operator will need to 
comprehend the information presented on any given interface. Visual processing is an 
intermittent process in which our eyes are constantly alternating between saccades (rapid eye 
movements to some feature) and fixations (resting moments of information intake). What we 
perceive as a continuous experience is actually an intermittent series of fixations that are 

                                                
4 https://www.toptal.com/designers/colorfilter/ 
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unconsciously aggregated into a coherent, though not necessarily accurate, mental model of our 
surroundings (Irwin, Brown, & Sun, 1988). During fixations, the feature-detection relies on 
distinguishing target features from distracter features through pre-attentive visual processing 
(Healey & Enns, 2012). This summary of vision as being active can be contrasted with folk 
psychology and early understanding of vision where humans were understood to see and 
understand the whole display at once, whereas, we now know that the eye must search for 
information actively on the display and often refresh it (Findlay & Gilchrist, 2003). 

During complex tasks that require visual search, both bottom-up feature recognition and top-
down goal-oriented activity influence the performance of the operator at finding that 
information. While top-down directives lead visual search towards a certain set of features, our 
eyes are unable to fully inhibit the bottom-up feature detection. Given the effects that distracting 
features can present for operators, designers should understand what types of visual features 
draw people’s attention and the role of higher-level graphical organization.  

3.1.4 Pre-attentive visual processing 
Once an operator perceives the signals presented by an interface, the visual processing system 

immediately begins working to form a coherent mental model of the scene. Cognitive limitations 
on information processing prevent humans from scanning, processing, and understanding every 
individual signal within the visual field. Instead, we have developed a complex pattern-matching 
system that reduces workload without (usually) negatively impacting comprehension.  

There are two main processes that occur during the early stages of visual search. The first is 
pre-attentive visual processing based on relatively simple features of the objects. Figure 7 shows 
examples of the types of features that are easily and immediately detected during visual search. 
The common element across these examples is the contrast between features. When objects vary 
in orientation, length, or size (compared to other objects their environment), they are identified 
and distinguished much more quickly than other objects. Easily distinguished visual features are 
more salient to the operator, particularly when the operator is distracted or overworked. 
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Figure 7.  Examples of pre-attentive visual features  

(Figure and caption reprinted from Healey & Enns, 2012). 

The contrasting features shown in Figure 7 vary in their salience. Just by glancing across the 
examples, we can notice a difference in how rapidly we acquire the target stimulus among the 
distracters. The image for hue is easily discerned, while lighting direction and 3D depth are more 
difficult. Designers must consider the salience of the signals they will present to the operator and 
provide the most salient cues to the most important differences.   

The second major process of early visual processing is the grouping of individual features into 
shared, higher order visual structures. This is known as Gestalt grouping or Gestalt Theory 
(Chang, Dooley, & Tuovinen, 2002; Moore & Egeth, 1997). Just as particular features are 
distinguished individually, sets of features are organized into visual structures to be further 
processed by the viewer. This allows the viewer of the scene to organize the information-dense 
world into a coherent set of distinct objects. Just like the processing of pre-attentive visual 
features, Gestalt grouping is an involuntary processing step that shapes how a person perceives 
the world around them (Moore & Egeth, 1997).  

Gestalt Theory encompasses a family of related psychological principles of perceptual 
organization used to describe common instances of visual integration. The literature on this 
subject is varied and as such, the specific principles can often be described in multiple ways 
depending on the situation or researcher. Though not exhaustive, Figure 8 shows nine of the 
most common examples of Gestalt principles affecting how we aggregate component pieces of a 
visual image. These principles can be used by a designer to group information together or 
separate different subgroups appropriately.   
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Figure 8.  Common examples of Gestalt principles affecting image perception.  

 (Copied from Ritter et al., 2014, Figure 4-15). 

Even without other factors affecting visual processing, Gestalt Theory can serve as a useful 
framework for analyzing and improving the design of an interface. Chang and colleagues (2002) 
demonstrates how Gestalt Theory can be used to guide the redesign of an electronic learning 
tool. During their background research, the authors identified a subset of the many Gestalt 
“laws” from prior research and used these as the basis for their redesign process. The redesign 
process described by Chang and colleagues provides a useful exemplar of the methodology, 
however they did not collect the empirical data necessary to provide a detailed analysis of how 
their redesign affected interface performance.  

3.1.5 Summary of visual perception and principles 
Nearly everything on the interface is a signal or feature. Designers should assess the 

importance of each signal as well as the salience associated with it.  
To make signals be recognized, change the hue, make it flash, or increase its size, or use pre-

attentive visual features shown in Figure 6 to modify the salience of the information. The inverse 
is also true.  For irrelevant features at a given point, ensure their salience is appropriate by 
modifying their visual representation.  

If an operator does not perceive something, they will not know that they missed it. Creating our 
mental model requires unconscious assumptions about the world. Do not assume that the 
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operator will realize that they need to attend to a minor signal or remember to look at something; 
help them.  

It may be appropriate to test the interface for color-blindness compatibility. Where colors 
cannot be changed, one could test the users to support reconsidering changing colors, or to find 
other ways to support color-blind users.   

Gestalt principles give engineers the ability to predict how operators will perceive their 
interface and its functionality. Designing the system layout around these principles can ensure 
that the engineer’s intentions are clearly conveyed to the operator.  

To summarize how to use results from visual perception in design, we present a few design 
principles related to vision.  

Principle 3.1: Designing to accommodate color blindness will solve multiple problems 
at once.  

Color blindness is prevalent among the general population at between 2-7%. Presenting 
information with multiple signals and modes can help ensure the message is clearly receiving 
regardless of their color perception and faster overall.  

Principle 3.2: Colors must be sparingly used, consistent, and reserved for critical 
information.  

Color can be recognized and interpreted much more quickly than a complex signal, but overuse 
reduces the effectiveness. If possible, follow these rules: use no more than 4 different colors, 
adopt a dull screen as background, and reserve specific colors for specific signals.  

Thus, ensure that color provides a valuable signal to the operator through purposeful use of 
specific colors to emphasize critical information on an otherwise dull interface. Often, color can 
be a distracter just as easily as a signal if the interface overused or misused. Three specific 
examples are shown in Figures 9, 10, and 11.  

 

 
Figure 9.  Labeled example of interface with dull color overall, allowing the green “active pump” signal to 

stand out.   Figure redrawn by authors and modified from Ulrich and Boring (2013).   

Designers must consider how each color used in the system will be interpreted by operators. 
Figure 8 shows a relatively dull interface that can be quickly scanned to identify which system 
processes are active without any distracting signals. Connecting lines between components 
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(yellow) are easily distinguished, but the reduced saturation demotes their importance during 
typical use. 

Figure 9 shows how to use of color within an interface should be considered as a scarce 
resource. On a completely plain background, one color can be extremely visible, but each new 
color and new use reduces the salience of that signal. Figure 10 shows an example of reducing 
the color usage within an interface to highlight critical information (Ulrich & Boring, 2013).  

 
a) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  b)	  	  	  	  	   	  

Figure 10.  Examples of muted interface with dulled colors, dedicated alarm colors, and merged information 
for easier perception. Images (a) and (b) show an initial and revised pressure gauge. Figure redrawn by 

authors and modified from Ulrich and Boring’s guidelines ; 2013)  

Color is often a major factor used with an interface to code signals with meaning. Color use 
will usually use pairs or sets of colors to provide a categorical piece of information for the 
operator. Green, yellow, and red, can indicate the system status on a range from healthy to 
critical failure. Blue can represent active pumps for a liquid while grey shows inactive. Color is a 
valuable signaling method for typical operators, but designers should ensure that their design has 
multiple signals indicating critical information.   

For example, the gauges shown in Figure 10a may be unable to provide color blind operators 
with enough information to ensure system success. Figure 10b shows a revised interface that 
would be better suited for all users. Though the second gauge sacrifices some contrast between 
the safe and dangerous system states, the thick black line and arrow indicating the critical level 
eliminates color blindness as a risk for operator failure.  

Principle 3.3: Make text with readable fonts, no more than 3 font types, and of proper 
sizes, with simple, short text strings 

Reading from screens tends to be slower and more difficult than print-based reading.  This may 
be due to the difference between projective and reflective light or due to pixel density. Many 
operators will not be trained to differentiate font types, so use different fonts sparingly. Improve 
readability and comprehension by using readable, simple fonts. Ensure font size is appropriate 
for the expected viewing distance. Concise text, accompanied by a symbol or icon, will be faster 
than a description and more easily interpreted than an icon alone. 

Designers should thus avoid using unnecessarily “fancy” fonts and settle on simple, effective 
presentation of the key information. In general, long strings of text should be avoided. They can 
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be replaced with symbols, bullet points, or at the very least, augmented with emphasized words 
to make scanning easier. Figure 11 shows an example of improvement. 

 

 
Figure 11.  Incremental improvement of power level indicator. Final product can be quickly referenced for 

general status and examined more closely for detailed information like voltage and time remaining.  

In general, reading from digital screens is slower and leads to less comprehension compared to 
print-based reading. Researchers have studied the effects of screen-based reading quite 
extensively. They consistently find that reading from screens is slower by 10-30%, leads to 
increased errors, and fatigues the user more quickly than print reading (Ritter et al., 2014).  

Principle 3.4: Ensure signals indicating missing information are clear and obvious. 
Operators rely on gathering and interpreting information to make key decisions. Uncertain or 

missing information can affect performance through incorrect assumptions by operators.  
Missing information from a sensor or system can be a signal to the operator about the situation, 

but this is only possible if the operator is aware that the information is missing. When operators 
do not realize that some information is missing, they may rely on their base assumption of 
normal operating conditions, which can lead to potential disaster.  

For example, a pilot operating a plane in cloud cover with malfunctioning terrain sensors can 
respond differently if aware of the missing information. If aware of the issue, they could climb to 
a safe altitude regardless of any “true” obstacle. If unaware, they may crash after assuming they 
were on a safe trajectory.  

In the WDS system, signals indicating success for a repeating procedure could be represented 
as a simple binary response: success or failure (1a and 3 from Figure 12). If the update schedule 
is known to vary by 30 minutes, this could lead to many false alarms if a missing self-test at the 
exact due time qualifies as a critical failure. The design in Figure 12 allows operators to quickly 
see when the last test occurred and provides an intermediate signal for a missing self-test. This 
gives operators a signal to be in a “ready” state to respond to a critical failure. 
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Figure 12.  The role of color to represent missing and aging information.   

Principle 3.5: Arrangement of screen components should be useful, consistent, and 
close.  

Whether designing the full system interface with multiple objects or creating the objects 
themselves, limit the amount of distance between signals that are commonly used together. 
Basically, have a theory of how the interface will be used, and use the task analysis and operator 
knowledge and characteristics to design the interface so that knowledge information on the same 
task are near each other. 

As an operator scans the system interface during typical monitoring tasks, they will be 
generally searching for alarms, alerts, or any sign indicating a potentially risky situation.  The 
task analysis should provide a summary of the tasks, their importance, and their frequency.  
Checking systems with distant components (as measured as travel through the interface) requires 
more time and effort to perform well. Additionally, upon identifying an alarm, operators often 
will search for signals that confirm the veracity of the alarm. Grouping related components 
together makes this easier, reduces strain, and increases their ability to search for information.  

Grouping and arrangement should also attempt to follow consistent patterns both visually and 
semantically across multiple displays.  The design guidelines in Appendix 3 provide guidance 
about the semantics and importance.  

3.2 Attention 
While visual perception can be described as the integration of information through the field of 

vision, attention is the “spotlight” that makes a set of stimuli more active or relevant than the rest 
through state or use. As operators are presented with a constant array of information, an 
executive control system in the mind is directing attention towards features or items in that set of 
information. A crucial feature of attention is the enhanced acuity for the target of interest at the 
expense of awareness of periphery stimuli (Ritter et al., 2014). The shift in focus can occur due 
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to the salience of certain features, perceived relevance to a particular goal, or an active process of 
cognitive control.  

This section will first discuss the basics of the underlying mechanisms of attention and the 
effects of task switching. Next, we will describe the causes and implications of limited 
attentional resources and the attrition of attention.  

Attention plays a crucial role in visual perception by providing a mechanism for isolating 
specific features of interest. Visual perception entails making sense of a world with too much 
information present; attention is the tool for “working around” this natural limitation. Attention 
provides guidance (though not total control) for the sequence of eye saccades and fixations 
during goal-directed search for visual features. The interaction between these two mechanisms is 
moderated by cognitive control (e.g., goal-directed behavior) and aspects of features in the visual 
field (e.g., salience). The interaction between these two forces can affect performance by altering 
the usage of “cognitive resources” during a particular task. For example, inhibiting a response to 
look at a flashing light requires active control of visual search, and thus attention. The skill at 
which a user can inhibit these responses is governed, at least in part, by their working memory 
capacity (Unsworth, Schrock, & Engle, 2004). The inverse is true as well: an extremely salient 
signal will require fewer cognitive resources to detect.   

3.2.1 Attentional vigilance 
The role attention plays in cognitive tasks cannot be overstated. While we have primarily been 

describing the role of attention on visual processes, attention plays a central role in both internal 
(e.g. problem-solving, goal-sustenance) and external cognitive mechanisms (visual search). The 
act of maintaining attention on a task is called attentional vigilance, or just vigilance. Tasks that 
require vigilance are characterized by the need to maintain attention over an extended period 
while attempting to detect target stimuli without responding to neutral or distracting stimuli. 
Performance loss is often ascribed to the vigilance decrement, or the performance decline that 
occurs over a period of active monitoring. This type of task is extremely common of operators 
within an op center.  

Sustained attention on a task is impaired by several factors. First, the salience of the goal 
signals directly affects the decay rate of operator performance due to the vigilance decrement 
(Helton & Warm, 2008). Increased working memory load leads to worse performance on 
vigilance tasks. If an operator needs to remember other tasks or keep unnecessary information in 
working memory, they will have a higher cognitive load (Helton & Russell, 2011). Depending 
on the type of information being remembered, the impact on performance may be reduced. For 
example, listening to a supervisor speak (verbal) and watching a graphical display (visual) will 
be easier than trying to listen and read (both verbal) simultaneously (Epling, Russell, & Helton, 
2016).  

3.2.2 Resuming attention: Interruptions and task-switching 
Interruptions provide a major risk in disrupting the ability of operators to maintain their 

attention on a given task. Unanticipated breaks during the completion of a task have been shown 
to increase subjective workload and error rates, even for experienced professionals (e.g., Campoe 
& Giuliano, 2017; DeMarco & Lister, 1999). Designers should be aware of how interruptions, 
even when planned, can impair performance of operators.  

The overall framework for understanding task interruption can be divided into several phases. 
First, the worker will be completing some primary task. At some point prior to completing the 
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primary task, the worker is exposed to a distraction signaling the need to complete a secondary 
task. The time between receiving the signal and initiating the secondary task is called the 
interruption lag. Next, the worker begins the secondary task. The time to complete the secondary 
task is called the interruption length. Upon concluding the secondary task, a period called the 
resumption lag occurs until the worker is able to resume the primary task (Trafton et al., 2013). 
This process can occur multiple times throughout the completion of a primary task.  

The distractions force the operator to lose their attention on one task, begin attending to a 
different task, then transition back into attending to the original task. Each time the operator 
transfers their focus (in both directions), there will be a necessary “activation period” where the 
operator is working through the stages of situational awareness: perceiving the task features, 
forming a mental model of the situation, and finally extending their mental model into likely 
future scenarios to guide action. This process takes time and leads to performance impairment.  It 
is also a source of errors. Well-designed systems should attempt to alleviate the risks associated 
with interruptions to primary tasks.  

The designer will primarily have control over the design of the associated tasks. While a 
designer may be able to influence the training of the operator, it is more practical to design the 
system and task around a range of skill levels if possible. The first method for reducing the 
effects of interruptions on performance is simply removing them from the possible task structure. 
Even among experienced professionals working in high-stakes situations, the number of 
interruptions is directly correlated with an increased error rate, cognitive workload, and stress 
level (Campoe & Giuliano, 2017).  

If interruptions cannot be limited, there are several ways to alleviate the performance 
impairment. First, designers can provide a preliminary warning signal that indicates an 
interruption is imminent (within the next 10 seconds). This allows operators to begin the 
preparing to switch tasks without the need to fully place their focus on the new task. Trafton and 
colleagues (2003) informally describes the process that occurs after the warning signal as the 
operator answering two questions and storing the response in memory: “Now what was I doing?” 
and “Now what am I about to do?”. The answer to the first question helps the operator identify 
the point at which to resume the primary task, thus reducing the resumption lag. The answer to 
the second question prompts the user to gradually begin attending to the interruption task, thus 
reducing the interruption lag. The same study demonstrated that providing a warning signal with 
10 seconds notice for a distraction reduced the resumption lag by nearly 50% (8 seconds without 
warning vs. 4 seconds with a warning) for an unpracticed task. While this effect diminished with 
repeated practice, this design guideline is particularly useful for infrequent tasks that may be 
minimally practiced.  

Besides offering a warning, designers can design interruptions that minimize the performance 
impairment. First, interruption length is a large predictor of the resumption lag. Working 
memory plays a significant role in managing attention. Long interruptions impair the ability to 
rehearse the previous task state, which may lead to an operator forgetting their place in the task. 
Designers can account for this by reducing the length of interruptions and preventing 
interruptions during high-stakes tasks (Campoe & Giuliano, 2017). Interruptions that force the 
operator to change contexts also impair performance. Context-change is a broad descriptor that 
may include changing locations, unexpected transitions from visual processing to verbal 
processing (e.g. talking to a coworker) or generally unexpected shifts in cognitive requirements 
(Marsh, Cook, & Hicks, 2006). So, when possible, allow the operator to finish their current 
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primary task step. This reduces the resumption lag for computer-based work, though this benefit 
disappears for manual work (Campoe & Giuliano, 2017).  

3.2.3 Signal thresholds and habituation 
Visual input has natural limitations on the strength of the stimuli that can be detected. The 

threshold that separates undetectable and detectable stimuli is called a detection threshold. For 
the human eye, this is approximately 100 quanta.  This somewhat abstract denotation can be 
better understood through an example: we can detect a candle flame from 50 km on a clear dark 
night (Galanter, 1962). The amount of change necessary to detect differences in a stimulus, such 
as differences in color or brightness, is called a just noticeable difference (JND). Interfaces that 
attempt to show differences that are not one JND apart (imagine a graduated color chart) 
physiologically cannot be recognized.   

While human vision can be very sensitive during initial presentation of a stimuli, there is also a 
natural process of habituation that occurs during persistent detection of certain stimuli. As an 
operator becomes accustomed to a predictable, persistent visual stimulus, they lose the ability to 
perceive it without conscious effort, it becomes background to them.  For example, people living 
next to train tracks stop hearing the trains. Though it is more common with simple stimuli, 
habituation can also occur with complex stimuli that require action (e.g., clicking a “confirm 
action” box for every action; Ritter et al., 2014).   

System designers already will be taking some steps towards accounting for these low-level 
issues during the design process. For example, system designers will often use particular visual 
characteristics such as flickering or flashing lights, changes in color, or motion to indicate that an 
operator’s attention is needed. However, designers should use caution when deciding when to 
use alerting signals. When a system is working as intended, the designer should be aiming for 
signals that facilitate habituation, that is, the changes appear normal and do not call attention to 
themselves. However, once the system detects an alert of some kind, the design principles 
become inverted. Rather than facilitating habituation, designers should actively prevent 
habituation.  

3.2.4 Speed-accuracy tradeoff (How to design for acceptable errors) 
There is a constant in human behavior represented by Figure 13.  This graph shows that 

behavior can be slow and careful with low errors, or rather fast and with higher errors.  Operators 
will vary in what their curve looks like.  Similar operators may be at different points on the same 
curve as well. To avoid the extremes, psychology studies often say ‘to work as quickly and 
accurately as possible” to attempt to put subjects at some ideal center point.   

We note this tradeoff to designers so that when they are observing users, they realize that 
operators may be working at different points in the curve.  For example, when typing drafts, we 
type fast and use spell correction to clean up.  When entering passwords, we type slow because 
errors particularly take time to correct.   
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Figure 13.  The speed accuracy trade-off curve. Reprinted from Ritter et al., 2014  

3.2.5 Summary of attention 
Attention can be seen as the tasks and information that the operator is attending to or working 

with.  There are consistencies and effects that arise from this process. To the extent that 
designers can understand the operator and their tasks, they have a role to facilitate the allocation 
of attention and to support its use.  

To summarize how designers can support operators’ attention, we present a few design 
principles related to attention.  

Principle 3.6: Present information needed for comprehension directly 
Attention and working memory are limited; information shown to the operator should be 

processed and integrated as much as possible (but not more) to reduce operator workload and 
support the system goals.  

Avoid giving operator extra work, particularly for tasks that better suited for technology.  
Methods for implementing this can range in complexity, but beneficial design choices will be 
structured around eliminating extraneous work for the operator. Simple examples might include 
reducing unnecessary mental math or just moving related information closer together (eye 
movements take time, as do mouse movements, milliseconds matter; (Gray & Boehm-Davis, 
2000) Complex examples include totally redesigning a complicated display around a relatable 
design metaphor with a unified representation of the information (Figures 14 & 15).   

For example, consider a simple altimeter design. Pilots are often skilled operators with a lot of 
experience in their primary tasks. However, the human limits on attention and memory are 
always a factor. Designing to improve comprehension will reduce mental strain for experienced 
and inexperienced pilots alike. 

A pilot need not calculate the difference between assigned altitude and present altitude. 
Technology has advanced so that this can be calculated and displayed better than the initial dials.  
Simplify the task and use each systems’ strengths. The computer can handle simple mathematical 
calculations and could show the values using two lines separated by the deviation. The pilot can 
then visually identify any issues with altitude much more quickly as a visual process.  

Compare the two altimeters in Figure 14. On the left, the pilot must do an abstract calculation 
to compute the difference and direction between present and assigned altitude.  On the right, the 
difference is shown visually, a much faster and less error-prone task.   
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Figure 14.  The interfaces for two different altimeters. The Radiant Digital Altimeter5 (a) requires the pilot to 
mentally compare their altitude to the set value while accounting variables affecting the instrument accuracy. 

The Garmin G5006 (b) simplifies this by including a spatial comparison between accurate barometric 
altitudes and clear representation of current altitude and ground level.   

As another example that is more complex, consider Figure 15. It provides a redesign of an 
airplane’s control panel around a more direct plane metaphor. Flying with traditional airplane 
displays requires the pilot to mentally calculate their current flight relative to the limits based on 
the flight envelope (i.e., stable flight based on related parameters like airspeed, altitude, and 
orientation). This mental calculation is difficult and cognitively taxing, particularly during times 
of high workload from adverse conditions like fog or turbulence. When vision is impaired, pilots 
rely solely on instrument flight (IF) with no visual reference frame.  

This risky situation led to Temme, Still, and Acromite (2003) to propose an interface titled 
“Oz” that portrays the key information as an integrated display built around a digital plane 
(Figure 15a). This display presents exactly what the pilot needs to know for the task: current 
aircraft performance compared to aircraft limits and optimal values. A comparison between old 
and new displays are shown in Figure 15 (b and c).  
 

 
Figure 15.  The design and implementation of the OZ compared to a traditional cockpit. 

 (Images from Temme et al., 2003). 

Although the OZ display initially appears complex to new users, it was designed to support 
common tasks based on a mental model of the plane. This was confirmed via testing when the 
OZ interface performed significantly better than conventional displays. With the OZ display, 
subjects with no flight experience immediately showed greater flight precision (for orientation 
                                                

5 a: http://www.beliteaircraftstore.com/radiant-digital-altimeter-1/ 
6 b: https://www.manualslib.com/manual/1230544/Garmin-G500.html?page=53#manual 
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and altitude) and reduced performance loss from turbulence than when using the typical display. 
After about 80 hours of flight time with both displays, subjects attempted to perform a reading 
task while operating the plane. This was essentially impossible with the conventional display, but 
subjects saw almost no loss in performance when using OZ.  Similar designs could be created for 
control rooms, perhaps as a summary supporting task performance while retaining the raw data 
visible behind the summary display.   

Principle 3.7: Support operators to deal with interruptions.  
To summarize, to support operators to deal with interruptions: 

1) High-stakes work should be distraction-free.  

2) Warn operators that an interruption is imminent when possible, that is, allow operators to prepare 
for task-switching. 

3) Promote completion of primary task steps before beginning secondary tasks. Simplify the process 
for resuming a postponed task. This can be done by suspending the secondary task, 
autocompleting the primary task, or provide note-taking about the status of the primary task.  

4) If interruptions are necessary, reduce the distance and difference between the primary and 
secondary tasks as measured semantically or syntactically.  

Principle 3.8: Use stimuli habituation appropriately.  
Even salient signals will become habituated with repeated presentation.  
Constant presentation of a signal leads to habituation, and thus reduced detection and attention 
by operators. Designers should create a hierarchy of signal salience to ensure the right signals 
get through.  

3.3 Working memory and cognition 
Following the perception of information from the environment, the operator needs to use that 

information to make decisions and complete their work. Task-related information must be 
analyzed, manipulated, and transformed into useful information that can guide the actions taken 
by the operator. The operator must integrate their knowledge of the state of the world with their 
mental model of the task. For example, an operator sees that the temperature of some module is 
above the safe threshold and the battery is running low. The operator stores these facts in their 
short-term memory and then consults their long-term memory for how to respond to the issue. 
The response is then also added to short-term memory alongside the facts about the world state. 
The operator performs the response on the system, ensures the problem is fixed, and then 
discards the old information before moving onto their next task. Variations of this process occurs 
many times throughout an operator’s shift. These human memories do not work as well (at least 
under conventional views) as computer memory, so designers familiar with computers should be 
aware of the differences.  Designers should particularly be aware of the differences because their 
own mental models of their own memories are likely to be particularly incorrect—if your 
memory fails you are unlikely to be able to notice this!).  This section will describe how working 
memory and long-term memory affect operator performance.  

3.3.1 Working memory 
Often, the work performed in op centers requires operators to integrate snippets of information 

from various sources to come to a decision or understand the situation. This process of storing 
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and manipulating that information occurs within the working memory of the operator. Working 
memory stores and manipulates information for near-term use (Ricker, AuBuchon, & Cowan, 
2010). Some tasks require multiple pieces of information to be analyzed and processed near-
simultaneously; working memory enables people to handle this by offering a “scratchpad” for 
relevant information. Though particularly relevant during the performance of complex tasks, 
working memory is a foundational mediator for how each person interacts with the world. 
Working memory acts as a store for both internal events (i.e., recalling long-term memories) and 
external events (i.e., perceiving visual signals). In many ways, working memory is often 
analogized to be comparable to the RAM of a computer system, whereas long-term memory is 
like the ROM. The RAM, or working memory, allows rapid data access, efficient manipulation, 
and quick turnover between processes. The ROM, or long-term memory, provides a slower, 
semi-permanent location for information storage and retrieval.  

The RAM-ROM analogy also applies to the limitations of working memory. While long-term 
memory does not appear to have a clear storage limit in humans, working memory is constrained 
by a capacity of only a few items—the most common general storage limit is about seven items 
plus or minus two items (Miller, 1956). The seven-item limit is overly simplistic but provides a 
useful anchor for working memory capacity. Working memory capacity also varies across the 
population with greater working memory capacity being associated better performance at 
cognitive tasks (Just & Carpenter, 1992), and how abstract and how well known the concepts are 
(less abstract and more practiced tasks are easier to remember and use; Ritter et al., 2014, Ch. 5 
for more information).   

The approximate limit for working memory capacity becomes even more complex due to 
processes like chunking. Chunking refers to a mental process for grouping sets of individual 
information pieces into easily recognizable sets. For example, it will be easier to remember a 
sequence of items like “N S A F B I” (chunked as: NSA, FBI) than “Q G Z T Y V” (not 
chunkable by most; Chalmers, 2003; Ellis, 1996). Chunking mechanisms can be leveraged by 
system designers to increase the practical working memory capacity of the users. 

Modern theories of memory suggest that working memory is built from specialized subsystems 
that differ based on their input: the “visuospatial sketchpad” for visual spatial information and 
the “phonological loop” for verbal information (Baddeley, 2000). This distinction between 
verbal and visual working memory stores is important because these two systems can perform 
semi-independently without much interference (i.e., loss of performance) between them. When 
implemented successfully, this can allow someone to drive a car while listening to an audiobook 
with almost no loss of performance for the primary task (Granados, Hopper, & He, 2018). 
However, implementing this concept is not necessarily foolproof. When the secondary task 
requires too much mental effort (i.e., maintaining a conversation vs. passive listening), driving 
performance tends to be degraded to a noticeable degree (Strayer, Drews, & Johnston, 2003). 
While multi-tasking is best avoided, making attempts to isolate the tasks to distinct working 
memory stores can provide some measure of risk-reduction.  

For the designer, there are a few takeaway implications for design. (a) Working memory has 
limitations on capacity and performance. Don’t use it up asking the user to remember items the 
system can remember for them. (b) Chunking of items can increase the functional working 
memory capacity.  Support chunking when you can by putting items in a canonical order, 
spacing items to support chunking (e.g., FBI vs F__:B-I) and understanding the patterns 
operators know and choose. (c) Working memory has a time-based decay. Maintenance requires 
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rehearsal at some cost to the operator’s cognitive resources.  Don’t expect users to remember 
information across minutes.   

3.3.2 Cognitive load 
Cognitive work is inherently taxing on our mental resources. We have previously discussed the 

impairment of cognition as it relates to attention, but higher-order processes are also affected. 
Throughout the performance of cognitive work within an op center, operators are presented with 
information that must be monitored and assessed and may need to be compared across time. 
These types of work are inherently difficult, particularly when during long periods of performing 
the tasks. Cognitive load theory (CLT) describes how the various factors like working memory 
load, personal stress, and task difficulty can provide an overall decrement on performance of 
cognitive work (Sweller, 1988). Cognitive load theory provides a way to compare task difficulty 
(relative to the expertise of the user) across different task environments. Reducing cognitive load 
provides a broadly effective way to improve performance by freeing up working memory 
capacity for more important tasks like integrating information and learning. CLT is a useful 
concept, but currently it lacks units and an objective way to measure it.  We find it useful non-
the-less.  

A review of cognitive load’s role in human-computer interaction design is provided by 
Hollender, Hofmann, Deneke, and Schmitz (2010).  This review integrates CLT research into a 
useful framework for systems engineers. They posit three main types of cognitive load: intrinsic, 
extrinsic, and germane. Intrinsic cognitive load refers to the inherent complexity of the 
information being processed by the user. Comparing intrinsic load can only really be done by 
comparing two tasks rather than by providing a standalone value. For example, driving on an 
empty highway would likely provide less inherent complexity compared to driving on a busy city 
street.  

Extrinsic cognitive load refers to environmental and context-dependent factors that provide 
unnecessary contributions to task difficulty. Integrating spatially distant information from 
displays that are on opposite ends of the room will be inherently more difficult than if the 
displays were side-by-side due to the required storage of the information in working memory 
between task steps.  

Finally, germane cognitive load refers to the beneficial cognitive work that improves task 
performance. Learning and practice of the skills and schema required to perform a task also 
require cognitive resources, in contrast to unhelpful portions of the overall cognitive load. All 
three types of load contribute to the overall working memory needs of any given task, and the 
ideal task will reduce the intrinsic and extrinsic load to provide more resources for the beneficial 
mechanisms that occur from germane cognitive load.  

Reducing the cognitive load of extraneous tasks can provide a consistently useful method for 
improving the performance of operators. A simple method for reducing cognitive load is by 
enforcing consistency across the layout, color scheme, and overall information presentation style 
for components of an individual system and across multiple systems (Chalmers, 2003). Even 
experienced users that may switch between a Windows OS and Mac OS will know the feeling of 
attempting to use a Mac-only shortcut on a Windows machine (or vice versa).  

Many of the recommendations for reducing cognitive load can be succinctly described as 
reduce the space and distance between co-dependent information.  In some cases, this can be a 
relatively simple process with multiple solutions.  Disparate information sources could be split 
across multiple displays to maximize information presentation, or alternatively, a single display 
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could be trimmed of unnecessary information to bring the most important features onto a single, 
more efficient display (Brown, Greenspan, & Biddle, 2013). Other cases provide less clarity in 
determining the best practices for a given context. Providing redundancy in feature presentation 
can help reinforce certain information, but the additional features inherently increase the intrinsic 
cognitive load during interaction with the system (Grunwald & Corsbie-Massay, 2006). 
Engineers and other stakeholders must use the risk-driven approach to make informed decisions; 
competing design recommendations are rarely weighted on easily comparable scales. Krug’s 
(2005) approach provides further suggestions to reduce cognitive load.   

Further ways to support operators by reducing cognitive load in them is by increasing cognitive 
load in the system. This includes (a) Reminding operators to do tasks that need to be done. (b) 
Reduces cognitive load by simplify tasks that that can be simplified in actions number, length, 
and complexity. (c) Automate tasks that can be automated. Like your turn signal automatically 
shutting off when you return your tires to straight.  

3.3.3 Summary of working memory and cognition 
Working memory is used extensively by cognition.  More is usually better, and less stress on 

working memory by decreasing the amount required and the time information has to be held also 
reduces errors.  To summarize how designers can make best use of operators’ working memory, 
we present a design principle related to working memory.  

Principle 3.9: Reduce the cognitive resources used during multi-step tasks 
Operators’ cognitive resources like working memory and attention are limited, and these 

limitations are made worse by fatigue, stress, and task difficulty. Simplifying the work will 
reduce workload and make errors less likely to occur.  

Simplifying tasks can be done in many ways depending on the specific scenario. The common 
factor for all successful implementations of this guideline is a reduction in the amount of 
working memory, attention, or any other cognitive resource needed to perform the task.  

If an operator is alerted for a task that needs done in thirty minutes, the system should provide 
an additional reminder at the appropriate time rather than relying on the operator’s memory.   

If a common task requires several steps to complete, provide an interactive task checklist that 
indicates the current state of the procedure. (Checklists are very helpful to support complex 
tasks). A simpler solution could be incorporating a window showing all inputs and outputs for 
the system with associated timestamps.  

3.4 Summary 
The mechanisms that operators use to perform their work influences how the work gets done, 

what errors are likely to occur, and how to design to support it in the same way that how the 
components in electrical circuits work influences how they produce their outputs, what errors are 
likely to occur, and how to design with them. The most salient mechanisms of operators to 
improve the design of op centers are perception, attention, and working memory.  These are used 
to generate operator behavior.  They interact, and good design will be based on a theory of how 
they are used by operators to perform their tasks based on the information presented to them in 
the interface.   

We include design principles to help with design.  When these principles contradict 
themselves, which design principles and guidelines will inevitably do, the design should resort to 
the tasks, their importance and frequency, to resolve the design tradeoffs.   
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There are also other mechanisms of operators, shown in Figure 5, that will influence op centers.  
These mechanisms include motor output and other forms of perception.  An overview of these 
mechanisms is available in Ritter et al. (2014) including further readings.   
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4. Conclusion 
This report summarized a process for designing and implementing op centers in Section 1. As 

the work is performed, risks are assessed using a spiral development model that checks with 
stakeholders at each major phase, and adjusts the process based on the risks that can be perceived 
at that stage. The intermediate and final system can be assessed using simple usability tests as 
well as cognitive walkthroughs.  

The process uses shared representations of the operators, their tasks, and the context of the 
work.  An example of these is provided in Appendix 1.  These shared representations are used to 
design and create an op center.  Appendix 1 with its subsections provides an example set of 
documents for knowing your users and their tasks.  Larger systems will need correspondingly 
larger and more complex documents.  Smaller systems will need less. Systems only used by their 
developers might not need anything, but systems that are designed without these documents are 
designed informally and solely their designer’s use, not for the operators.  As architects would 
discuss blueprints particularly before building a project, op center designers should expect to 
prepare and discuss these documents during design with other stakeholders, such as managers, 
future operators, and funders.  These discussions can reduce misunderstandings, lead to 
supporting all the tasks for all stakeholders, defend designs, and help keep the relevant goals, 
mission, and tasks in mind when designing a system.  Using these documents reduces risks (Pew 
& Mavor, 2007).  

Sections 2 and 3 provide design principles that managers, designers, and implementers can be 
informed by.  These stakeholders can also be informed by greater knowledge of the operators as 
a type of system component.  Section 3 provides a short overview of the types of knowledge of 
operators that can help inform system design and implementation.  Further sources for learning 
more are noted in each section.   

This report should also be seen as an initial review.   There is more to know about how to 
support operators than is covered here. Appendix 2 provides pointers to further information on 
how to support operators in control rooms and to support the designers who create them.  

4.1 The need for user-centered design  
One of the difficulties with this approach will be investing the perceived additional time and 

effort to avoid the risks that this approach helps mitigate, ameliorate, or avoid.  Typically, this 
approach takes additional effort, and organizations do not always see the risks until they arrive.  
There is evidence, however, that a mindful approach can overall reduce costs (Booher & 
Minninger, 2005).   

A problem that remains then, is to provide evidence that there are risks and that this approach 
helps reduce risks and their impact.  Pew and Mavor (2007) call for examples to help motivate 
the different team members to appreciate how usability can influence system performance.  
Table 7 notes a few examples.  Support from management for this more engineering-based 
approach as well as further local examples could be useful to motivate implementer and 
technology designers to take operator tasks and their knowledge, skills, and abilities more 
seriously.   

Keeping a list of known risks and accidents could be helpful in several ways. The particular 
risks to op centers’ success may be difficult to quantify and will often arise from unexpected 
events.  It may be worthwhile for an organization to keep track of misses and near misses to 
accidents, as NASA does for air traffic control in the NASA Aviation Safety Reporting System.   
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Table 7.  Examples of usability problems leading to accidents (or extreme training or testing avoiding them). 

Further examples are available in  Casey (1998). 

The USS Vincennes Incident 
The US Airways Flight 1549 that landed in the Hudson River 
A Tomahawk launch system that was cancelled for not meeting response time when the 
problem was known (Chipman & Kieras, 2004). 
Task analyses of various Army projects that lead to saving $100M’s across multiple projects 
(Booher & Minninger, 2005). 

4.2 The need for better shared representations 
Another problem is the usability of the shared representations themselves.  The managers, 

designers, and implementers can come from different intellectual backgrounds, and have 
different assumptions themselves.  There is a need to translating some representations to 
“engineer speak”, and perhaps in the other direction. There is a young literature on how to 
prepare knowledge about design aspects to share with other team members. This is a problem 
noted by Pew and Mavor (2007), where it is called shared representations, and work remains to 
make the shared representations are as useable as they can be.  

4.3 Open problems 
We can now revisit Table 3, presented here as Table 8.  The responses are included in the table 

for convenience of reading and presentation.   
As the material in Table 8 notes, there remain open problems with applying this approach.  

How detailed the documents for particular op centers and even different technologies will vary 
and will have to be adjusted.  The risks that arise in the use of particular op centers will vary with 
the domain that the op center is supporting.  This approach does not guarantee a perfect or even a 
better system, but it overall reduces risk and the probability of system failures. 
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Table 8.  Questions answered by this document. 

Process Performance 
1)	  What	  user	  interface	  features	  reduce	  user	  stress	  and	  improve	  and	  maintain	  level	  of	  performance?	  

Reducing cognitive load will reduce user stress and improve and maintain performance. 
This load depends on multiple aspects of an interface.  Making each of the substeps in the 
user’s tasks will support this.  Doing so is done by matching the user’s capabilities with 
the interface.  
 

2)	  Which	  task	  UI	  factors	  design	  mitigate	  performance	  degradation	  (speed,	  accuracy)	  during	  the	  
execution	  of	  detailed	  procedures	  for	  trouble	  shooting?	  

The factors noted in answer 1, as well as avoiding interruptions or supporting their 
graceful entry and exit.   
 

High Throughput Reaction Times 
3)	  	  What	  levels	  of	  fast	  and	  complex	  interfaces	  impair	  or	  enhance	  user	  reaction	  time	  and	  accuracy?	  

The factors are detailed in the review. Briefly, making perception of the task fast and 
easy, reducing the cognitive load by type and number of substeps, and making the output 
easy. 
   

4)	  	  What	  are	  the	  reaction	  time	  and	  accuracy	  for	  a	  user	  to	  react	  to	  an	  alert	  and	  respond	  to	  the	  alert	  with	  
the	  correct	  actions	  using	  the	  task	  UI?	  What	  are	  the	  upper	  limits	  of	  number	  and	  speed	  of	  alerts	  before	  
performance	  degrades?	  	  

We have ways to estimate the time to handle an alert.  The Keystroke Level Model (Card 
et al., 1980, 1983) can be used to estimate response times.  The upper limit must be based 
on an interface specified in enough detail to make predictions.  The field does not have to 
our knowledge tools to fully compute the upper limit because the limit would depend on 
many things that we don’t yet have fully computational or algorithmic equations for.   

	  

5)	  What	  are	  the	  reaction	  time	  and	  accuracy	  for	  a	  user	  to	  distinguish	  between	  levels	  of	  criticality	  using	  
the	  task	  UI?	  	  

This time would depend on the perceptual display, the relatively frequency of signal and 
noise, the payoffs between signal and noise.  We do not know of an equation to compute 
this, but an equation could be created for fixed measures and validated empirically with 
operators.  
 

6)	  What	  are	  the	  effects	  on	  reaction	  time	  and	  accuracy	  for	  a	  user	  using	  the	  system	  over	  time?	  	  	  

In general, with practice, reaction time goes down (Ritter et al., 2014, Ch. 5), but fatigue 
goes up.  There are formulas to compute the general effect of fatigue (FAST ;Hursh et al., 
2004). They are validated but require some examination and understanding before use in 
a given situation.   
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Interface Generalizable and Individualized Effectiveness 
7)	  Which	  interface	  design	  elements	  vary	  and	  do	  not	  vary	  in	  effectiveness	  across	  various	  demographics?	  

Design elements will vary based on previous experience with the design elements. The 
design elements would have to be specified to fully answer this question.   

8)	  Which	  of	  the	  above	  questions	  are	  affected	  by	  age	  and	  prior	  education?	  

All of these questions are affected by age and prior education.  Just how, varies on the 
question and the type of education.  Typically, people become slower with age with raw 
response time, but this is typically not seen due to additional practice that contributes to 
lower response times as well as more knowledge which leads to better strategies and less 
search and problem solving. Prior education that gives practice on the task or related 
tasks decreases time. Education that teaches useful theory will lead to better strategies 
that will in time but perhaps not immediately reduce response time. Further reviews are 
available.   
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Appendices 

Appendix 1: Detailed Problem Space: A Water Detection System 
(WDS) 

SatCorp is an imaginary corporation that builds user interfaces for a unique class of command 
and control systems.  These systems, while all unique, have many features that are consistent 
throughout their designs.  The goal of this fictitious use case is to enable readers to consider an 
example case that is typical of such op centers.  The initial draft of this system description was 
created with Mark Foster of L3Harris Technologies.  The system description includes an 
overview, system architecture, key features, example day in the life (or scenarios), typical issues, 
user types, and task analysis.  Each of these could and should be expanded in more detail for real 
op centers. A set of these descriptions provides a solid basis for designing with the operator in 
mind.  

A1.1  Overview 
The fictitious use case involves building a user interface to command and control a remote 

Water Detection System (WDS).  This WDS will be deployed to Mars in an attempt to detect 
pockets of water underneath the surface or traces of water in the soil on the surface.   

The WDS will take 5 years to develop and test before its ready to deploy.  Once ready, it will 
be sent to Mars as part of larger manned mission.  Due to space constraints on the manned 
vessel, the WDS will be disassembled before launch.  It will be the responsibility of the team on 
this space mission to assemble the WDS, perform some initial checkout of the system, and 
ultimately deploy the WDS on the surface of Mars.  During the assembly and checkout of the 
system, the team will command and control the system via a laptop with a local LAN connection 
to the WDS.  The system checkout of the system is intended to exercise the different parts of the 
system to make sure they are still operational.  Spare parts have been shipped with the system in 
case anything has been damaged in transport.   

Once deployed on the surface of Mars, the WDS is expected to a have a 10-year mission where 
it is solely commanded and controlled by NASA’s operations center.  The operators in NASA’s 
ops center are on duty 24/7.  The WDS is only one of dozens of systems they monitor.  Decision 
making with regards to how the WDS is utilized comes from the scientists in the Program Office 
who funded the development of the WDS.  It is the Program Office’s charter to find water 
sources in other locations throughout our solar system.   

This example (and associated material) ignores the communication delays with Mars because 
most op centers do not deal with such long time-delays in communication media (although they 
will see delays in reports from other systems).  

A1.2  System architecture 
The WDS is comprised of several elements.  These elements are listed with a brief description 

of each. 
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Main Control Element (MCE) 
The MCE acts as the brain in the field.  It is the responsibility of the MCE to facilitate 

commands from Earth and collect data and status to send back to Earth.  More specifically, when 
commands are sent to the WDS, the MCE oversees executing those commands.  Commands that 
are scheduled for future date, will reside in the MCE until it is time to execute such commands.  
Commands for immediate execution will be executed upon receipt.  Depending on the command 
type, the MCE is tasked with powering on the necessary elements and forwarding subcommands 
to those elements.  All the while, the MCE is also constantly polling the other elements for 
status.  In addition, the MCE provides storage for water analysis data from the Rock and Sand 
Exploration Element and Deep-Water Detection Element.  When the WDS sends data home, it is 
the responsibility of the MCE to bundle element status and water analysis data, perform 
compression and encryption, and then forward that data when appropriate to the 
Communications Element.   

Communications Element (CE) 
The CE contains the antenna for communicating with Earth.  This antenna is single-duplex and 

therefore can only receive or transmit at a given time.  Due to this limitation, the antenna is by 
default in receive mode to receive commands from Earth.  The team on Earth must command it 
into Transmit mode to transmit data home.  Typically, the team will schedule several Transmit 
commands per day on the MCE that cover roughly a week. 

Autonomous Navigation Element (ANE) 
The ANE controls the components of the WDS that are responsible for moving the WDS from 

one location to another.  The ANE includes cameras for a taking pictures of the terrain around it 
and has special image detection algorithms for identifying obstacles it must navigate around.  
The ANE can be commanded to move from point A to point B, and on its own determine the best 
route to get there that may not be a straight line if obstacles are in the way.  In addition, this 
element controls the drive motor, wheels, and steering functionalities.  It also controls the 
emergency assist wheels and arms that enable it to get out of precarious physical situations. 

Rock and Sand Exploration Element (RSEE) 
The RSEE controls the shovel like apparatuses the WDS is equipped with.  It also controls the 

cameras and sensors that are used to evaluate a segment of sand or rocks.  Data recorded from 
this element is forwarded to the MCE for storage until it is sent back to Earth for analysis.   

Deep Water Detection Element (DWDE) 
The DWDE controls the drill and soil probe the WDS uses to search for water underneath the 

surface.  When commanded to do so, the DWDE will drive the probe into the ground to gather 
water analysis data.  In cases where the ground is too solid, the DWDE will remove the probe, 
and use the drill to loosen the ground underneath the surface.  After drilling, the probe is 
reinserted into the ground to continue gathering water analysis data.  Like the RSEE, data 
recorded by this element is forwarded to the MCE for storage until it is sent back to Earth for 
analysis. 
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Power Generation Element (PGE) 
The PGE consists of solar panels and the system batteries.  The PGE has a set of solar panels 

that are distributed around the WDS.  These panels are used to generate power and charge the 
system batteries.  The solar panels can rotate and tilt as needed to maximize sun exposure.  The 
PGE is responsible for calculating the ideal rotation and attitude.   

A1.3  Key features of the WDS 
The following sections outline the key features the user interface must accommodate. 

Status 
All six system architecture components listed above contain numerous status items that must be 

reported on a regular basis.  Status can range from environmental measures such as pressure, 
temperature, and humidity, to element-specific status such as current speed (mph or kph) for the 
ANE.   

One of the roles of the MCE is to periodically poll all the components for their latest status 
values.  The MCE then stores all these values until the next opportunity to transmit data to Earth.  
It is important to note, the MCE polls only the A or B side of a given component, depending on 
which side is currently booted.  If the MCE attempts to poll a given component that is 
unresponsive, the MCE can power cycle that component or even switch sides of that component.  
This usually only occurs after some threshold of unresponsive polls.  This threshold is 
configurable. 

Event Logs 
Like reporting status, each component is recording an event log of the activities that component 

is executing.  Periodically, when a given component’s log reaches a given threshold, that 
component will start a new log, and transfer the old log to the MCE.  The MCE will send all the 
logs home at the next opportunity to transmit data to Earth.  The command and control GUI back 
on Earth will consolidate these logs into a single system log, but typically needs to filter out 
element specific details.   

Configuration 
Each element also maintains a set of configuration fields.  For example, the MCE may be 

configured to power cycle a given component after a certain number of unresponsive polls by the 
MCE.  This value is configurable because different scenarios may want to power cycle if 3 polls 
are unresponsive, while others may want to wait until 10 polls without responding.  In addition, 
whether to power cycle a component or power cycle a component and switch sides is another 
configurable feature of the MCE.  Another common configuration field is which side of a 
component to use.  The MCE holds a field for each component, such that when commands are 
received from Earth, the MCE know which (A or B) side of each component to power on to 
execute the commands. 

Commands 
While commands are always sent to the MCE, each component supports a set of its own 

commands.  For example, a Transmit command that is scheduled for one week from the current 
day would reside on the MCE’s schedule for a week.  Then shortly before the Transmit 
command, the MCE would power on the CE, pass it the Transmit command, and a bundle of data 
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to transmit.  At the scheduled time, the CE will then execute transmitting the data bundle back to 
Earth.  

Redundancy 
The WDS system will be deployed to Mars for a 10-year mission.  During those 10 years, there 

will not be any maintenance missions, so every part of the WDS must have built in redundancy 
to assure the system can last 10 years.  Except for the PGE’s solar panels, every component has 
both an A and B side.  For example, the MCE has two processor boards.  One known as the A 
side and one known as the B side.  The system only uses one at a time but can be configured to 
use either side.  Furthermore, each side of a component has its own status.  For example, the 
RSEE uses advanced moisture sensors to detect traces of water in the soil.  In this case, the A 
side has a set of moisture sensors, and the B side has a completely different set of moisture 
sensors.  Similarly, the network that connects all these components is also completely redundant.  
There is an A and B network.   

A1.4  Day in the life  
A day in the life of the WDS is often unique.  Table A1.1 is a timeline for an example 24-hour 

period (24 to a day, scaled from the Martian cycle).  For the purpose of this use case, the Mars 
daylight hours will mirror those of Eastern Standard Time.  

 
Table A1.1.  Example Day for WDS. 

Time Activity 
00:00 – 
06:00 

System idle time to avoid draining batteries below emergency shutdown 
threshold. 

06:00 – 
06:15 

Receive the following Immediate commands from Earth: 
  * Relocate to the Tarakan Crater. 
  * Survey the surface of the Crater. 
  * Find Location of the Tarakan Crater Low Point. 
  * Relocate to Tarakan Crater Low Point. 
  * Probe the Tarakan Crater Low Point.  
Because these commands are “Immediate” commands the MCE will begin 
executing them in the order they were received.  The MCE will maintain a 
queue of these commands until they are all complete. 

06:15-07:25 The MCE begins the first Relocate command.  It starts by powering on the 
ANE.  The ANE takes about 4 minutes to boot.  Once booted, the MCE 
passes the command to the ANE.  The ANE begins calculating its 
navigation plan to the Tarakan Crater.   

06:25-07:25 The ANE drives the WDS towards the Tarakan Crater. 
07:25-07:30 The ANE is continually imaging the terrain and detects an obstruction in its 

path to the crater.  The ANE stops driving and recalculates a new navigation 
plan. 

07:30-07:35 The ANE continues driving towards the Tarakan Crater. 
07:35-07:40 While driving, the MCE powers on the CE, as there is a scheduled Transmit 

command for 08:20 today.  The CE takes about 3 minutes to boot, but the 
MCE has several GB of data that will take about 30 minutes to bundle, 
compress, encrypt, and copy over to the CE.  All of this will occur in the 
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background while the system is doing other activities. 
07:40-07:50 The ANE finishes driving to the crater and locates itself in the center most 

point of the crater. 
07:50-07:55 The MCE receives events from the ANE that the Relocate command is 

complete.  The MCE then begins the Survey command.  It starts by 
powering on the RSEE. Even though the Relocate command is complete, 
the MCE does not power off the ANE, as the MCE knows it will need the 
ANE powered up to conduct the Survey command.  Once the RSEE has 
booted, the MCE sends both the RSEE and ANE the Survey command. 

07:55-08:20 The two elements then begin executing their commands in tandem.  A 
survey is conducted by the ANE slowly navigating the WDS over a given 
area, while the RSEE continually scoops sand and rocks to gather water 
analysis data.  Both elements are logging events while executing their 
commands.  The MCE will monitor both their event logs to make sure they 
are staying synchronized.  Due to the size of this crater, this survey will take 
up most of the day. 

08:20-08:30 The CE executes a Transmit command. 
The Survey continues. 

08:30-12:30 The Survey continues and completes. 
12:30-12:40 The MCE finishes receiving the water analysis data from the RSEE and the 

corresponding events such that the MCE knows the RSEE has completed 
the survey.  The MCE shuts the RSEE down.  

12:40-12:45 The MCE kept the ANE power up, and now passes the Find Location 
command to the ANE.  The ANE uses its terrain data to determine the 
lowest point of the crater.  Via events the MCE is notified the ANE has 
completed the Find Location command. 

12:45-12:55 The MCE passes the next Relocate command to the ANE.  The ANE drives 
the WDS to the low point of the crater. 

12:55-13:10 The MCE sees the ANE has completed the second Relocate command and 
powers down the ANE.  The MCE then powers up the DWDE.  The DWDE 
takes about 8 minutes to boot up.  Once booted, the MCE passes the Probe 
command to the DWDE for execution. 

13:10-17:40 The DWDE executes the Probe command but encounters a lot of solid rock.  
This forces the DWDE to alternate between Probe and Drill frequently.  
After over 4 hours of mostly drilling, the batteries have taken a significant 
hit, because the solar panels cannot keep up with the power needs of the 
drill.   

17:40-19:35 A (configurable) low battery threshold is reached that causes the MCE to 
take over and pause the Probe command.  The MCE powers down the 
RSEE and transitions into an idle mode to allow the system to charge. 

19:35-22:00 The sun has set, and system can no longer charge the batteries again until 
the next day. 

22:00-22:50 The MCE powers on the CE, as there is another scheduled Transmit 
command for 22:40 today.  While the batteries are still not charged enough 
for a drilling activity, the battery threshold for a Transmit is much lower.  
Batteries are sufficient for a Transmit command and therefore the system 
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successfully transmits at 22:40. 
22:50-23:59 System resumes idle mode.  This will continue until the next day’s sunrise. 

A1.5  Example issues 
The WDS is designed to autonomously handle issues that arise, but human interaction is 

required on a regular basis. Many of these tasks are simple maintenance and acknowledgement 
of warnings. For example, when batteries are low, the operator is required to acknowledge the 
low battery threshold. No action is required other than clearing the notification. Occasionally, 
however, the WDS will face an urgent problem that requires human input. These scenarios are 
rare, so the operator typically has limited training in how to address the issues. Here are some 
examples:   
Problem: The WDS is navigating in the crater and gets stuck.  

Operator from Earth must manually drive the WDS and control the ANE. The typical 
operator is not trained in this task, so the supervising manager must take control.  The 
operators need to escalate the issue quickly because the WDS witnessed unexpected 
terrain. The mappings of Mars must be updated appropriately.  

Problem: Dust storm prevents batteries from charging.  
The MCE cannot task all the scheduled commands for the day. The CE alerts the NASA 
operators of the low battery status. The operator must re-task the day’s commands 
because the ANE would use all the remaining power.  This task is simple and can be 
completed by a novice employee but will require review by a supervisor.  

Problem: Wall of Screens has many other systems represented at the same time.   
If the WDS has a problem, it might take a few days for the engineers to remote in to fix 
the issue. Therefore, the overview screen will remain in a degraded (fault-shown) state. 
The problem arises when something else goes wrong on the system.  For example, while 
at low power, a piece of equipment might become over temperature and be in danger of 
catching fire. The operators need to be alerted to this new degraded status and respond 
quickly.  

A1.6  Stakeholder analysis 
When designing a system, it is worthwhile keeping the stakeholders, the audience for the 

system, in mind (Boehm & Hansen, 2001; Pew & Mavor, 2007). Stakeholders for the Water 
Detection System (WDS), and other complex systems, will follow a similar structure as the one 
shown in Table A1.2. Direct users (i.e., operators), funders, and other stakeholders will each 
have their own requirements for the project. The stakeholders identified for the WDS are 
described in the rest of this section.   
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Table A1.2.  List of stakeholders and a brief overview of their role in the project. 

Stakeholder Role 
NASA 24/7 Operators Lower-skilled workers that handle routine tasks on 

various systems within the op center. 
Operation/Command Center 
Supervisors 

Experienced managers that handle complex tasks and 
monitor op center performance.  

System Developers and Engineers Experienced engineers that build and maintain the system.  
NASA Program Office Scientists Highly experienced project managers that direct the WDS 

actions and use the data that is collected.  
Project Funders and other High-
Level Stakeholders 

Outside managers responsible for ensuring project 
success and making high-level project decisions.  

On-Site Astronaut Install Team Extremely skilled operators that will deploy and 
troubleshoot the system (if necessary). 

 

NASA 24/7 Operators 
Primary operators (or users) of the system are those that that perform routine activity 

monitoring, respond to low-level alarms and events, and identify issues that require outside 
performance. They want a task that is within their knowledge, skills, and abilities and provides 
them with job satisfaction. 

The primary objectives of the 24/7 Operators is to monitor the WDS for anomalies or issues 
and maintain communication with the WDS.  It is the role of the operators to plan sets of 
transmit commands for the WDS system (which requires coordination with third party 
communication systems) and send those commands to the WDS.  Additionally, they must 
monitor the WDS interface to verify the WDS has transmitted data to Earth when it is scheduled 
to.  Upon receipt of this data, the operators perform a cursory review of the data to determine if 
there are any system issues that need to be addressed.  In most cases, upon discovering a system 
issue the operators will contact the Program Office or Engineering Development Team to 
troubleshoot the issue.  Lastly, the operators are expected to respond to requests for information 
regarding the WDS.  At any time, if the Program Office or Engineering Development Team 
needs some data points from the system, the operators should be able to retrieve that data for 
them. 

The risk of overall project failure due to operator abilities and needs is relatively more difficult 
to specify due to the delay between operator feedback and interaction with a system. The most 
common sources of major failure will likely be due to unforeseen issues that are preventable by 
experienced (or lucky) operators that can react to the system beyond the pre-determined alarm 
and event conditions. For example, a system overheat event can lead to a positive feedback loop 
of further heating of other components that destroys key components. This could plausibly have 
been detected by a perceptive operator, but system alert priorities might not directly reveal this as 
a critical issue until it was too late.  

A source of “minor” project failure could be through overall issues with design that lead to 
high error rates that increase project cost and reduce the perceived reliability of the system. 
While an operator taking the wrong action (e.g., a command scheduling issue is first reported to 
the system’s development team before calling Program Office Scientists) is a relatively minor 
issue at first, high error rates from operators increase costs of the project and reduce the overall 
effectiveness of the operation center.   
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The environment the operators work in is a command center that is staffed 24/7 with 
approximately 15 workstations and an average staff of 10 operators. The primary environment is 
a “dim” room with desks in the center (i.e., not along the walls).  The front wall, which all the 
desks face, is a wall of screens.  The back wall, which no one faces, is a secondary wall of 
screens.  Both walls of screens consist of multiplexed, disparate displays of 40-100 systems.   

There are approximately 12-15 operators with 1-2 task leads during the day and 10 operators 
with one task lead at night.  Operators alternate in twelve-hour shifts, with a day shift from 7am 
to 7pm, and a night shift from 7 pm to 7 am.   

The night shift operators are typically former enlisted personnel, hence generally not college 
educated, and mostly in their early twenties.  The day shift workers typically have a more 
advanced skill set than the night shift operators.  The average age is greater compared to the 
night shift.  The day shift operators tend to have more system knowledge and can handle slightly 
more advanced troubleshooting or analysis than the night shift. 

Operation/Command Center Supervisors  
Supervisors within the command center that ensure operator performance and respond to high-

level alarms and events upon notification by the primary operators. Like operators, the 
supervisors want job satisfaction and a task that is within their abilities.  

The supervisor’s use of the system will share mostly the same set of risks as operators; risks to 
project failure will likely be the result of unforeseen issues that could be successfully caught with 
experienced or skilled workers. Supervisors act as the interface between the high-level 
management from NASA research scientists and the ground-level operators that directly interact 
with the op center systems.  

System Developers and Engineers 
The Engineering Development team is a cross-discipline team that has developed the WDS 

over a 4-5-year period.  While during the development phase, the WDS program consisted of 
hundreds of engineers, now nearing deployment the program has reduced to essential personnel.  
Most of the remaining personnel are Software Engineers, Systems Engineers, and 
Integration/Test Engineers.  This team’s primary responsibility is to work off bug tickets 
regarding the WDS software.  This team is continually integrating and testing the latest software.  
Once a software release is ready, it will be loaded to the WDS, whether the WDS is still being 
used for training at NASA or if it has been deployed on Mars.  In addition, any issues or 
anomalies with the system are investigated by the Engineering Development team in their 
development lab. 

The developers want mission success (as measured by other stakeholders), an easily 
programmed system, clear instructions, and to generally avoid “hard mental operations” leading 
to difficult to program constructs when possible. 

Developers will need to able to create the system within the constraints of the other 
stakeholders while also meeting their funding and time constraints. Besides these “common” 
risks that engineers should be familiar with, the other major risk of project failure facing 
developers is ensuring that all the needs of the system and users are met. The example of a major 
failure described under “operators” would partially be the fault of the developers (for not 
identifying the tasks and needs), the Program Office Scientists (for not providing an adequate list 
of tasks and needs), and possibly the Op Center Supervisors depending on the circumstances. 
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However, the developers should make strides to gather this information or risk having their 
reputation be negatively affected (whether or not the failure is directly related to their decisions).   

The Engineering Development team works primarily in a large lab with the same equipment 
that will be or has been deployed on Mars. This enables the team to test the software releases and 
procedures before releasing updates. The team is available to address any issues that arise after 
deployment.  The Program Office Scientists relay the issues that are presented by the NASA 
operators. Occasionally the Engineering team can interface directly with NASA to get their 
feedback on the WDS software, but this is usually limited.  Therefore, the team must prioritize 
tasks based on Program Scientists feedback.  The Engineering team tests software updates with 
their mock hardware.  

NASA Program Office Scientists 
The Program Office Scientists are highly educated individuals whose charter is to find water on 

Mars.  This team is formally the customer for the Engineering Development team, and while 
colleagues of the operators, receive customer-like status when in the operations center.  This 
team owns the decision making on everything from design details to live mission judgment calls.  
They are the consumers of the water analysis data received from the WDS.  They will use this 
data to generate reports for upper management at NASA and politicians.  Their work heavily 
influences the direction of our country’s Space Program.  This team decides where the WDS 
should navigate on Mars, and when the WDS should attempt to gather more water analysis data. 

They need to be able to complete all necessary technical tasks (which are assumed to be known 
to the developers and engineers for the system). They also need to be able to interpret the data 
from the WDS, input and alter commands, and interact with the WDS via the same GUI as the 
operators that work within the operation center.  

Program Office Scientists should be able to provide an adequate set of requirements for the 
system or risk finding out that their needs are unable to be met once the WDS arrives on Mars.  

The Program Office Scientists interface with the WDS via the same command and control GUI 
as the 24/7 operators.  They frequent the operations center during business hours and especially 
around the time when transmit commands are scheduled with the WDS.  While their primary 
expertise is in the science behind the water analysis data, they are fairly well versed with the 
WDS, as most of them have been a part of this program during the development of the WDS.  
Furthermore, most of them have experience working on similar systems deployed to other parts 
of the galaxy.  

Project funders and other high-level stakeholders 
The various individuals and organizations that oversee the project and provide funding for the 

work. They will be responsive to the assessments from the Program Office Scientists, 
explanations from the Developers, and requirements from the Supervisors within the operation 
center. However, they also have their needs and desires for the project. They may require design 
features based on a naïve understanding of the project’s technical and scientific needs. For 
example, they may refer too great a consistency across projects (e.g., a common event log button 
across all systems), the use of incompatible software or hardware, or to prioritize a task (and 
interface elements) that does not correspond to other stakeholder needs. They also may provide 
necessary restrictions on work due to classification or other regulations that limit otherwise 
valuable sources of collaboration and feedback. They often want to have mission success with 
reduced resource costs.  
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As the funders of the program, high-level personnel will have their own expectations for 
project success. These expectations may differ from the assessments made by the Program Office 
Scientists, System Developers, and other stakeholders. Many of the risks to system failure will 
come from lack of communication or miscommunication between the stakeholders.  

NASA Astronaut Install Team 
The astronaut install team is the last primary stakeholder for this project. They are responsible 

for assembling the WDS, conducting pre-deployment tests on the system, and launching it (thus 
releasing it from their responsibilities). This primarily provides technological requirements (e.g., 
the device must be able to be assembled with the resources available to the astronauts). Besides 
the technological requirements, they will need to be able to interact with the ground team to 
troubleshoot any issues or pass off the machine for remote troubleshooting via the operation 
center.  

The installation environment for the installers is obviously Mars.  Therefore, their time is very 
limited as their mission is bounded by the resources (i.e., air, water, food, fuel) they have with 
them.  Their energy levels are expected to be perpetually compromised after the extended time in 
space required to travel to Mars.  Due to the annual meteor storm on the sector of Mars where the 
Program Office desires the WDS to be deployed, the install team will not have communication 
with Earth during the installation. 

Summary and Lessons 
Each project will have multiple stakeholders. The list of relevant stakeholders is not simply 

limited to users that directly interact with the completed system or the implementers of the 
system. System success requires integration of the needs of the various stakeholders into a 
cohesive project plan that addresses their needs, capabilities, and abilities. This example system 
also has a wide range of stakeholders. Like other systems, there can be conflicts and tradeoffs 
between their goals.  

A1.7  Task analysis for 24/7 operators 
The hierarchical task analysis developed for the NASA 24/7 Operators provides a clear set of 

the most important tasks performed by the operators. The interface of a system should be 
designed to match the needs and capabilities of the stakeholders that are impacted by the 
interface. We focus on the 24/7 operators to provide a blueprint for the tasks that need to be 
accomplished using any interface designed for the WDS system.   

Table A1.3 gives an overview of the tasks described by the task analysis. Following the table is 
the detailed view of the tasks showing subtasks and other components. This turns into an 
operation manual for the study and task list for performing a cognitive walkthrough of the 
interfaces (Polson et al., 1992). 
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Table A1.3.  Overview of the tasks for the NASA 24/7 Operator for managing the WDS. 

Task 1: Periodic comprehensive review of WDS system. 
Task 2: Repair or respond to any alarms following a WDS data update. 
Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot any delays. 
Task 4: Send commands to WDS. 
Task 5: Responding to information requests regarding the WDS. 
Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems.  

 
The six tasks shown in Table A1.3 are an overview of the responsibilities for the operator of 

the WDS within an Op Center. Each task is decomposed into subtasks to identify the key steps 
and decisions taken by an operator while completing the task.   

 
Task 1: Periodic comprehensive review of WDS system 

Assumptions: WDS Periodic update takes 300  30 seconds 
1) Identify	  if	  a	  comprehensive	  review	  of	  the	  WDS	  is	  necessary	  

a) Find	  and	  check	  the	  WDS	  review	  schedule	  
b) Compare	  time	  for	  the	  scheduled	  review	  and	  the	  current	  time	  

i) If	  review	  is	  not	  necessary,	  END	  TASK	  
ii) If	  review	  is	  necessary,	  proceed	  to	  1b	  

2) Check	  the	  WDS	  update	  time	  and	  ensure	  that	  there	  is	  at	  least	  3	  minutes	  before	  next	  update	  
a) If	  time	  before	  next	  update	  is	  insufficient,	  POSTPONE	  until	  after	  next	  update	  END	  TASK	  
b) If	  time	  before	  next	  update	  is	  greater	  than	  180	  seconds,	  proceed	  to	  1c	  

3) Perform	  the	  WDS	  periodic	  review	  
a) Complete	  the	  WDS	  periodic	  review	  checklist	  
b) Record	  the	  findings	  of	  the	  checklist	  in	  the	  <appropriate	  location>	  and	  END	  TASK	  

 
Task 2: Repair or respond to any alarms following a WDS data update 
1) Identify	  the	  cause	  of	  the	  alarm	  
2) Fix	  high	  priority	  alarms	  first	  	  

a) If	  alarm	  origin	  is	  Power	  Generation	  Element,	  proceed	  to	  2bi1	  
i) Check	  expected	  charge	  and	  determine	  if	  expected	  charge	  will	  bring	  battery	  above	  the	  

acceptable	  threshold	  
ii) If	  charge	  will	  resolve	  alert,	  contact	  NASA	  Program	  Office	  Scientists	  and	  report	  overtasking	  of	  

battery	  then	  return	  to	  step	  2b	  
iii) If	  charging	  is	  low	  or	  nonexistent,	  contact	  WDS	  Development	  Team	  and	  report	  battery	  

charging	  failure	  then	  return	  to	  step	  2b	  	  
iv) If	  issue	  is	  unknown,	  contact	  Op	  Center	  Supervisor	  and	  report	  unknown	  issue	  with	  PGE	  then	  

return	  to	  step	  2b	  
b) If	  WDS	  requires	  manual	  navigation	  control,	  proceed	  to	  2bii1	  

i) Contact	  Op	  Center	  Supervisor	  and	  report	  WDS	  request	  for	  manual	  control	  
ii) Return	  to	  step	  2b	  	  

3) Fix	  low	  priority	  alarms	  and	  latching	  alerts	  
a) Determine	  cause	  of	  latching	  alert	  

i) If	  latching	  alert	  originated	  from	  WDS,	  proceed	  to	  2ci1a	  
(1) Find	  WDS	  element	  that	  sent	  the	  latching	  alert	  	  
(2) Identify	  the	  command	  schedule	  file	  used	  during	  the	  alarm	  	  	  
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(3) Report	  the	  command	  schedule	  file,	  WDS	  element,	  and	  status	  data	  associated	  with	  the	  
element	  to	  the	  NASA	  Program	  Office	  Scientists	  	  

ii) If	  latching	  alert	  did	  not	  originate	  from	  the	  WDS,	  proceed	  to	  2ci2a	  
(1) Report	  the	  latching	  alarm	  origin	  and	  any	  other	  associated	  information	  to	  the	  Op	  Center	  

Supervisor	  
4) Resolve	  any	  event	  notifications	  

a) Identify	  special	  event	  priorities,	  if	  any,	  that	  have	  been	  requested	  by	  the	  NASA	  Program	  Office	  
Scientists	  or	  Op	  Center	  Supervisors	  	  

b) If	  new	  event	  notifications	  match	  special	  event	  priorities,	  proceed	  to	  2dii1	  
i) If	  special	  event	  priorities	  include	  action	  plan	  for	  event	  occurrence,	  follow	  instructions	  from	  

the	  action	  plan	  	  
ii) If	  no	  action	  plan	  is	  present,	  report	  event	  occurrence	  and	  associated	  data	  to	  the	  program	  

that	  placed	  the	  special	  event	  priority	  	  
c) If	  no	  special	  priority	  events	  are	  found,	  dismiss	  all	  new	  events	  	  

5) If	  all	  events,	  alerts,	  and	  alarms	  are	  processed,	  END	  TASK	  	  
Else,	  return	  to	  step	  2a	  	  

 
Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot any delays 

Assumptions: The scheduled update timeframe includes a margin of error. Experiment will use 
a five-minute update schedule with a 30-second margin of error. The timeframe and margin of 
error reduces unnecessary alarms for missing updates during normal operation.     
1) Find	  the	  WDS	  interface	  and	  expected	  time	  of	  next	  update	  

a) If	  the	  update	  has	  not	  loaded	  AND	  the	  update	  is	  not	  due	  	  
i) END	  TASK,	  Resume	  other	  duties	  	  

b) If	  update	  has	  loaded,	  check	  ensure	  the	  next	  update	  time	  is	  shown	  and	  END	  TASK	  
c) If	  the	  update	  is	  not	  here	  AND	  the	  update	  is	  due,	  check	  the	  margin	  of	  error	  for	  the	  update	  

schedule	  	  	  
i) If	  within	  the	  margin	  of	  error,	  perform	  other	  duties	  until	  margin	  of	  error	  passes	  	  
ii) If	  update	  has	  not	  appeared	  after	  margin	  of	  error,	  continue	  to	  the	  next	  step	  (b)	  	  

2) Follow	  the	  troubleshooting	  protocol	  for	  a	  missing	  update	  	  
a) Check	  if	  the	  file	  was	  received	  

i) Go	  to	  operation	  center	  event	  log	  
ii) Determine	  if	  a	  file	  update	  event	  is	  found	  within	  update	  time	  frame	  within	  the	  op	  center	  

event	  log	  	  
(1) If	  file	  not	  received,	  check	  for	  connectivity	  issues	  between	  satellite	  and	  operation	  center	  	  

(a) If	  connectivity	  issues,	  call	  Comms	  team,	  inform	  of	  missing	  file,	  and	  END	  TASK	  
(b) If	  no	  connectivity	  issues,	  call	  WDS	  Development	  Team,	  inform	  of	  unknown	  cause	  of	  

failed	  data	  upload,	  and	  END	  TASK	  
(2) If	  file	  was	  received,	  determine	  cause	  of	  failed	  update	  via	  event	  logs	  	  

(a) Check	  operation	  center	  event	  logs	  and	  look	  for	  an	  application	  error	  
(b) Check	  operation	  center	  event	  logs	  and	  look	  for	  an	  error	  processing	  file	  
(c) If	  either	  is	  found,	  call	  EIT,	  report	  the	  error,	  and	  END	  TASK	  	  

	  
Task 4: Ensure that WDS maintains a regular, constant supply of commands throughout use  

Assumptions: A single schedule for WDS commands may cover a variable amount of time. 
The experiment will use command files that cover approximately 15 minutes.  
1) Determine	  if	  WDS	  needs	  new	  commands	  within	  the	  next	  10	  minutes	  	  
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a) Find	  the	  WDS	  commands	  details	  module	  
b) Check	  the	  latest	  WDS	  command	  file’s	  end	  time	  	  
c) If	  the	  end	  time	  is	  more	  than	  10	  minutes	  away,	  END	  TASK	  
d) If	  end	  time	  is	  within	  10	  minutes,	  move	  on	  to	  4ab	  	  	  

2) Receive	  (or	  acquire)	  the	  new	  command	  file	  from	  NASA	  Program	  Office	  Scientists	  
a) In	  the	  command	  details	  module,	  find	  the	  section	  showing	  commands	  waiting	  to	  be	  uploaded	  
b) If	  no	  commands	  are	  present,	  Call	  NASA	  Program	  Office	  Scientists,	  report	  lack	  of	  commands,	  and	  

END	  TASK	  	  
c) If	  new	  commands	  are	  present,	  proceed	  to	  4c	  

3) Set	  the	  new	  command	  file	  to	  be	  uploaded	  to	  the	  WDS	  
a) Verify	  that	  new	  command	  file	  is	  ready	  for	  update	  
b) Schedule	  command	  file	  update	  	  

4) Verify	  command	  file	  is	  sent	  and	  received	  by	  WDS	  
a) Wait	  until	  next	  update	  from	  WDS	  
b) Check	  Comms	  event	  log	  for	  a	  successful	  command	  file	  download	  during	  last	  update	  cycle	  	  
c) If	  event	  is	  found	  within	  correct	  time	  window,	  END	  TASK	  
d) If	  no	  event	  is	  found,	  call	  Op	  Center	  Supervisor,	  report	  findings,	  and	  END	  TASK	  	  	  

 
Task 5: Responding to information requests regarding the WDS 
1) Identify	  the	  element	  or	  module	  associated	  with	  the	  information	  request	  
2) If	  event	  related,	  go	  to	  the	  location	  of	  the	  event	  history	  for	  the	  element	  or	  module	  

a) Isolate	  the	  requested	  event	  history	  
b) Transmit	  the	  requested	  event	  history	  to	  the	  NASA	  Program	  Office	  Scientists	  	  

3) If	  related	  to	  current	  status	  for	  the	  element	  or	  module,	  find	  the	  element	  or	  module	  widget	  
a) Isolate	  the	  requested	  information	  for	  the	  NASA	  Program	  Office	  Scientists	  
b) Transmit	  the	  requested	  current	  status	  information	  to	  the	  NASA	  Program	  Office	  Scientists	  	  

	  
Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems.  
1. Recognize	  an	  alert	  from	  a	  non-‐WDS	  console.	  	  
2. If	  currently	  working	  on	  a	  WDS	  task,	  appropriately	  determine	  prioritization	  

a) Request	  supervisor	  support	  if	  unsure	  of	  appropriate	  priority.	  	  
3. If	  currently	  working	  on	  WDS	  task,	  note	  the	  stopping	  point	  in	  the	  activity.	  	  
4. Resolve	  the	  non-‐WDS	  events,	  alarms,	  and	  alerts	  according	  to	  their	  system’s	  protocol.	  	  
5. Return	  to	  WDS	  and	  complete	  task.	  

a) Check	  for	  system	  changes	  
b) Identify	  stopping	  point	  for	  interrupted	  task.	  
c) Complete	  interrupted	  WDS	  task.	  
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Appendix 2: Ways to learn More 
Designers of control rooms will need to know more about design and operators than is in this 

short document.  They will need to know more theory about design and human users, and they 
will need more details about the situations and operators and tasks that they are designing for.  
This appendix notes a few ways to learn more.  These ways include reading, discussion, and 
formal and informal education. An hour a week of learning is not much in a week, but in a year, 
it can change how you think. 

A2.1 Readings to learn more 
Designers wanting to learn more about design and operators can most easily read more.  There 

are numerous books on how operators (as people) think and learn. A good book of this type is 
Anderson’s Cognitive psychology and its implications (2004).  There are similar books for 
learning about perception (Sekuler & Blake, 2001).  Norman’s (2004) book helped start the area 
of human-computer interaction but does not provide a unified theory of how to support design.  
It makes the case for paying attention to users and provides food for thought.  As design moves 
in different directions, related books and textbooks can be found.  For example, to include how 
emotions influence use (Norman, 2006).   

There are also books describing operators in terms that support design.  Our favorite is 
Foundations for designing user-centered systems (Ritter, Baxter, & Churchill, 2014), but 
textbooks by Wickens (e.g., Wickens & Hollands, 2000) and Lewis and Rieman (1994) are also 
useful.  If detailed knowledge about users is required, one can try to find the information in Boff 
and Lincoln’s (1968) large compendium, but often the designer will be driven to asking experts, 
running a study, or making an educated guess based on similar circumstances. Finally, Endsley’s 
book Designing for situation awareness (Endsley, Bolte, et al., 2003) provides further useful 
advice.  It will be familiar because we use it extensively in this report.   

A2.2 Reading groups 
A way to solidify knowledge from reading and to learn information not completely codified 

yet, is to be part of a reading group.  Sometimes these groups appear as graduate courses, and 
they can be organized around a work group or better, across work groups.  They take time, but a 
group can help digest a book, and even the social loafers who do not read the material can learn 
something.  It is also a way to build a shared theory of design in a workplace.  

A2.3 Continuing education 
Finally, the most solid but expensive way to learn more is to take courses. Some will be 

available at local universities, and some are available online. Coursera and Lynda offer various 
courses that are related to these topics.  

A2.4 Readings referenced in Appendix 2 
Anderson, J. R. (2004). Cognitive psychology and its implications (5th ed.). New York, NY: Worth Publishers. 
Boff, K. R., & Lincoln, J. E. (Eds.). (1988). Engineering data compendium (User's guide). Wright-Patterson Air 

Force Base, OH: Harry G. Armstrong Aerospace Medical Research Laboratory. 
Endsley, M. R., Bolte, B., & Jones, D. G. (2003). Designing for situation awareness: An approach to user-centered 

design. (M. R. Endsley, Ed.) (1st ed.). New York, New York, USA: CRC Press. 
Norman, D. A. (2006). Emotional design: Why we love (or hate) everyday things. New York, NY: Basic Books. 
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system designers need to know about people. London, UK: Springer. 

Sekuler, R., & Blake, R. (2001). Perception. New York, NY: McGraw-Hill. 
Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance (3rd ed.). Prentice-

Hall: Upper Saddle River, NJ. 
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Appendix 3: Design Guidelines for asynchronous autonomous 
systems 

This appendix provides guidelines for desktop implementations of operation center interfaces. 
The guidelines draw heavily on Apple’s Human Interface Guidelines7 for desktop applications 
but are modified to apply to the WDS system, its users and technology, and the users’ tasks.  

These guidelines are annotated, modified, and abridged to assist designers and engineers during 
the development of the applications and systems within operation centers.  They are numbered 
and where appropriate sub-numbered. They are annotated according to four criteria: evidence 
level, testability, value added, and assessment for testing by the authors.  

 
Table A3.1: Criteria definitions for the design guidelines. 

1) Evidence Level (Ranging from a case study within op center to some consensus from experts) 
a) Level 5 is highly supported by research directly on the design feature. 
b) Level 4 is highly supported by research but without a direct case study on the design feature.  
c) Level 3 is likely supported based on integrating literature and expert opinions.  
d) Level 2 is plausibly supported by research and supported by multiple expert opinions 
e) Level 1 is broadly accepted as valuable by the field of HCI, but may be [‘untestable’], or untested 

to our knowledge 
2) Testability  

a) T- (Difficult to test overall or difficult to test without major work)   
b) T (Middle) 
c) T+ (Easily or close to easily testable) 

3) Value added by experiment (e.g., Avoiding attentional tunneling vs perfect shade of blue) 
a) V1 (Low value), V2 (Moderate value), V3 (Most valuable)  

4) Should we test this? 
a) Yes, No, Maybe, No need 

 
The criteria are represented after the guidelines in the following format:  

Example guideline [Level 1], [T+], [V1], No 

For this example, the format means that his guideline has some support from UCD and HCI 
experts (level 1), could be easily tested for a given interface (T+), would not be much value to 
test (V1) for a given interface, and is not recommended to test by the authors (No) 

In the case of complex guidelines, like the first guideline, we apply a general level without 
breaking it down to every sub-statement, which might not be a guideline but an example, or 
might not have the same level of support. If only the high-level heading is rated on the criteria, 
please assume that the guidelines below that heading are a “set” that should be considered as a 
whole (e.g., heading D: Help and Tooltips under General User Interaction Guidelines). 
Otherwise, the high-level heading rating should be considered an overall assessment that is 
somewhat like an average of the ratings for individual guidelines.  

Finally, the support and evidence for the guidelines is provided in comments appended to the 
guidelines. A list of useful acronyms is described below in Table A3.2. These will cover the 
majority of the evidence support, but some guidelines are also supported by links to full 
references to the research articles.  

 
                                                

7 https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/ 
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Table A3.2: Common Acronyms used throughout the guidelines and comments.  

Acronym Meaning Source 
GOMS Goals, Operators, Methods, and 

Selection Rules (task analysis 
variant) 

(Card et al., 1983) 

CPM-
GOMS 

Critical Path Method-GOMS 
(task analysis variant)   

(Gray, John, & Atwood, 1992) 

FDUCS Foundations for Designing 
User-Centered Systems (user-
centered design textbook) 

(Ritter et al., 2014) 

CWT Cognitive Walkthroughs 
(A usability method and its 
rationale) 

(Lewis & Rieman, 1994; Polson et al., 1992) 

ADG Apple Design Guidelines 
(Expert opinions) 

https://developer.apple.com/design/ 

FOK Feeling of Knowing effect (Ritter & Reder, 1992) 

TA Task Analysis literature (Ritter et al., 2014) 

WMTIH Writing mistakes that I hate 
(essay by Frank E. Ritter) 

(Ritter, 2016) 
http://acs.ist.psu.edu/ist597/writing%20tips3.pdf 

LR Literature Review 
(HCD review for Harris) 

(Oury & Ritter, 2018) 

ISO/CD International Standards 
Organization Committee Draft 
9241-151 

(Bevan & Spinhof, 2007),  
ISO 9241-151:2008 

PM Human-System Integration: A 
new look 

Pew & Mavor’s (2007) National Research 
Council Report 

NN/g Nielson Norman Group 
(Expert opinions/blog) 

https://www.nngroup.com/ 

 

Introduction/Design Themes  [Level 5], [T-], [V3], No 
CWT,	  FDUCS,	  GOMS,	  others.	  

It is helpful for users to be able to anticipate design elements in an interface. It is useful, thus, for 
the elements to appear to be drawn using the same overall design framework with the same color 
palette, style and use of verbiage, style of tone, and word choice (e.g., word length, concreteness 
of words, use of articles, verb tense, and representational mapping). The same things should 
always appear as the same things, so differentiation can be reserved for useful, functional 
differences.  

Thus, conducting a design review after a multi-person team finishes building an interface can 
be a useful method for improving the coherence of the design. A thorough design review will 
help pull the interface elements together and meld them into a coherent, intuitive whole that 
allows users to draw from a unified set of task and context knowledge applicable across all 
Harris systems. Design reviews can be made even more effective by implementing methods like 
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heuristic evaluation by HCI experts on system design and cognitive walkthroughs to evaluate the 
system interactions.  

	  

General user interaction guidelines 

Loading and Delays  [Level 5], [T-], [V2], No/Maybe 
Operators want an application that acts on their commands and communicates how long 

processing will take. If your application presents blank or static content and does not provide 
feedback, people might think your app is frozen. 
1) Provide	  instant	  acknowledgement	  of	  user	  interactions.	  Users	  expect	  to	  receive	  feedback	  for	  their	  

actions	  throughout	  the	  interface.	  For	  example,	  buttons	  should	  visually	  respond	  to	  clicks	  and	  the	  
pointer	  should	  change	  depending	  on	  its	  location	  (when	  appropriate).	  [Level	  5],	  [T],	  [V2],	  Maybe	  

FDUCS	  §6.2.3:	  Feeling	  of	  Knowing	  and	  Confidence	  Judgements.	  Swift	  feedback	  helps	  users	  develop	  their	  knowledge	  for	  working	  with	  
the	  sytem	  and	  avoid	  confusion.	  

LR	  §2.2.2	  Stage	  2	  –	  Comprehension.	  Support	  comprehension	  by	  providing	  users	  with	  awareness	  of	  the	  system	  state.	  	  

2) Help	  people	  gauge	  how	  long	  a	  process	  will	  take	  to	  complete	  by	  providing	  time	  estimates,	  activity	  
spinners	  indicating	  action,	  and	  preferably	  an	  explicit	  progress	  indicator	  and	  supplementary	  
descriptive	  text.	  [Level	  4],	  [T],	  [V2],	  Maybe	  

LR	  §2.2.2	  Stage	  2	  –	  Comprehension.	  Support	  comprehension	  by	  providing	  users	  with	  awareness	  of	  the	  system	  state.	  

3) Show	  content	  as	  soon	  as	  possible	  by	  showing	  placeholder	  text,	  gradually	  improving	  image	  quality,	  
and	  preloading	  content	  when	  possible.	  [Level	  3],	  [T-‐],	  [V1],	  No	  

	  LR	  §2.2.2	  Stage	  2	  –	  Comprehension.	  Support	  comprehension	  by	  providing	  users	  with	  awareness	  of	  the	  system	  state.	  

Supporting Novice and Expert users [Level ≈4], [T+], [V2], Yes 
Installation of op center systems may include up to 6 weeks of training to support new users, 

however replacement workers may not receive that same support. These systems should 
accommodate experienced and novice users by providing in-system tools that enable learning of 
new tasks and reviewing procedures for uncommon or obscure tasks. 
1) Establish	  a	  default	  configuration	  that’s	  applicable	  to	  most	  or	  all	  operators.	  [Level	  3]	  [T],	  [V3],	  Yes	  

	  	  LR	  §2:	  Know	  your	  users,	  tasks.	  LR	  §3.1.5:	  Design	  to	  accommodate	  colorblindness.	  	  	  

2) Avoid	  unnecessary	  splash	  screens	  and	  instructions.	  Typically	  splash	  screens	  are	  fine	  for	  showing	  
progress,	  but	  they	  are	  often	  just	  for	  show.	  If	  tutorials	  or	  intro	  sequences	  are	  necessary,	  provide	  a	  
way	  to	  skip	  them.	  [Level	  3],	  [T-‐],	  [V1],	  No	  	  

FDUCS	  §11	  &	  §12	  on	  Task	  analysis;	  ADG.	  Splash	  screens	  can	  waste	  time,	  but	  also	  can	  be	  a	  source	  of	  feedback	  as	  the	  system	  loads.	  
Splash	  screens	  can	  provide	  information	  at	  the	  expense	  of	  task	  efficiency.	  

3) Anticipate	  the	  need	  for	  help	  and	  provide	  integrated	  help	  features.	  [Level	  4],	  [T+],	  [V3],	  Yes	  

a) Proactively	  look	  for	  times	  when	  people	  might	  be	  stuck.	  For	  obscure	  work	  and	  uncommon	  tasks,	  
provide	  additional	  help	  in	  menus.	  

b) Add	  help	  tags	  to	  system-‐specific	  controls	  	  

c) Provide	  task-‐oriented	  documentation	  through	  a	  form	  of	  supplementary	  help	  documentation	  
(either	  digitally	  or	  as	  a	  physical	  copy	  of	  a	  help	  document).	  
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LR	  §2.2.2	  Stage	  2	  Comprehension;	  LR	  §3.3	  Working	  Memory	  and	  Cognition.	  Providing	  integrated	  help	  reduces	  cognitive	  load	  by	  
reducing	  the	  amount	  of	  time	  spent	  searching	  for	  help	  and	  reducing	  the	  time	  and	  space	  between	  the	  issue	  and	  task	  completion.	  
Including	  a	  help	  button	  would	  allow	  users	  to	  find	  help	  when	  needed,	  and	  also	  provide	  a	  metric	  for	  which	  screens	  or	  tasks	  needed	  the	  
most	  help.	  Testing	  could	  be	  done	  by	  comparing	  how	  users	  respond	  to	  in-‐system	  help,	  providing	  a	  physical	  help	  guide,	  and	  another	  
option.	  	  	  

4) Use	  keystroke	  accelerators	  (KSAs)	  to	  improve	  performance	  of	  expert	  users.	  [Level	  5],	  [T+],	  [V3],	  
Yes/maybe	  

a) Provide	  KSAs	  in	  menus	  to	  support	  learning.	  

b) Base	  KSAs	  on	  typical	  Windows	  KSAs	  like	  ctrl-‐s	  for	  Save	  and	  ctrl-‐p	  for	  Print.	  

c) Provide	  a	  full	  list	  of	  KSAs	  that	  can	  be	  viewed	  and/or	  printed	  out.	  	  	  

GOMS,	  ADG,	  FDUCS.	  Clearly	  using	  KSAs	  would	  improve	  performance,	  however	  outstanding	  questions	  include	  the	  value	  of	  KSAs	  for	  
each	  task,	  time	  required	  to	  learn	  KSAs,	  and	  maybe	  others.	  	  	  

Data entry  [Level  3.5], [T+], [V3], Yes  
Whether using a keyboard, mouse, or any other input mode, inputting information can be a 

tedious and sometimes error-prone process. When an app asks for lots of input before doing 
anything useful, people can get discouraged quickly. 
1) When	  entering	  data,	  prompt	  operators	  to	  choose	  an	  input	  rather	  than	  enter	  free	  text	  whenever	  

possible.	  Selecting	  from	  a	  table,	  pop-‐up	  button,	  or	  set	  of	  radio	  buttons	  improves	  accuracy	  and	  
reduces	  error	  rates,	  especially	  when	  the	  input	  needs	  to	  be	  exactly	  correct.	  	  	  [Level	  4],	  [T-‐],	  [V3],	  No	  
need	  

LR	  §3.3.	  Working	  Memory	  and	  Cognition;	  FDUCS	  §10	  Errors.	  Recall	  memory	  is	  slower,	  harder,	  and	  more	  error-‐prone	  than	  recognition	  
memory.	  Even	  expert	  users	  are	  going	  to	  make	  errors	  at	  some	  point,	  so	  using	  recognition	  memory	  will	  reduce	  the	  number	  of	  errors	  
and	  constrain	  errors	  to	  be	  within	  the	  known	  selection	  list.	  

2) Simplify	  navigation	  of	  value	  lists	  unless	  there	  are	  times	  when	  none	  will	  apply.	  Long	  lists	  should	  be	  
sortable	  and	  filterable,	  and	  all	  lists	  should	  be	  arranged	  logically	  like	  alphabetical	  order	  or	  grouped	  by	  
type.	  	  [Level	  3],	  [T],	  [V2],	  Yes	  

FDUCS	  §7.3.4	  Scanning	  Displays	  and	  Menus;	  People	  tend	  to	  scan	  displays	  rather	  than	  deeply	  read	  them	  and	  the	  information	  should	  
be	  presented	  in	  a	  scannable	  way	  that	  is	  sorted	  according	  to	  the	  operator's	  mental	  model.	  	  

3) Use	  introductory	  labels	  to	  describe	  text	  entry	  fields.	  Support	  the	  labels	  with	  clear,	  visible	  hints	  
placed	  closely	  outside	  the	  text	  field.	  [Level	  3],	  [T-‐],	  [V1],	  No	  need.	  

LR	  §2.2.1	  Stage	  1	  Perception;	  FDUCS	  §5.2.4.4	  Priming;	  FDUCS	  §4.4.6	  Pop-‐Out	  Effects;	  FDUCS	  §7.3	  Reading	  ;NN/g;	  Labels	  help	  users	  
understand	  what	  they	  are	  looking	  at	  and	  prompt	  them	  to	  begin	  thinking	  about	  the	  relevant	  information	  needed	  for	  the	  task.	  Also,	  
words	  are	  automatically	  processed	  for	  experienced	  readers	  so	  they	  will	  pop-‐out	  upon	  being	  viewed	  by	  the	  user.	  Also,	  users	  read	  a	  
word	  faster	  than	  naming	  an	  icon.	  	  	  

4) Support	  effective	  reading	  and	  comprehension	  for	  text	  within	  a	  text	  field	  and	  long	  strings	  of	  texts	  like	  
event	  logs.	  	  	  [Level	  4],	  [T+],	  [V2],	  No	  need	  

FDUCS	  §7.3	  Reading	  

a) Adjust	  text	  field	  line	  breaks	  accordingly.	  By	  default,	  any	  text	  extending	  beyond	  the	  bounds	  of	  a	  
text	  field	  is	  clipped.	  A	  text	  field,	  however,	  can	  be	  set	  to	  wrap	  text	  to	  a	  new	  line	  at	  the	  character	  
or	  word	  level,	  or	  to	  be	  truncated	  (indicated	  by	  an	  ellipsis)	  at	  the	  beginning,	  middle,	  or	  end.	  	  

b) Consider	  using	  an	  expansion	  tooltip	  to	  show	  the	  full	  version	  of	  clipped	  or	  truncated	  text.	  An	  
expansion	  tooltip	  behaves	  like	  a	  help	  tag	  and	  appears	  when	  the	  user	  places	  the	  pointer	  over	  the	  
field.	  
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5) Let	  the	  user	  adjust	  text	  attributes	  if	  it	  makes	  sense.	  If	  your	  text	  field	  contains	  styled	  text,	  it	  may	  add	  
value	  if	  the	  user	  can	  adjust	  the	  font,	  size,	  and	  color	  of	  the	  text.	  System	  controlled	  text	  attribute	  
changes	  could	  be	  used	  to	  instantiate	  the	  pop-‐out	  effect	  in	  event	  logs.	   [Level	  2	  ],	  [T],	  [V1],	  No	  
need	  

ADG	  

6) Get	  information	  from	  the	  system	  whenever	  possible.	  Don’t	  force	  users	  to	  provide	  information	  that	  
can	  be	  gathered	  automatically	  or	  with	  the	  user’s	  permission.	  [Level	  4],	  [T],	  [V1],	  No	  need	  

GOMS;	  CPMGOMS	  ;FDUCS	  §10	  Errors:	  An	  Inherent	  part	  of	  human-‐system	  performance	  	  

7) Provide	  reasonable	  default	  values	  and	  prefill	  fields	  with	  most	  likely	  values	  when	  appropriate.	  	  [Level	  
3],	  [T+],	  [V2],	  Maybe	  	  

GOMS;	  CPMGOMS;	  ADG	  

8) Dynamically	  validate	  field	  values	  rather	  than	  waiting	  until	  submission.	  This	  reduces	  the	  need	  to	  
backtrack	  when	  data	  entry	  fails	  validation.	  	  [Level	  3],	  [T+],	  [V3],	  Yes	  

ADG;	  NN/g	  

9) Use	  proper	  formatting	  that	  connects	  the	  input	  format	  with	  user	  expectations.	   [Level	  3],	  [T+],	  
[V2],	  Yes	  

a) Displaying	  the	  input	  for	  percentages	  as	  a	  percentage,	  or	  automatically	  presenting	  phone	  
numbers	  in	  their	  standard	  format.	  

b) Entries	  expecting	  long	  text	  should	  allow	  users	  to	  view	  the	  input	  with	  minimal	  scrolling	  (and	  thus	  
less	  short-‐term	  memory	  usage).	  

10) Use	  numeric	  data	  entry,	  especially	  for	  critical	  features,	  should	  follow	  these	  guides.	  [Level	  4],	  [T+],	  
[V3],	  Yes	  

Thimbleby,	  H.,	  &	  Cairns,	  P.	  (2010).	  Reducing	  number	  entry	  errors:	  solving	  a	  widespread,	  serious	  problem.	  Journal	  of	  The	  Royal	  Society	  
Interface,	  7(51),	  1429–1439.	  https://doi.org/10.1098/rsif.2010.0112;	  Test	  case	  from	  study	  was	  for	  medication	  dosages	  entry	  to	  
reduce	  risk	  of	  killing	  patient	  due	  to	  operator	  error.	  

a) Always	  show	  commas	  for	  values	  above	  1,000.	  	  

b) Don’t	  use	  ‘naked’	  decimal	  points:	  0.5	  is	  better	  than	  .5	  	  

c) Avoid	  showing	  trailing	  zeros	  for	  values	  with	  whole	  numbers:	  	  1	  is	  better	  than	  1.0	  

d) When	  possible,	  build	  in	  automatic	  blocking	  of	  invalid	  numbers.	  

e) Maximum	  stakes	  data	  entry	  fields	  can	  reduce	  risk	  of	  failure	  by	  using	  slightly	  larger	  decimal	  
points	  and	  smaller	  font	  for	  numerals	  after	  the	  decimal.	  	  

f) Batching	  values	  in	  groups	  of	  3	  

Help & Tooltips  [Level 4], [T], [V2], No/Maybe. 
Ideally, people can figure out how to use your system without a guide. However, even in a 

highly intuitive interface, users sometimes need help learning advanced and secondary features. 
When called for, your program can offer assistance in the form of help tags and other forms of 
help documentation. Help tags allow you to provide temporary, context-sensitive help, whereas 
documentation allows you to provide a more thorough discussion of the topic. 
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Isaksen,	  H.,	  Iversen,	  M.,	  Kaasbøll,	  J.,	  &	  Kanjo,	  C.	  (2017).	  Methods	  for	  Evaluation	  of	  Tooltips.	  In	  M.	  Kurosu	  (Ed.),	  HCI	  2017:	  Human-‐
Computer	  Interaction,	  User	  Interface	  Design,	  Development	  and	  Multimodality	  (Vol.	  10271,	  pp.	  297–312).	  
https://doi.org/10.1007/978-‐3-‐319-‐58071-‐5_23;	  Mildly	  testable	  but	  expensive.	  Instead,	  help	  and	  tooltips	  simply	  provide	  a	  useful.	  A	  
study	  on	  tooltips	  found	  that	  explicit	  evaluation	  was	  costly.	  Instead,	  making	  tooltips	  should	  just	  be	  assumed.	  

1) Describe	  only	  the	  control	  that’s	  directly	  beneath	  the	  pointer.	  	  

2) Add	  help	  tags	  to	  app-‐specific	  or	  system-‐specific	  controls.	  Skip	  tags	  on	  common	  features	  like	  resize	  
controls,	  scrollers,	  or	  others.	  	  

3) Focus	  on	  the	  action	  that	  a	  control	  initiates.	  A	  good	  rule-‐of-‐thumb	  is	  to	  start	  tool	  tips	  with	  a	  verb.	  	  

4) Use	  the	  fewest	  number	  of	  words	  possible.	  	  

a) Try	  to	  limit	  tags	  to	  a	  maximum	  of	  60	  or	  75	  characters	  depending	  on	  your	  system	  needs.	  [Level	  2]	  

b) Requiring	  more	  text	  to	  explain	  a	  feature	  may	  indicate	  that	  the	  interface	  is	  overly	  complicated.	  
[Level	  1]	  

5) In	  general,	  don’t	  reference	  a	  tag’s	  corresponding	  control.	  Typically,	  the	  help	  tag’s	  location	  (directly	  
adjacent	  to	  the	  control)	  will	  provide	  sufficient	  context	  for	  the	  user.	  	  

6) Use	  sentence	  fragments	  with	  sentence-‐style	  capitalization.	  This	  emphasizes	  brevity	  without	  overly	  
sacrificing	  readability	  for	  users.	  	  

7) Consider	  offering	  context-‐sensitive	  help	  tags.	  	  

Keyboard Interactions [Level 4.5], [T+], [V3], Yes  
The keyboard is an essential input device for entering text, navigating, and initiating actions. 

Some users will prefer to almost exclusively use the keyboard for performing some or all tasks. 
	  GOMS,	  general	  wide	  support	  

1) Respect	  standard	  keyboard	  shortcuts	  and	  create	  program-‐specific	  shortcuts	  for	  frequently	  used	  
commands.	  	  

2) Add	  full	  keyboard	  access	  mode	  support	  for	  all	  custom	  interface	  elements.	  	  

a) Full	  keyboard	  access	  mode	  lets	  users	  navigate	  and	  activate	  windows,	  menus,	  interface	  
elements,	  and	  system	  features	  using	  the	  keyboard	  alone.	  	  

b) Tab	  is	  an	  important	  command	  to	  switching	  between	  areas	  and	  fields.	  	  

3) Enable	  expected	  shortcuts	  for	  standard	  menu	  items.	  Strive	  for	  consistency	  across	  all	  applications	  
and	  systems	  for	  common	  actions.	  	  

4) Define	  new	  keyboard	  shortcuts	  only	  for	  things	  people	  do	  regularly.	  	  

a) Unexpected	  shortcut	  design	  can	  easily	  confuse	  users,	  and	  tt	  rarely	  makes	  sense	  to	  redefine	  a	  
common	  shortcut.	  	  

b) The	  WDS	  and	  similar	  systems	  could	  log	  commands	  to	  know	  which	  keyboard	  shortcuts	  and	  
commands	  are	  most	  common.	  This	  would	  help	  improve	  keystroke	  accelerator	  generation.	  	  

5) Use	  a	  standardized	  hierarchy	  for	  assigning	  modifier	  keys	  (i.e.,	  ctrl,	  alt,	  shift)	  when	  creating	  a	  new	  
shortcut.	  	  

a) Maintain	  a	  consistent	  order	  using	  modifiers	  and	  writing	  out	  commands	  with	  modifiers.	  	  
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6) Provide	  keystroke	  accelerators	  for	  nearly	  all	  commands	  

7) Keystroke	  accelerators	  are	  displayed	  in	  a	  help	  screen	  as	  a	  set	  and	  on	  menus	  and	  perhaps	  tool	  tips.	  

8) At	  a	  convenient	  time,	  like	  starting	  or	  stopping	  or	  loading	  or	  paused,	  note	  a	  keystroke	  accelerator	  of	  
the	  day.	  

9) Prefer	  to	  create	  “sets”	  of	  commands	  centered	  around	  a	  single	  action	  key	  with	  multiple	  modifier	  
keys.	  For	  example,	  Control-‐P	  may	  activate	  the	  “print”	  command,	  and	  Shift-‐Control-‐P	  may	  activate	  
the	  “page	  layout”	  menu	  which	  complements	  the	  “print”	  command.	  	  

10) Determine	  which	  keyboard	  shortcuts	  are	  common	  and/or	  reserved	  with	  your	  system	  to	  ensure	  that	  
your	  application	  does	  not	  interfere	  with	  prior	  knowledge	  from	  the	  users	  regarding	  how	  to	  interact	  
with	  systems	  of	  this	  type.	  	  

Providing User Feedback [Level 4], [T-], [V2]	   
Feedback tells people what an app is doing and helps them understand the results of actions and 

what they can do next. 
FOK;	  CWT	  

1) Unobtrusively	  integrate	  status	  and	  other	  types	  of	  feedback	  into	  your	  interface.	  If	  a	  notification	  does	  
not	  provide	  immediately	  actionable	  information,	  the	  operator	  should	  be	  able	  to	  continue	  their	  
current	  task	  uninterrupted.	  	  [Level	  4]	  [T],	  [V3],	  Yes	  

LR	  §3.2.2	  Interruptions	  

2) Avoid	  unnecessary	  alerts	  by	  carefully	  assessing	  whether	  new	  information	  is	  worth	  disrupting	  the	  
operator’s	  current	  task,	  so	  they	  can	  address	  the	  situation.	  If	  deemed	  important,	  ensure	  that	  the	  
alert	  is	  disruptive	  so	  ensure	  the	  user	  responds.	  [Level	  4]	  [T],	  [V3],	  Yes	  

LR	  §3.2.2	  Interruptions	  

3) Warn	  people	  when	  they	  initiate	  a	  task	  that	  can	  cause	  an	  unexpected	  and	  irreversible	  loss	  of	  data.	  
Avoid	  being	  overzealous	  (i.e.,	  notifications	  for	  clearing	  the	  recycle	  bin	  on	  desktop),	  but	  try	  to	  strike	  a	  
balance	  between	  user	  expectations	  and	  task	  requirements.	  	  [Level	  3],	  [T-‐],	  [V1],	  No	  

4) Inform	  the	  user	  when	  a	  command	  can’t	  be	  carried	  out.	  	   [Level	  3],	  [T-‐],	  [V1],	  No	  

5) Clearly	  note	  time	  constraints	  for	  alert	  triggers,	  postponing	  an	  alert	  response,	  and	  other	  important	  
tasks.	   [Level	  4],	  [T],	  [V2],	  Maybe	  

6) If	  it	  makes	  sense,	  allow	  users	  to	  adjust	  time	  constraints	  for	  how	  alerts	  are	  provided.	  For	  example,	  a	  
user	  (or	  supervisor)	  may	  wish	  to	  make	  a	  certain	  alert	  type	  occur	  more	  or	  less	  often.	  [Level	  2],	  [T-‐],	  
[V1],	  No	  

7) Allow	  users	  to	  set	  up	  new	  alerts	  when	  it	  makes	  sense.	   [Level	  3],	  [T-‐],	  [V2],	  Maybe	  	  

Badging or Icons as Updates [Level 3], [T], [V3], Yes 
Icons and other programs can display small, meaningful icons to indicate new, noncritical 

information like events or minor alerts.  
Unstudied	  other	  than	  to	  note	  that	  even	  common	  icons	  only	  have	  a	  70%	  recognition	  rate	  on	  average.	  See	  Ghayas,	  S.,	  Sulaiman,	  S.,	  
Khan,	  M.,	  &	  Jaafar,	  J.	  (2013).	  The	  effects	  of	  icon	  characteristics	  on	  users’	  perception.	  In	  International	  Visual	  Informatics	  Conference	  
(pp.	  652–663).	  	  
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1) Use	  badging	  for	  notification	  purposes	  only	  for	  focused,	  simple	  information.	  Avoid	  using	  icons	  as	  
updates	  for	  complex,	  quickly	  changing	  information	  (e.g.,	  air	  quality	  or	  wind	  speed).	  [Level	  3],	  [T+],	  
[V3],	  Yes	  

2) Badging	  should	  supplement	  direct	  presentation	  of	  information	  within	  the	  application.	  If	  a	  badge	  
indicates	  some	  alert,	  that	  same	  alert	  should	  be	  presented	  within	  the	  application	  in	  text	  form.	  [Level	  
3],	  [T-‐],	  [V2],	  Maybe	  

3) Ensure	  badges	  update	  quickly	  in	  response	  to	  user	  activity	  such	  as	  dismissal	  or	  acknowledgement	  of	  
some	  alert.	  [Level	  2],	  [T-‐],	  [V1],	  No	  need	  

4) Prefer	  short	  and/or	  concrete	  words	  (vs.	  long	  and/or	  abstract	  where	  these	  will	  do,	  they	  are	  faster	  to	  
read	  and	  easier	  to	  interpret.	  The	  button	  that	  says	  “word”	  is	  clearer	  to	  ask	  about	  than	  the	  button	  
“that	  some	  squiggly	  lines	  that	  seem	  to	  form	  a	  point….”	  [Level	  4],	  [T],	  [V2],	  Maybe	  

FDUCS	  §7.3	  How	  Users	  Read;	  Stroop	  on	  Automatic	  Processing	  of	  Words	  

Notifications [Level 3], [T+], [V3], Yes 
System notifications provide timely and important information anytime. Notifications may 

occur when a message arrives, an event occurs, new data is available, or the status of something 
has changed.  
1) Use	  distinct	  notification	  styles	  to	  differentiate	  between	  minor	  notifications	  and	  alerts.	  Alerts	  should	  

remain	  visible	  until	  dismissed	  by	  the	  user	  while	  notifications	  can	  disappear	  after	  a	  few	  seconds.	  	  
[Level	  2],	  [T+],	  [V3],	  Yes	  	  

2) Notifications	  should	  be	  useful	  and	  informative:	  use	  complete	  sentences	  and	  standard	  grammatical	  
style,	  avoid	  repetitive	  notifications	  that	  clutter	  the	  view,	  and	  ensure	  key	  information	  (like	  origin)	  is	  
clearly	  displayed.	  	  	  [Level	  4],	  [T],	  [V2],	  Maybe	  

FDUCS	  §7.3	  How	  Users	  Read	   	  

3) If	  possible,	  ensure	  that	  responses	  prompted	  by	  the	  notification	  are	  not	  overly	  specific	  or	  difficult	  to	  
accomplish	  once	  the	  notification	  is	  dismissed.	  	  [Level	  3],	  [T-‐],	  [V2],	  Maybe	  

LR	  §3.3	  Working	  Memory	  and	  Cognition	  	  

4) Adapt	  notification	  behavior	  for	  different	  contexts.	  Consider	  using	  cognitive	  counter-‐measures	  to	  
correct	  behavior	  in	  risky	  situations.	  [Level	  3],	  [T+],	  [V3],	  Yes	  

a) If	  the	  user	  is	  on	  the	  home	  page,	  then	  a	  notification	  about	  new	  events	  may	  be	  useful;	  if	  the	  user	  
is	  already	  on	  the	  event	  log	  page	  then	  displaying	  a	  popup	  will	  likely	  be	  annoying	  compared	  to	  
other	  methods	  of	  informing	  the	  user	  of	  new	  information.	  

b) Critical	  events	  can	  implement	  cognitive	  counter-‐measures	  to	  capture	  the	  attention	  of	  the	  
operator.	  Cognitive	  counter-‐measures	  are	  temporary,	  major	  changes	  to	  the	  interface	  intended	  
to	  temporarily	  break	  their	  focus,	  so	  they	  will	  reorient	  onto	  the	  important	  task.	  For	  example,	  a	  
low	  battery	  alert	  that	  occurs	  during	  manual	  control	  of	  an	  unmanned	  vehicle	  could	  clear	  the	  
screen	  of	  all	  features,	  prominently	  display	  the	  low	  battery	  alert	  until	  cleared	  before	  resuming	  
normal	  operation.	  This	  eliminates	  the	  risk	  of	  “tunnel-‐vision”	  causing	  the	  signal	  to	  be	  missed.	  

Directly	  tested	  for	  the	  exact	  scenario	  described.	  Extremely	  relevant	  to	  WDS	  interface	  design.	  Dehais,	  F.,	  Causse,	  M.,	  &	  Tremblay,	  S.	  
(2011).	  Mitigation	  of	  conflicts	  with	  automation:	  Use	  of	  cognitive	  countermeasures.	  Human	  Factors,	  53(5),	  448–460.	  
https://doi.org/10.1177/0018720811418635	  
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c) Critical	  events	  should	  use	  dual-‐coded	  alerts	  such	  as	  a	  visual	  and	  audio	  indicator,	  or	  multiple	  
visual	  indicators.	  	  

5) Provide	  intuitive,	  beneficial	  action	  buttons	  on	  pop-‐up	  notifications	  and	  alerts.	  Limit	  buttons	  for	  user	  
response	  to	  2	  buttons	  if	  possible.	   [Level	  3],	  [T],	  [V2],	  Maybe	  

a) Use	  the	  buttons	  to	  perform	  common,	  time-‐saving	  tasks.	  This	  will	  help	  reduce	  how	  often	  the	  
operator	  needs	  to	  change	  views	  for	  simple	  tasks.	  	  

Color [Level 4] [T+], [V2], No/Maybe  
Color is a great way to provide status information, give feedback in response to user actions, 

and help people visualize data. 
1) Use	  color	  judiciously	  for	  communication.	  Limit	  the	  number	  of	  colors	  used	  for	  communication	  to	  less	  

than	  five.	  [Level	  3],	  [T],	  [V2],	  Maybe	  

ADG;	  LR	  §3.1.5	  Principle	  7	  

2) Provide	  adequate	  support	  for	  colorblind	  users.	  Colorblindness	  is	  common	  enough	  that,	  when	  
possible,	  designers	  and	  engineers	  should	  ensure	  that	  the	  standard	  design	  supports	  colorblind	  users.	  
[Level	  4],	  [T+],	  [V2],	  Maybe	  

LR	  §3.1	  Perception	  

3) Color	  contrast	  should	  be	  between	  foreground	  and	  background	  colors	  should	  be	  at	  least	  4.5:1	  if	  not	  a	  
higher	  contrast	  of	  7:1.	  [Level	  3],	  [T],	  [V1],	  No	  

ADG.	  

4) Test	  the	  application’s	  color	  scheme	  under	  appropriate	  lighting	  conditions.	  A	  system	  used	  in	  a	  
brightly-‐lit	  room	  will	  have	  different	  requirements	  than	  one	  used	  in	  a	  dark	  room.	  [Level	  4],	  [T+],	  [V2],	  
No	  

LR	  §1.4	  	  

Visual feature index  
Most applications should be built using components from your preferred graphic design kit like 

Java Swing or others. This will provide a programming framework that defines common 
interface elements. This framework lets applications achieve a consistent appearance across the 
system, while at the same time offering a high level of customization. The following interface 
elements are a common set of flexible and familiar features that can provide a design framework 
for building nearly any system. 

Windows and Views 

Alerts 
An alert appears when the system or program needs to warn the user about an error condition, 

or a potentially hazardous situation or consequence. A major alert should be modal within an 
application; once the alert is received, the program is locked into an “alert response” mode that 
requires user input regarding the alert before enabling any other actions. Minor alerts should be 
displayed differently than major alerts. 
1) Minimize	  alerts.	   	  	  Alerts	  disrupt	  the	  operator	  and	  should	  be	  reserved	  for	  important	  situations.	  

The	  infrequency	  of	  alerts	  helps	  ensure	  that	  operators	  take	  them	  seriously.	  [Level	  3],	  [T+],	  [V3],	  Yes	  
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2) Ensure	  that	  each	  alert	  offers	  critical	  information	  and	  useful	  choices.	  	  [Level	  3],	  [T],	  [V2],	  Yes	  

a) Avoid	  using	  alerts	  to	  merely	  provide	  information.	  	  

b) Users	  become	  annoyed	  at	  alerts	  and	  interruptions	  that	  don’t	  provide	  actionable	  information.	  	  

c) Avoid	  displaying	  alerts	  for	  common,	  undoable	  actions.	  

3) Use	  a	  standardized	  alert	  display.	  Consistency	  will	  help	  users	  understand	  the	  meaning	  of	  the	  alerts	  by	  
supporting	  learned	  responses	  to	  different	  alert	  displays.	  [Level	  4],	  [T],	  [V3],	  Maybe	  

Rieman,	  J.,	  Young,	  R.	  M.,	  &	  Howes,	  A.	  (1996).	  A	  dual-‐space	  model	  of	  iteratively	  deepening	  exploratory	  learning.	  International	  Journal	  
of	  Human	  Computer	  Studies,	  44(6),	  743–775.	  https://doi.org/10.1006/ijhc.1996.0032	  

4) Provide	  a	  clear,	  succinct	  alert	  message	  that	  gives	  the	  user	  what,	  why,	  and	  where	  for	  a	  given	  alert.	  
[Level	  2],	  [T],	  [V2],	  Maybe	  

ADG	  

a) Consider	  phrasing	  a	  message	  as	  a	  question	  when	  the	  default	  action	  has	  negative	  consequences.	  	  

b) Supplement	  alert	  messages	  with	  informative	  text.	  Use	  this	  space	  to	  elaborate	  on	  consequences,	  
suggest	  solutions,	  and	  explain	  why	  the	  user	  should	  care.	  

5) Avoid	  using	  alert	  buttons	  that	  require	  explanation.	  [Level	  3],	  [T-‐],	  V1],	  No	  

ADG;	  LR	  §2.2.2	  ;CWT	  	  

a) If	  the	  text	  and	  button	  titles	  are	  clear,	  there	  should	  be	  no	  need	  to	  explain	  the	  buttons.	  

b) If	  guidance	  is	  needed,	  preserve	  capitalization	  when	  referencing	  buttons	  and	  don’t	  enclose	  
button	  titles	  in	  quotes.	  	  

c) Give	  alert	  buttons	  succinct,	  logical	  titles.	  Best	  titles	  will	  use	  one-‐	  or	  two-‐word	  verb	  phrases	  that	  
describe	  the	  result	  of	  clicking	  the	  button.	  Avoid	  using	  “yes	  and	  no”	  as	  the	  options.	  	  

d) Label	  cancellation	  buttons	  appropriately.	  	  

e) Include	  a	  Cancel	  button	  when	  there’s	  a	  destructive	  button	  (i.e.,	  delete	  file)	  

6) Generally,	  prefer	  two-‐button	  alerts.	  Single	  button	  alerts	  inform	  but	  give	  no	  control;	  alerts	  with	  three	  
or	  more	  buttons	  create	  complexity.	  [Level	  2],	  [T],	  [V2],	  Maybe	  

ADG	  

7) Ensure	  that	  the	  default	  button	  title	  reflects	  the	  action	  the	  button	  performs.	  Avoid	  using	  OK	  unless	  
the	  alert	  is	  purely	  informational.	  Specific	  button	  titles	  like	  Erase,	  Convert,	  Clear,	  or	  Delete	  help	  users	  
understand	  the	  action.	  [Level	  3],	  [T-‐],	  [V1],	  Maybe	  

CWT;	  ADG	  	  

8) Place	  buttons	  where	  people	  expect	  them.	  In	  general,	  the	  default	  (or	  most	  likely)	  button	  should	  be	  
on	  the	  right.	  Cancel	  is	  usually	  on	  the	  left.	  [Level	  2],	  [T],	  [V1],	  No	  

ADG;	  Others	  

9) Consider	  offering	  time-‐saving	  keyboard	  shortcuts	  for	  all	  buttons.	  For	  example,	  Enter	  (or	  return)	  can	  
a	  default	  “Accept”	  button	  for	  situations	  are	  not	  high	  stakes.	  Clearly	  indicate	  defaults	  by	  using	  bold,	  
underlined	  text	  on	  the	  default	  choice.	  [Level	  2],	  [T],	  [V2],	  Maybe	  
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Boxes [Level 2], [T-], [V1], No 
A box is a type of view that creates distinct, logical groupings of controls, text fields, and other 

interface elements. For example, a preferences window may include boxes that visually group 
related settings together. By default, a box has a border and a title, either of which can be 
disabled if it makes sense for your sub-display. The title, if displayed, can be positioned above 
(the default) or below the box. 
1) Avoid	  nesting	  boxes.	  Nested	  boxes	  waste	  space	  and	  reduce	  the	  effectiveness	  of	  boxes	  overall	  for	  

grouping	  information.	  	  

ADG	  

2) Use	  sentence-‐style	  capitalization	  in	  box	  titles.	  Don’t	  end	  box	  titles	  with	  a	  colon.	  	  

APA	  guidelines;	  FDUCS	  §7.3	  How	  Users	  Read	  

Dialogs 
A dialog is a type of window that elicits a response from the user. Many dialogs—like the Print 

dialog, for example—let people provide several responses at once. Dialogs are presented in three 
ways: document-modal, app-modal, and modeless. 

A document-modal dialog is attached to a document as a sheet and prevents the user from 
doing anything in the document until the dialog is dismissed. The user can still switch to other 
documents and apps. A Save dialog is an example of a document-modal dialog.  

An app-modal dialog prevents the user from doing anything in the app until the dialog is 
dismissed. The user can still switch to other apps. An Open dialog is an example of an app-
modal dialog. 

A modeless dialog is usually referred to as a panel. The user can continue interacting with 
documents and apps uninterrupted. The standard Find dialog is an example of a modeless 
dialog.  

Data Entry for Dialogs 
Dialogs are intended to be small, transient windows that don’t require in-depth user interaction, 

so it’s important to ensure that data entry is efficient. 
1) Provide	  default	  values	  for	  controls	  and	  fields	  whenever	  possible.	   [Level	  5]	  

2) Set	  the	  initial	  focus	  to	  the	  first	  location	  that	  accepts	  user	  input.	  	   	   [Level	  5]	  

3) Make	  static	  text	  selectable.	  For	  example,	  users	  may	  want	  to	  copy	  an	  error	  message	  or	  IP	  address.	  

4) Check	  for	  errors	  during	  data	  entry.	  The	  best	  time	  to	  check	  is	  immediately	  after	  the	  user	  moves	  onto	  
the	  next	  field.	  Waiting	  until	  they	  hit	  the	  submit	  button	  can	  annoy	  the	  user.	  	  

5) Whenever	  possible,	  minimize	  the	  potential	  for	  invalid	  input.	  	  

Layout 
6) Use	  disclosure	  control	  to	  provide	  information	  or	  functionality	  that’s	  only	  occasionally	  needed.	  	  

7) Position	  buttons	  as	  expected.	   [Level	  1]	  

a) Buttons	  in	  the	  bottom	  right	  of	  a	  dialog	  should	  dismiss	  the	  dialog	  

b) An	  action	  button,	  which	  initiates	  the	  dialog’s	  primary	  action,	  should	  be	  farthest	  to	  the	  right.	  	  



 79 

c) A	  cancel	  button	  should	  be	  to	  the	  immediate	  left	  of	  the	  action	  button.	  	  

d) If	  a	  third	  button	  is	  needed,	  it	  should	  be	  to	  the	  left	  of	  the	  cancel	  button.	  	  

e) If	  a	  help	  button	  is	  shown,	  it	  should	  be	  the	  furthest	  left	  button.	  	  

8) Separate	  destructive	  buttons	  from	  nondestructive	  buttons.	  	  

a) For	  example,	  Don’t	  Save	  should	  be	  far	  enough	  away	  from	  Save	  to	  ensure	  accidents	  are	  rare.	  	  

b) Destructive	  buttons	  should	  require	  intentional	  effort.	  	  

c) Ideally,	  24	  points	  of	  separation	  is	  best.	  	  

Dialog Dismissal 
9) Provide	  a	  default	  button	  only	  when	  the	  user’s	  most	  likely	  action	  is	  harmless.	  Users	  may	  simply	  hit	  

Return	  (or	  Enter)	  to	  dismiss	  an	  alert	  or	  dialog.	  This	  should	  never	  trigger	  an	  important	  event.	  If	  it’s	  
important	  enough,	  they	  should	  have	  to	  select	  a	  response.	  	  	  

10) Provide	  a	  default	  button	  only	  when	  the	  Return	  key	  isn’t	  already	  used	  by	  text	  fields	  on	  the	  dialog.	  

11) Include	  a	  Cancel	  button	  that	  responds	  to	  the	  standard	  cancellation	  keyboard	  shortcuts.	  A	  Cancel	  
button	  provides	  a	  clear,	  safe	  way	  out	  of	  the	  dialog	  and	  returns	  the	  computer	  to	  its	  previous	  state.	  	  

12) Ensure	  the	  Cancel	  button	  undoes	  all	  applied	  changes.	  	  

Outline View [Level 3], [T+], [V3], Yes/Maybe 
An	  outline	  view	  presents	  hierarchical	  data—like	  folders	  and	  the	  items	  they	  contain—cleanly	  and	  efficiently	  in	  a	  
scrolling	  list	  of	  cells	  that	  are	  organized	  into	  columns	  and	  rows.	  At	  minimum,	  an	  outline	  view	  includes	  one	  column	  
that	  contains	  the	  primary	  hierarchical	  data:	  parent	  containers	  and	  their	  children.	  Subsequent	  columns	  may	  be	  
added,	  as	  needed,	  to	  display	  additional	  attributes	  that	  supplement	  the	  primary	  data.	  Event	  logs	  could	  be	  
presented	  in	  outline	  view	  as	  an	  alternative	  to	  the	  typical	  table	  view.	  	  

1) Outline	  View	  should	  be	  used	  for	  hierarchical	  data	  whereas	  Table	  View	  should	  be	  used	  for	  non-‐
hierarchical	  data.	  Event	  logs	  have	  some	  underlying	  hierarchical	  traits,	  but	  presentation	  style	  should	  
depend	  on	  the	  task	  being	  performed.	  [Level	  3],	  [T],	  [V3],	  Maybe	  

Bakke,	  E.,	  Karger,	  D.	  R.,	  &	  Miller,	  R.	  C.	  (2013).	  Automatic	  layout	  of	  structured	  hierarchical	  reports.	  IEEE	  Transactions	  on	  Visualization	  
and	  Computer	  Graphics,	  19(12),	  2586–2595.	  https://doi.org/10.1109/TVCG.2013.137;	  The	  outline	  view	  is	  just	  one	  way	  to	  present	  
data.	  There	  could	  be	  valuable	  testing	  done	  on	  how	  best	  to	  present	  complex	  sets	  of	  events	  from	  the	  WDS	  and	  other	  systems	  based	  on	  
the	  mental	  model	  of	  the	  user.	  	  

2) The	  data	  hierarchy	  structure	  should	  be	  viewable	  within	  the	  first	  column	  only.	  [Level	  1]	  [T],	  [V1],	  No	  

ADG	  

3) If	  deemed	  appropriate,	  operators	  should	  be	  able	  to	  click	  column	  headings	  to	  sort	  an	  outline	  view.	  
Clicking	  again	  should	  sort	  the	  column	  in	  the	  reverse-‐order	  of	  the	  initial	  click.	  [Level	  2],	  [T],	  [V1],	  No	  

ADG	  

4) Support	  ease-‐of-‐use	  by	  providing	  clear,	  noun-‐based	  column	  headings,	  allowing	  operators	  to	  resize	  
columns,	  and	  ensuring	  that	  rows	  are	  easily	  distinguished.	  [Level	  2],	  [T],	  [V1],	  No	  

5) Long	  text	  strings	  within	  a	  cell	  should	  be	  truncated	  in	  some	  way.	  This	  can	  be	  done	  with	  an	  ellipsis	  in	  
the	  middle,	  with	  the	  ends	  unaffected,	  or	  with	  a	  trailing	  ellipsis	  that	  prioritizes	  early	  text.	  	  [Level	  3],	  
[T+],	  [V2],	  Yes	  
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6) Search	  fields	  should	  be	  provided	  to	  allow	  operators	  to	  quickly	  find	  specific	  items.	  [Level	  3],	  [T+],	  
[V3],	  Yes	  

Panels 
A panel is an auxiliary window containing controls, options, or information related to the active 

document or selection. A panel appears less prominent than a main window and can behave like 
a normal window or be configured to float above other open windows—even modal windows. 
Panels can also adopt a darker, translucent (HUD-style) appearance when the user experience 
calls for it. 
1) Use	  a	  panel	  to	  provide	  quick	  access	  to	  important	  controls	  or	  information	  related	  to	  content.	  	  

2) As	  an	  alternative	  to	  panels,	  you	  could	  also	  implement	  Popovers,	  Sidebars,	  Split	  Views,	  or	  a	  Toolbar	  

3) Title	  panels	  with	  appropriate	  text	  that	  describes	  the	  purpose	  with	  nouns	  or	  noun	  phrases.	  	  

4) Link	  the	  visibility	  of	  a	  panel	  to	  whether	  the	  associated	  application	  is	  currently	  active.	  Inactive	  
applications	  should	  shouldn’t	  have	  visible	  panels.	  	  

5) Consider	  using	  HUD-‐Style	  panels	  for	  highly	  visual	  content.	  

a) HUD	  Panels	  are	  translucent	  and	  typically	  have	  a	  darkened	  background.	  

b) Use	  simple	  controls	  and	  interactions	  for	  HUD	  panels.	  Avoid	  making	  the	  user	  type,	  for	  example.	  

c) Keep	  HUD	  Panels	  fairly	  plain	  with	  minimal	  color	  and	  other	  distracting	  features.	  	  

Popover [Level 2], [T-], [V1], No 
A popover is a view that appears above other content onscreen when you click a control or 

view. Popovers typically integrate an arrow pointing to its origin. Popovers can close in response 
to a user interaction (transient behavior), in response to a user’s interaction with the view or 
element from which the popover emerged (semi-transient behavior). A popover can also be made 
detachable. A detachable popover becomes a separate window when dragged by the user, 
allowing it to remain visible onscreen while the user interacts with other content. 

ADG	  

1) Popovers	  are	  for	  limited	  information	  or	  functionality	  and	  typically	  disappear	  following	  user	  
interaction.	  Avoid	  using	  popovers	  for	  complex	  tasks	  and	  functions.	  	  

2) Use	  popovers	  to	  streamline	  interfaces	  by	  moving	  simple	  interactions	  from	  static	  regions	  into	  context	  
dependent	  popover	  views.	  	  

3) Popover	  behavior	  should	  be	  intuitive	  based	  on	  the	  popover’s	  function.	  	  

NN/g	  

a) Typically,	  this	  means	  exiting	  automatically	  after	  completing	  a	  task	  or	  clicking	  outside	  the	  
popover	  rather	  than	  requiring	  a	  Close	  button.	  	  

b) Ensure	  Popovers	  don’t	  obscure	  the	  screen	  element	  that	  caused	  it	  to	  appear.	  

c) Only	  display	  a	  single	  Popover	  on	  the	  screen	  at	  one	  time.	  	  

Scroll view [Level 3], [T+], [V2], Yes/Maybe 



 81 

A scroll view lets people browse content (i.e., a large event log) that’s larger than the view’s 
visible area. A scroll view itself has no appearance, but can display horizontal and vertical scroll 
bars, each of which consists of a track containing a draggable control known as a knob. The 
height of a knob reflects the quantity of scrollable content.  
1) Don’t	  have	  nested	  scrolling	  views.	  [Level	  2],	  [T],	  [V1],	  No	  

2) Ensure	  scroll	  bars	  and	  sliders	  have	  distinct	  appearances.	  [Level	  2],	  [T],	  [V1],	  No	  

3) Avoid	  requiring	  horizontal	  and	  vertical	  scrolling	  on	  the	  same	  interface	  and	  prefer	  vertical	  scrolling	  
over	  horizontal.	  [Level	  4],	  [T+],	  [V3],	  Yes	  

GOMS;	  Bakke,	  E.,	  Karger,	  D.	  R.,	  &	  Miller,	  R.	  C.	  (2013).	  Automatic	  layout	  of	  structured	  hierarchical	  reports.	  IEEE	  Transactions	  on	  
Visualization	  and	  Computer	  Graphics,	  19(12),	  2586–2595.	  https://doi.org/10.1109/TVCG.2013.137;	  Event	  logs	  are	  complex	  sets	  of	  
data	  that	  need	  searched	  by	  users	  and	  determining	  the	  best	  way	  to	  present	  them	  could	  be	  valuable.	  

4) If	  possible,	  avoid	  requiring	  the	  use	  of	  scrolling	  to	  view	  all	  content.	  This	  must	  be	  balanced	  against	  
over	  crowding	  an	  interface.	  [Level	  4],	  [T+],	  [V3],	  Yes	  

GOMS;	  LR	  §3.3	  Working	  Memory	  and	  Cognition;	  Scrolling	  requires	  the	  user	  to	  store	  more	  information	  in	  working	  memory	  rather	  than	  
“maintaining”	  that	  information	  on	  the	  screen.	  

Split view 
A split view manages the presentation of two or more panes of content. Each pane can contain 

any variety of elements, including buttons, tables, column views, text fields, and even other split 
views. The panes of a split view can be arranged horizontally or vertically and are separated by a 
divider that can typically be dragged to resize the panes. Each pane can have a minimum and 
maximum size, which affects how much it can be resized. Many apps let the user hide specific 
panes on request. 

ADG	  

1) Allow	  panes	  to	  be	  hidden	  when	  it	  makes	  sense.	  For	  example,	  hiding	  a	  pane	  may	  help	  reduce	  
distractions	  during	  focused	  work.	  	  	  

2) Provide	  multiple	  ways	  to	  access	  hidden	  panes.	  Provide	  toolbar	  buttons	  or	  menu	  items	  with	  
keyboard	  shortcuts.	  	  	  

3) Ensure	  minimum	  and	  maximum	  pane	  sizes	  set	  based	  on	  the	  system’s	  requirements	  and	  functions.	  	  

4) Use	  Thin	  dividers	  (1pt	  width)	  for	  most	  dividers.	  If	  the	  designer	  wants	  to	  indicate	  a	  stronger	  visual	  
distinction	  between	  panes	  then	  use	  a	  Thick	  divider	  (9pt	  width).	  

Tab Views [Level 3], [T], [V2], No/Maybe 
A tab view presents multiple mutually exclusive panes of content in the same area. A tab view 

includes a tabbed control (which is similar in appearance to a segmented control) and a content 
area. Each segment of a tabbed control is known as a tab, and clicking a tab displays its 
corresponding pane in the content area. Although the amount of content can vary from pane to 
pane, switching tabs doesn’t change the overall size of the tab view or its parent window. 
1) Use	  a	  tab	  view	  to	  present	  closely	  related,	  equally	  important	  content	  areas.	  [Level	  2],	  [T-‐],	  [V1],	  No	  

need	  

2) Provide	  between	  two	  and	  six	  tabs	  in	  tab	  view.	  If	  more	  tabs	  are	  necessary,	  consider	  alternative	  views.	  
[Level	  2],	  [T],	  [V2],	  Maybe	  

ADG	  
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3) Controls	  within	  a	  pane	  using	  tab	  view	  should	  only	  affect	  content	  within	  that	  tab.	  [Level	  2],	  [T],	  [V1],	  
No	  need	  

ADG;	  CWT	  

4) Provide	  a	  label	  for	  each	  tab	  that	  describes	  the	  content	  of	  its	  pane.	  [Level	  2],	  [T-‐],	  [V1],	  No	  need	  

5) Ensure	  switching	  between	  tabs	  requires	  only	  a	  single	  action	  like	  pressing	  a	  button,	  using	  a	  keystroke	  
(e.g.,	  tab),	  or	  clicking.	  [Level	  3],	  [T+],	  [V1],	  No	  need	  

ADG;	  GOMS	  

Menus [Level 3], [T+], [V2], Yes/Maybe 
A menu presents a list of items—commands, attributes, or states—from which a user can 

choose. An item within a menu is known as a menu item, and may be configured to initiate an 
action, toggle a state on or off, or display a submenu of additional menu items when selected or 
in response to an associated keyboard shortcut. Menus can also include separators, and menu 
items can contain icons and symbols, like checkmarks. 

CWT;	  GOMS;	  ADG	  

1) Use	  title-‐style	  capitalization	  for	  all	  text.	  [Level	  2],	  [T],	  [V1],	  No	  need	  

APA	  Guidelines;	  ADG	  

2) Ensure	  menu	  titles	  are	  intuitive	  so	  users	  will	  anticipate	  the	  types	  of	  items	  the	  menu	  contains.	  [Level	  
4],	  [T],	  [V2],	  Maybe	  

ADG;	  NN/g;	  CWT;	  Information	  scent	  research	  

3) Keep	  menus	  enabled,	  even	  when	  menu	  items	  are	  unavailable.	  [Level	  3],	  [T],	  [V2],	  Maybe	  

ADG;	  CWT;	  Mendel,	  J.,	  &	  Pak,	  R.	  (2009).	  The	  Effect	  of	  Interface	  Consistency	  and	  Cognitive	  Load	  on	  User	  Performance	  in	  an	  
Information	  Search	  Task.	  Proceedings	  of	  the	  Human	  Factors	  and	  Ergonomics	  Society	  Annual	  Meeting,	  53(22),	  1684–1688.	  
https://doi.org/10.1177/154193120905302206	  

a) This	  tells	  users	  that	  a	  particular	  function	  is	  unavailable	  at	  the	  moment.	  	  

b) Unavailable	  menu	  items	  also	  allow	  users	  to	  learn	  about	  other	  functions	  in	  the	  system,	  even	  if	  
the	  actions	  aren’t	  possible.	  	  

4) Make	  menu	  titles	  as	  short	  as	  possible	  without	  sacrificing	  clarity.	  [Level	  3],	  [T],	  [V1],	  No	  need	  

FDUCS	  §7.3	  How	  Users	  Read;	  ADG	  

5) Only	  use	  text	  for	  menu	  items.	  Icons	  are	  confusing	  and	  unnecessary.	  [Level	  3],	  [T],	  [V1],	  Maybe	  

FDUCS	  §7.3	  How	  Users	  Read;	  Ghayas,	  S.,	  Sulaiman,	  S.,	  Khan,	  M.,	  &	  Jaafar,	  J.	  (2013).	  The	  effects	  of	  icon	  characteristics	  on	  users’	  
perception.	  In	  International	  Visual	  Informatics	  Conference	  (pp.	  652–663).	  

6) Ensure	  the	  menu	  titles	  and	  text	  make	  sense	  according	  to	  their	  function.	  [Level	  2],	  [T],	  [V2],	  No	  

ADG;	  NN/g	  

a) Use	  verbs	  and	  verb	  phrases	  for	  menu	  items	  that	  initiate	  actions.	  

b) Use	  adjectives	  and	  adjective	  phrases	  for	  menu	  items	  that	  toggle	  attribute	  states.	  	  

c) Avoid	  articles	  in	  menu	  item	  titles.	  	  

7) Use	  keyboard	  shortcuts	  for	  frequently	  used	  items	  in	  the	  menu	  bar.	  Make	  sure	  keyboard	  shortcuts	  
are	  shown	  next	  to	  the	  functions.	  [Level	  4.5],	  [T+],	  [V3],	  Yes	  
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8) Avoid	  using	  submenus	  when	  possible.	  [Level	  4],	  [T+],	  [V2],	  Maybe	  

FDUCS	  §7.3.4	  

a) If	  necessary	  to	  include	  a	  submenu,	  only	  have	  a	  single	  additional	  level	  to	  the	  menu.	  

b) Avoid	  having	  more	  than	  five	  items	  in	  a	  submenu.	  	  

c) Only	  consolidate	  related	  menu	  items	  into	  submenus.	  For	  example,	  Sort	  By	  Name,	  Sort	  By	  Date,	  
and	  Sort	  By	  Length	  could	  be	  merged	  into	  a	  single	  command	  Sort	  By	  with	  a	  submenu	  for	  Date,	  
Name,	  and	  Length.	  	  

9) Group	  items	  within	  a	  menu	  in	  a	  logical	  manner.	  [Level	  4],	  [T+],	  [V2],	  No	  

FDUCS	  §7.3.4;	  GOMS;	  St.	  Amant,	  R.,	  Horton,	  T.	  E.,	  &	  Ritter,	  F.	  E.	  (2004).	  Model-‐based	  evaluation	  of	  cell	  phone	  menu	  interaction.	  
Proceedings	  of	  the	  SIGCHI	  Conference	  on	  Human	  Factors	  in	  Computing	  Systems,	  6(1),	  343–350.	  
https://doi.org/10.1145/985692.985736	  

a) Group	  closely	  related	  items	  together	  (Find	  and	  Find	  Next)	  

b) Arrange	  sets	  of	  closely	  related	  items	  by	  frequency	  of	  use.	  Put	  frequently	  used	  items	  at	  the	  top	  of	  
the	  list.	  	  

c) Separate	  items	  that	  initiate	  actions	  from	  items	  that	  set	  attributes.	  	  

10) Avoid	  scrolling	  menus.	  [Level	  4],	  [T+],	  [V3],	  Yes	  

GOMS;	  LR	  §3.3	  Working	  Memory	  and	  Cognition;	  Scrolling	  requires	  the	  user	  to	  store	  more	  information	  in	  working	  memory	  rather	  than	  
“maintaining”	  that	  information	  on	  the	  screen.	  

11) If	  icons	  are	  necessary	  for	  your	  menus	  (like	  for	  a	  toggled	  setting),	  use	  a	  standard,	  limited	  set	  of	  clear	  
symbols	  like	  a	  checkmark.	  [Level	  2],	  [T],	  [V2],	  Maybe	  

ADG	  	  

Contextual menus 
A contextual menu, or shortcut menu, gives people access to frequently used commands related 

to the current context. Contextual menus are typically brought up by using a right-click on the 
item. Contextual menus often provide a limited set of useful actions that are frequently used in a 
particular situation. 
1) Follow	  the	  standards	  and	  best	  practices	  of	  typical	  menu	  design	  

2) Include	  only	  the	  most	  commonly	  used	  commands	  that	  are	  appropriate	  in	  the	  current	  context.	  	  

3) Always	  make	  contextual	  menu	  items	  available	  in	  the	  menu	  bar	  as	  well.	  	  

Buttons 

Checkbox [Level 3], [T], [V1], No 
A checkbox is a type of button that lets the user choose between two opposite states, actions, or 

values. A selected checkbox is considered on when it contains a checkmark and off when it's 
empty. A checkbox is almost always followed by a title unless it appears in a checklist. 

ADG;	  Tufte	  

1) Ensure	  the	  label	  or	  title	  implies	  two	  opposite	  states.	  If	  the	  titled/labeled	  checkbox	  is	  difficult	  to	  
make	  unambiguous,	  consider	  using	  two	  binary-‐titled	  radio	  buttons	  instead.	  	  
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2) Checkboxes	  should	  be	  within	  a	  view,	  not	  a	  window	  frame	  (i.e.,	  toolbars	  and	  status	  bars).	  	  

3) Consider	  using	  a	  label	  for	  describing	  a	  set	  of	  several	  checkboxes	  if	  their	  relationship	  isn’t	  evident.	  	  

4) Checkboxes	  should	  usually	  be	  arranged	  vertically.	  	  

5) Checkboxes	  can	  use	  a	  hierarchical	  arrangement	  with	  indentation	  to	  show	  relationships	  between	  
parent	  and	  child	  checkboxes.	  	  

6) Parent	  checkboxes	  should	  use	  a	  mixed	  state	  [	  -‐	  ]	  if	  the	  child	  checkboxes	  have	  mixed	  settings.	  	  

Gradient button 
A gradient button initiates an immediate action related to a view, like adding or removing table 

rows. Gradient buttons contain icons—not text—and can be configured to behave as push 
buttons, toggles, or pop-up buttons. They usually reside in close proximity to (either within or 
beneath) their associated view. 

ADG	  

1) Gradient	  buttons	  only	  below	  in	  views,	  not	  in	  window	  frames.	  	  

2) Use	  standard	  system-‐provided	  icons	  for	  gradient	  buttons	  to	  ensure	  users	  are	  familiar	  with	  the	  
symbols	  and	  meaning.	  	  

3) Gradient	  buttons	  should	  be	  clearly	  linked	  to	  a	  particular	  view	  and	  shouldn’t	  need	  a	  label.	  	  

Help button [Level 3], [T+], [V3], Yes 
A help button appears within a view and opens application-specific help documentation when 

clicked. All help buttons are circular, consistently sized buttons that contain a question mark 
icon. 
1) Use	  system-‐provided	  help	  buttons	  and	  ensure	  the	  help	  buttons	  have	  a	  consistent	  response.	  	  

2) Only	  include	  one	  help	  button	  per	  window.	  	  

3) Position	  help	  buttons	  as	  expected	  

a) Dialog	  with	  dismissal	  buttons	  (e.g.,	  OK	  and	  Cancel):	  lower-‐left	  corner	  aligned	  with	  dismissal	  
buttons.	  

b) Dialog	  without	  dismissal	  buttons:	  Lower-‐left	  or	  lower-‐right	  corner.	  	  

c) Preference	  window	  or	  pane:	  Lower-‐left	  or	  lower-‐right	  corner.Pop-‐up	  buttonA	  pop-‐up	  button	  
(often	  referred	  to	  as	  a	  pop-‐up	  menu)	  is	  a	  type	  of	  button	  that,	  when	  clicked,	  displays	  a	  menu	  
containing	  a	  list	  of	  mutually	  exclusive	  choices.	  A	  pop-‐up	  button	  includes	  a	  double-‐arrow	  
indicator	  that	  alludes	  to	  the	  direction	  in	  which	  the	  menu	  will	  appear.	  The	  menu	  appears	  on	  top	  
of	  the	  button.	  Like	  other	  types	  of	  menus,	  a	  pop-‐up	  button’s	  menu	  can	  include	  separators	  and	  
symbols	  like	  checkmarks.	  After	  the	  menu	  is	  revealed,	  it	  remains	  open	  until	  the	  user	  chooses	  a	  
menu	  item,	  clicks	  outside	  of	  the	  menu,	  switches	  to	  another	  app,	  or	  quits	  the	  app;	  or	  until	  the	  
system	  displays	  an	  alert.	  
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Push Buttons [Level 2.5], [T-], [V1], No 
A push button appears within a view and initiates an instantaneous app-specific action, such as 

printing a document or deleting a file. Push buttons contain text—not icons—and often open a 
separate window, dialog, or app so the user can complete a task. 

ADG;	  NN/g	  

1) Design	  the	  options	  to	  ensure	  a	  likely	  default	  button	  is	  clear.	  	  

2) Push	  buttons	  should	  only	  be	  in	  views,	  not	  window	  frames.	  	  

3) Only	  use	  text	  for	  push	  buttons,	  not	  icons.	  	  

4) Give	  push	  buttons	  clear	  labels	  with	  verbs	  to	  describe	  the	  effect	  of	  clicking	  the	  button.	  	  

5) Be	  specific	  when	  possible.	  “Select	  Text	  File”	  is	  much	  clearer	  than	  “Import.”	  	  

6) Include	  a	  trailing	  ellipsis	  in	  the	  title	  when	  a	  push	  button	  opens	  another	  window,	  dialog,	  or	  
application.	  	  

7) Push	  buttons	  should	  be	  similar	  in	  size	  (when	  appropriate)	  for	  aesthetics	  and	  clarity.	  	  

Radio button [Level 2.5], [T-], [V1], No 
A radio button is a small, circular button followed by a title. Typically presented in groups of 

two to five, radio buttons provide the user a set of related but mutually exclusive choices. A 
radio button’s state is either on (a filled circle) or off (an empty circle). A radio button can also 
permit a mixed state (a circle containing a dash) that’s partially on and partially off. However, 
it’s better to use checkboxes when your app requires a mixed state. 

ADG;	  NN/g;	  GOMS;	  General	  support	  from	  work	  on	  visual	  scanning	  

1) Ensure	  radio	  buttons	  have	  meaningful	  titles.	  	  

2) Use	  a	  standard	  button	  instead	  of	  a	  radio	  button	  if	  initiating	  an	  action.	  

3) Radio	  buttons	  should	  only	  be	  used	  in	  views,	  not	  window	  frames.	  	  

4) Labels	  can	  help	  clarify	  the	  connection	  between	  a	  set	  of	  radio	  buttons.	  	  

5) Avoid	  horizontally	  placed	  radio	  buttons,	  but	  if	  necessary	  then	  use	  consistent	  spacing.	  

6) If	  more	  than	  five	  choices	  are	  necessary,	  consider	  using	  a	  pop-‐up	  button	  instead.	  	  

7) In	  almost	  every	  case,	  select	  a	  radio	  button	  by	  default.	  Default	  buttons	  reduce	  confusion	  and	  can	  
allow	  engineers	  to	  imply	  the	  best	  course	  of	  action	  to	  the	  user.	  	  

Fields and Labels 

Combo box 
A combo box combines a text field with a pull-down button in a single control. The user can 

enter a custom value into the field or click the button to choose from a list of predefined values. 
When the user enters a custom value, it’s not added to the list of choices. 

ADG;	  NN/g;	  CWT;	  LR	  §2.2.2;	  Rieman,	  J.,	  Young,	  R.	  M.,	  &	  Howes,	  A.	  (1996).	  A	  dual-‐space	  model	  of	  iteratively	  deepening	  exploratory	  
learning.	  International	  Journal	  of	  Human	  Computer	  Studies,	  44(6),	  743–775.	  https://doi.org/10.1006/ijhc.1996.0032	  

1) Populate	  the	  field	  with	  a	  meaningful	  default	  value	  from	  the	  list.	  	  
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2) Use	  an	  introductory	  label	  to	  let	  the	  user	  know	  what	  types	  of	  items	  to	  expect.	  	  

3) Provide	  useful,	  relevant	  choices	  for	  the	  user	  to	  select.	  Ensure	  that	  the	  options	  are	  all	  standalone	  
selections	  because	  combo	  boxes	  shouldn’t	  allow	  multiple	  selection.	  	  

Labels [Level 3.5], [T], [V2], Yes 
A label is a static text field that describes an onscreen interface element or provides a short 

message. Although people can’t edit labels, they can sometimes copy label contents. 
1) Ensure	  labels	  are	  legible,	  clear,	  and	  consistent	  [Level	  3],	  [T],	  [V2],	  Maybe/No	  

a) Typically	  labels	  for	  controls	  should	  end	  with	  a	  colon.	  An	  exception	  to	  this	  rule	  is	  when	  the	  label	  
and	  control	  form	  a	  complete	  sentence.	  	  

b) Use	  system-‐provided,	  standardized	  label	  colors	  to	  communicate	  relative	  importance.	  	  	  

2) Make	  sure	  label	  text	  is	  selectable	  where	  possible,	  and	  make	  logs	  copiable	  so	  users	  can	  copy	  useful	  
text	  onto	  other	  locations.	  [Level	  3.5],	  [T+],	  [V2],	  Yes/Maybe	  

ADG;	  GOMS;	  CWT;	  LR	  §3.3	  Working	  Memory	  and	  Cognition	  

3) Labels	  and	  other	  text	  must	  use	  a	  consistent	  vocabulary,	  syntax,	  and	  grammar.	  Even	  minor	  changes	  
can	  have	  a	  negative	  impact	  on	  the	  mental	  model	  and	  understanding	  of	  the	  user.	  [Level	  4],	  [T+],	  
[V3],	  Yes	  

Mendel,	  J.,	  &	  Pak,	  R.	  (2009).	  The	  Effect	  of	  Interface	  Consistency	  and	  Cognitive	  Load	  on	  User	  Performance	  in	  an	  Information	  Search	  
Task.	  Proceedings	  of	  the	  Human	  Factors	  and	  Ergonomics	  Society	  Annual	  Meeting,	  53(22),	  1684–1688.	  
https://doi.org/10.1177/154193120905302206	  

4) If	  users	  will	  be	  exposed	  to	  many	  labels	  at	  once,	  use	  colors	  and	  icons	  to	  help	  differentiate	  items	  for	  
faster,	  more	  accurate	  search.	  [Level	  4.5],	  [T],	  [V3],	  No	  need/Maybe	  

NN/g;	  https://www.nngroup.com/articles/visual-‐indicators-‐differentiators/	  

Search field [Level 3], [T+], [V3], Yes 
A search field is a style of text field optimized for performing text-based searches in a large 

collection of values. Many windows include a search field in the toolbar, but a search field can 
also be displayed in the body area of a window. A search field typically displays a magnifying 
glass icon and can also include placeholder text and a cancellation button. 

ADG;	  NN/G;	  CWT;	  Others	  

1) Ensure	  search	  fields	  have	  a	  distinct	  look	  that	  users	  can	  instantly	  recognize	  and	  distinguish	  from	  
other	  similar	  features	  like	  text	  fields.	  [Level	  3],	  [T],	  [V1],	  Maybe	  

ADG;	  Consistency	  and	  Cognitive	  Load	  on	  User	  Performance	  in	  an	  Information	  Search	  Task.	  Proceedings	  of	  the	  Human	  Factors	  and	  
Ergonomics	  Society	  Annual	  Meeting,	  53(22),	  1684–1688.	  https://doi.org/10.1177/154193120905302206	  

a) Placeholder	  text	  can	  remind	  users	  of	  the	  types	  of	  information	  are	  searchable.	  

2) Determine	  an	  appropriate	  time	  to	  begin	  searching.	  Consider	  whether	  to	  show	  search	  results	  
dynamically	  or	  only	  after	  the	  user	  initiates	  the	  search.	  [Level	  3],	  [T+],	  [V2],	  Yes/Maybe	  

ADG;	  NN/g;	  See:	  https://www.nngroup.com/articles/suggested-‐employee-‐search/	  

3) Scope	  bars,	  a	  type	  of	  toolbar	  for	  filtering	  searches,	  will	  help	  users	  trim	  down	  unnecessary	  
information	  during	  searches	  that	  may	  bring	  up	  large	  amounts	  of	  data.	  [Level	  2.5],	  [T],	  [V2],	  Maybe	  

ADG;	  NN/g;	  CWT	  
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a) Plan	  scope	  bar	  functions	  around	  the	  tasks.	  Searching	  documentation	  for	  a	  page	  might	  not	  need	  
detailed	  search	  filters,	  however	  searching	  an	  event	  log	  with	  1000s	  of	  entries	  may	  require	  users	  
to	  input	  multiple	  filters.	  

b) Some	  general	  useful	  filters	  for	  event	  logs	  include	  date	  range,	  module	  origin,	  text,	  and	  severity.	  	  

c) More	  advanced	  or	  specialized	  filters	  could	  include	  number	  of	  results	  shown,	  reverse	  filters,	  and	  
options	  for	  pre-‐set	  filter	  categories	  (e.g.,	  alarms	  from	  past	  24	  hours	  from	  only	  core	  modules).	  

d) Include	  a	  “not”	  function	  for	  searches	  to	  support	  more	  detailed	  searching	  behavior.	  

4) Searches	  with	  no	  results	  found	  should	  be	  clearly	  communicated	  to	  the	  operator.	  [Level	  3],	  [T+],	  
[V1],	  No	  

ADG;	  LR:	  §2.2.1	  Stage	  1	  –	  Perception	  

5) Filtering	  for	  date	  ranges	  should	  have	  multiple	  input	  methods	  like	  text-‐view	  and	  calendar-‐view.	  
[Level	  2],	  [T+],	  [V2],	  Maybe	  

ADG;	  NN/g	  

6) Ensure	  that	  date	  formats	  are	  clear	  	  

Text/Character field [Level 3], [T], [V2], Yes 
A text field is a rectangular area in which the user enters or edits one or more lines of text. A 

text field can contain plain or styled text. Text fields are the base category for search fields, 
labels, and other related features.  

ADG;	  NN/g	  

1) When	  providing	  a	  user-‐provided	  data	  entry	  field,	  use	  a	  clear	  label	  with	  useful	  hints	  close	  by	  to	  
communicate	  the	  purpose	  of	  the	  text	  field.	  [Level	  2],	  [T],	  [V1],	  No	  

LR	  §3.3	  Working	  Memory	  and	  Cognition;	  Disappearing	  placeholder	  text	  can	  strain	  working	  memory,	  particularly	  when	  distracted.	  

2) Perform	  field	  validation	  after	  the	  user	  finishes	  typing	  into	  the	  field.	  Don’t	  wait	  until	  the	  user	  tries	  to	  
submit	  the	  data.	  [Level	  3],	  [T],	  [V2],	  Yes	  

ADG;	  NN/g;	  Others;	  The	  value	  of	  this	  is	  dependent	  on	  what	  is	  being	  typed.	  For	  numerical	  entry,	  this	  is	  more	  important.	  

3) Number	  formatters	  help	  users	  provide	  accurate	  numerical	  data	  by	  making	  the	  text	  easier	  to	  read	  
and	  comprehend.	  See	  Data	  Entry	  above.	  

4) Ensure	  that	  text	  fields	  allow	  users	  to	  easily	  view	  the	  full	  content	  in	  the	  field.	  Consider	  enabling	  
resizing	  of	  text	  fields	  or	  providing	  another	  method	  to	  view	  the	  full	  text.	  [Level	  4],	  [T],	  [V1],	  Maybe	  

LR	  §3.3	  Working	  Memory	  and	  Cognition;	  Being	  unable	  to	  view	  the	  full	  text	  field	  forces	  operators	  to	  store	  information	  within	  working	  
memory	  rather	  than	  simply	  view	  it	  if	  they	  want	  the	  full	  picture.	  

5) When	  possible,	  match	  the	  size	  of	  the	  text	  field	  to	  the	  expected	  size	  of	  the	  input.	  A	  text	  field	  for	  a	  
five-‐digit	  zip	  code	  can	  be	  static	  and	  just	  slightly	  wider	  than	  the	  text.	  A	  text	  field	  for	  paragraph-‐length	  
entries	  should	  show	  (at	  the	  very	  least)	  multiple	  lines	  and	  potentially	  include	  a	  method	  for	  resizing	  
the	  text	  field.	  [Level	  3],	  [T],	  [V1],	  No	  

6) A	  page	  with	  multiple	  text	  fields	  should	  ensure	  the	  layout	  is	  clean	  and	  clear.	  [Level	  4],	  [T],	  [V1],	  
Maybe	  
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Mendel,	  J.,	  &	  Pak,	  R.	  (2009).	  The	  Effect	  of	  Interface	  Consistency	  and	  Cognitive	  Load	  on	  User	  Performance	  in	  an	  Information	  Search	  
Task.	  Proceedings	  of	  the	  Human	  Factors	  and	  Ergonomics	  Society	  Annual	  Meeting,	  53(22),	  1684–1688.	  
https://doi.org/10.1177/154193120905302206	  

a) Evenly	  space	  multiple	  text	  fields.	  

b) Prefer	  a	  vertical	  layout	  over	  horizontal.	  	  

c) Prefer	  consistent	  text	  field	  widths	  when	  appropriate.	  This	  can	  be	  used	  to	  signal	  relationships	  
between	  text	  fields.	  For	  example,	  “first	  name”	  and	  “last	  name”	  can	  be	  one	  width	  while	  the	  
“address”	  and	  “city”	  fields	  can	  be	  another	  width.	  	  	  

7) Ensure	  that	  “tabbing”	  between	  fields	  follows	  a	  logical,	  intuitive	  path.	  [Level	  3],	  [T],	  [V1],	  Maybe	  

FOK;	  Mendel,	  J.,	  &	  Pak,	  R.	  (2009).	  The	  Effect	  of	  Interface	  Consistency	  and	  Cognitive	  Load	  on	  User	  Performance	  in	  an	  Information	  
Search	  Task.	  Proceedings	  of	  the	  Human	  Factors	  and	  Ergonomics	  Society	  Annual	  Meeting,	  53(22),	  1684–1688.	  
https://doi.org/10.1177/154193120905302206	  

8) Provide	  access	  to	  an	  “other”	  option	  when	  the	  task	  is	  complicated.	  This	  provides	  users	  a	  method	  for	  
completing	  the	  task	  when	  the	  options	  don’t	  align	  exactly.	  [Level	  2],	  [T],	  [V1],	  Maybe	  

ADG;	  Consistency	  and	  Cognitive	  Load	  on	  User	  Performance	  in	  an	  Information	  Search	  Task.	  Proceedings	  of	  the	  Human	  Factors	  and	  
Ergonomics	  Society	  Annual	  Meeting,	  53(22),	  1684–1688.	  https://doi.org/10.1177/154193120905302206	  

Date/Time picker  [Level 3], [T], [V3], Yes  
A date picker lets the user choose a date, a time, a date and time, or a range of dates. Date and 

time can be presented in a textual format using text fields, as a graphical format using a calendar 
view and/or clock view, or as a display showing both at once.  

KLM;	  CWT	  

1) Ensure	  that	  the	  formatting	  of	  time	  and	  date	  displays	  matches	  the	  needs	  of	  the	  user	  and	  system.	  	  

2) The	  date	  and	  time	  format	  should	  be	  consistent	  across	  the	  system	  (or	  all	  systems).	  

3) Ensure	  the	  detail	  shown	  by	  the	  display	  matches	  the	  needs	  of	  the	  task.	  Scheduling	  an	  in-‐person	  
meeting	  requires	  less	  precision	  than	  scheduling	  access	  to	  a	  super	  computer.	  	  

4) Present	  dates	  and	  times	  in	  a	  familiar	  format	  for	  the	  user.	  Ensure	  that	  cultural	  and	  international	  
differences	  are	  considered	  during	  the	  design.	  	  

Segmented control 
A segmented control is a horizontal set of two or more segments, each of which functions as a 

button—usually configured as a toggle. Segmented controls provide closely related choices that 
affect an object, state, or view. Like buttons, segments can contain text or icons. A segmented 
control can enable single choice or multiple choices.  

ADG;	  LR	  §2.2.2	  Stage	  2	  –	  Comprehension	  

1) In	  general,	  try	  to	  keep	  segment	  size	  consistent.	  	  

2) Consider	  using	  labels	  to	  add	  clarity.	  Labels	  can	  introduce	  a	  segmented	  control,	  clarify	  its	  purpose,	  
and	  help	  ensure	  that	  icons	  are	  understood	  by	  the	  user.	  	  

3) Segmented	  controls	  should	  follow	  the	  toolbar	  design	  guidelines	  when	  possible.	  	  
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4) Segmented	  controls	  should	  not	  be	  used	  as	  a	  replacement	  for	  tab	  view	  controls	  within	  a	  primary	  
window.	  Segmented	  controls	  can	  be	  used	  for	  view	  switching	  within	  a	  toolbar	  or	  inspector	  pane,	  
however.	  	  

5) Segmented	  controls	  should	  not	  be	  used	  for	  Add	  or	  Remove	  actions.	  Instead,	  use	  gradient	  buttons.	  	  

6) Segmented	  control	  labels	  should	  use	  nouns	  or	  noun	  phrases.	  	  

7) Segmented	  controls	  that	  use	  text	  within	  the	  control	  don’t	  need	  an	  additional	  label,	  however	  icons	  
should	  be	  accompanied	  by	  labels.	  

8) Avoid	  including	  text	  and	  icons	  within	  a	  single	  segmented	  control.	  	  	  

Level Indicators [Level 3.5], [T+], [V3], Yes 
A level indicator graphically represents of a specific value within a range of numeric values. 

It’s similar to a slider in purpose, but more visual and doesn’t contain a distinct control for 
selecting a value—clicking and dragging across the level indicator itself to select a value is 
supported, however. A level indicator can also include tick marks, making it easy for the user to 
pinpoint a specific value in the range. A capacity indicator illustrates the current level in relation 
to a finite capacity. Capacity indicators are often used when communicating factors like disk and 
battery usage.  
1) The	  fill	  color	  for	  capacity	  indicators	  should	  be	  used	  to	  alert	  users	  about	  significant	  values	  like	  low	  

battery	  or	  low	  disk	  space.	  	  

2) Large	  ranges	  of	  data	  should	  use	  continuous	  indicators	  and	  tick	  marks	  to	  provide	  additional	  
information	  about	  the	  data	  value.	  	  

3) Use	  the	  quantity	  and	  width	  of	  discrete	  indicators	  to	  convey	  additional	  context	  information	  to	  the	  
user.	  Don’t	  use	  tick	  marks	  on	  discrete	  indicators	  since	  they	  already	  include	  that	  information	  in	  their	  
display.	  	  

4) Be	  sure	  to	  label	  at	  least	  the	  first	  and	  last	  tick	  marks	  if	  they	  are	  used	  on	  a	  continuous	  indicator.	  	  

Progress Indicators [Level 4], [T], [V2], No 
Don’t make people sit around staring at a static screen waiting for your app to load content or 

perform lengthy data processing operations. Use progress indicators to let people know your app 
hasn't stalled and to give them some idea of how long they’ll be waiting.  

There are two general kinds of progress indicators: bar indicators and spinning indicators. Bar 
indicators (or progress bars) use a horizontal bar that fills from left to right to show the progress 
of some action. Spinning indicators use a circular form to show progress through filling the circle 
as progress continues.  

ADG;	  Ghafurian,	  M.	  (2017).	  Impatience	  in	  dynamic	  decision-‐making:	  Its	  moderation,	  and	  implications	  for	  user	  interface	  design.	  The	  
Pennsylvania	  State	  University.	  	  

1) Progress	  indicators	  should	  only	  be	  shown	  within	  a	  view,	  not	  in	  window	  frame	  areas	  like	  toolbars	  and	  
status	  bars.	  

2) Progress	  indicators	  should	  be	  in	  consistent	  locations	  across	  the	  system.	  	  

3) If	  possible	  and	  useful,	  allow	  users	  to	  halt	  processing	  for	  an	  action	  without	  causing	  negative	  side	  
effects.	  	  
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4) Only	  use	  determinate	  progress	  indicators	  for	  tasks	  with	  well-‐defined	  durations.	  Be	  sure	  to	  
differentiate	  between	  processes	  that	  have	  a	  determinate	  length	  and	  processes	  that	  have	  an	  
indeterminate	  length.	  	  

5) Always	  report	  progress	  accurately.	  Users	  will	  be	  frustrated	  by	  a	  progress	  bar	  that	  does	  not	  represent	  
the	  progress	  in	  a	  useful,	  accurate	  manner.	  For	  example,	  avoid	  making	  a	  progress	  bar	  that	  jumps	  to	  
90%	  completion	  within	  the	  first	  10	  seconds,	  but	  takes	  five	  minutes	  to	  complete	  the	  final	  10%	  of	  the	  
task.	  	  

6) Hide	  determine	  progress	  indicators	  once	  they	  are	  completely	  filled,	  however	  make	  sure	  the	  user	  
realizes	  that	  the	  task	  is	  complete.	  If	  it	  disappears	  too	  quickly,	  they	  may	  wonder	  if	  that	  task	  was	  
actually	  complete.	  	  

7) Labels	  for	  progress	  bars	  can	  provide	  useful	  context	  about	  the	  current	  state	  of	  the	  system.	  Use	  a	  
trailing	  ellipsis	  on	  labels	  to	  indicate	  that	  the	  task	  is	  an	  ongoing	  process.	  	  

8) Spinning	  progress	  indicators	  should	  be	  used	  to	  communicate	  the	  status	  of	  a	  background	  operation	  
or	  to	  save	  space	  on	  the	  screen.	  	  

9) In	  general,	  determinate	  progress	  indicators	  are	  preferred	  over	  indeterminate	  indicators.	  	  

10) Don’t	  switch	  between	  spinning	  indicators	  and	  progress	  bars	  for	  the	  same	  task.	  	  

11) Try	  to	  keep	  indeterminate	  progress	  bars	  in	  motion	  to	  ensure	  that	  the	  user	  knows	  that	  something	  is	  
happening.	  This	  prevents	  users	  determine	  whether	  the	  task	  is	  progressing	  or	  if	  the	  system	  has	  
stalled.	  	  

12) Spinning	  progress	  indicators	  typically	  won’t	  need	  labels.	  	  

For designers 

Guidelines will not cover all decisions 
Guidelines cannot cover all instances.  There may be edge cases or places where unexpectedly 

questions arise about design.  For example, another item to add, another task to add, a different 
type of screen or user.  The implementer will often be asked to make short-term, rapid design 
decisions without the necessary time or resources to fully analyze the situation. For example, a 
customer may determine that the power module requires a view showing power over time in 
addition to the current power level. Should the power-over-time view be shown in addition to the 
current power level or merged into a single view? Should the power-over-time view change the 
line’s color to show low power alerts or use a horizontal threshold line instead? Providing 
implementers, designers, and engineers with additional training will allow them to make good 
design decisions throughout the design process.  

Even design guidance and even designs will not always provide enough information to 
implement a system. Better systems are built when the implementer is at least sympathetic to and 
perhaps even has studied a bit about the domain they are implementing.  In the same way that 
architects that understand how buildings are built provide better and easier to build building, and 
architectural engineers build betters buildings if they have studied architecture, engineers that 
understand their users will build better interfaces. 
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Study the user [Level 4, FDUCS, PM] 
Thus, interface implementers should study the user slightly to be prepared for when explicitly 

or implicitly, decisions have to be made while implementing the interface.  This might be 10-25 
hours a year.   

Study design [Level 4, FDUCS, PM] 
Interface design and implementation is a process and procedural skill like any engineering 

discipline, similar to writing code or writing English or even medical practice.  Professionals in 
this area should get continuing education in the process of design. This might be 10-25 hours a 
year.  


