
 1

COLLEGE OF INFORMATION SCIENCES AND TECHNOLOGY
THE PENNSYLVANIA STATE UNIVERSITY

UX Design Guidance for Operation Center Design
Literature Review for Critical HMI in Op Centers project with Harris Corp.

Jacob D. Oury Frank E. Ritter

Oury.Jacob@psu.edu frank.ritter@psu.edu

Technical Report No. ACS 2018-1
Revised 10 October 2019

Applied Cognitive Science Lab
365 IST Building

College of Information Sciences & Technology
University Park, PA 16802

acs.ist.psu.edu

Phone +1 (814) 865-4455 Unsecure Fax +1 (814) 865-6426

 2

UX Design Guidance for Operation Center Design
Jacob D. Oury (Oury.Jacob@psu.edu) Frank E. Ritter (frank.ritter@psu.edu)

College of Information Sciences and Technology

Penn State, University Park, PA 16802

Last Updated: 4Oct19

Abstract / Executive Summary
Operation centers rely on an interconnected process involving complex technological systems and human
operators. Designers should account for issues at possible points of failure, including the human operators
themselves. Compared to other system components, human operators can be error-prone and require
different knowledge to design for. They also typically exhibit a wider range of performance than other
system components. This document provides a design approach, methods, and design principles to use
when designing to improving human performance within a complex system that is an operation center,
and thus to improve the performance of the system itself. The principles are supplemented by text
offering a primer on relevant literature on human cognition relevant to operation centers and example
design documents. This report is designed to be useful to operation center designers and implementers.

Acknowledgements
This report is produced under a contract to L3Harris Corporation. Mark Foster was the primary designer
of the Water Detection System used as an example in this report. We thank Mark Foster, Melissa
Rhonemus, Jim Ringrose, Alison Sukolsky, and Tom Wells for useful discussions during the
development of this report. We thank Raphael Rodriguez, Pooyan Doozandeh, Chad Chae, and Cesar
Colchado for comments on the report. The opinions are those of the authors and do not necessarily
represent those of L3Harris.

op centers HCI reviewV15.doc

 3

Table of Contents
1. Introduction .. 5

1.1 The role of operators ... 5
1.2 How to improve designs.. 6
1.3 Risk-Driven Design... 7
1.4 The design problem space for op centers ... 8

1.4.1 Know your technology ...9
1.4.2 Know your users and their tasks ...9
1.4.3 Test designs broadly and with cognitive walkthroughs ... 10

1.5 Example task: The Mars Water Detection System ... 11
1.5.1 Operation center organization... 11
1.5.2 Water Detection System structure... 12
1.5.3 Example issues... 13

1.6 Principles for design.. 14
1.7 Summary... 15

2. User-Centered Design and Situation Awareness.. 17
2.1 User-Centered Design ... 17
2.2 Situational awareness: A key to UCD.. 20

2.2.1 Stage 1 – Perception... 21
2.2.2 Stage 2 – Comprehension ... 23
2.2.3 Stage 3 – Projection.. 24

2.3 Summary: Cognitive mechanisms for situation awareness ... 25
3. Cognition and Operator Performance .. 27

3.1 Perception... 27
3.1.1 Visual processing ... 27
3.1.2 Color blindness .. 28
3.1.3 Visual search.. 28
3.1.4 Pre-attentive visual processing.. 29
3.1.5 Summary of visual perception and principles.. 31

3.2 Attention... 35
3.2.1 Attentional vigilance .. 36
3.2.2 Resuming attention: Interruptions and task-switching... 36
3.2.3 Signal thresholds and habituation ... 38
3.2.4 Speed-accuracy tradeoff (How to design for acceptable errors)................................. 38
3.2.5 Summary of attention ... 39

3.3 Working memory and cognition.. 41
3.3.1 Working memory ... 41
3.3.2 Cognitive load.. 43
3.3.3 Summary of working memory and cognition .. 44

3.4 Summary... 44
4. Conclusion.. 46

4.1 The need for user-centered design ... 46
4.2 The need for better shared representations... 47
4.3 Open problems.. 47

References .. 50

 4

Appendices ... 53
Appendix 1: Detailed Problem Space: A Water Detection System (WDS)............................. 53

A1.1 Overview... 53
A1.2 System architecture ... 53
A1.3 Key features of the WDS... 55
A1.4 Day in the life.. 56
A1.5 Example issues .. 58
A1.6 Stakeholder analysis .. 58
A1.7 Task analysis for 24/7 operators... 62

Appendix 2: Ways to learn More... 66
A2.1 Readings to learn more ... 66
A2.2 Reading groups... 66
A2.3 Continuing education.. 66
A2.4 Readings referenced in Appendix 2 .. 66

Appendix 3: Design Guidelines for asynchronous autonomous systems 68
Introduction/Design Themes [Level 5], [T-], [V3], No ... 69
General user interaction guidelines.. 70
Visual feature index .. 76
For designers... 90

 5

1. Introduction
Operations (Op) centers are a vital communication hub for the transfer of information to and

from the frontlines of any situation. Within any given op center, there are going to be different
priorities, tasks, and stakeholders that must be considered in their design. This book primarily
examines operation centers that manage autonomous, asynchronous systems.

This report is designed to be useful to op center designers and implementers. Managers can
use it to adjust the process to take account of a wider range of risks due to not supporting users
and their tasks. Designers can use it to manage the process and be aware of useful types of
shared representations. Implementers can use it to provide context for small decisions within an
interface that are too small be described formally or have not been specified. Where we can, we
also identify design principles. Design principles are aspects of the operator or interface or
process that suggest prescriptive actions to create better interfaces.

This introduction will first make the case for including users as part of the system and then part
of the design process. It will then briefly describe a way to include them (the Risk-Driven Spiral
Model) and how it could be applied to operation centers. The rest of the document will use an
example system called the Water Detection System (WDS) to help illustrate the principles,
concepts, and practical implications derived from the material covered. The introduction
concludes with some example guidance that can be noted as an executive summary or a
summary for readers who might not have time to read the whole book. The remainder of the
book provides support for the guidelines. The appendices include a worked example.

1.1 The role of operators
Operators can greatly influence operation center success. In a study of errors in Air Traffic

Control, a type of control room, Jones and Endsley (1996) found that seven out of ten times
system failure is due to operator error. The error analysis for aviation disasters organized the
contributing errors into the Endsley’s (1995) theory of situation awareness. When the errors were
organized into their stage of situational awareness, they found that misperception or non-
perception of the necessary information was the primary cause about 75% of the time. Going up
in complexity, failures to successfully comprehend meaning or importance of information was
the primary cause in only about 20% of air disasters. Finally, at the lowest error rate, projection
of system state in the near-future is key in less than 5% of disasters. Breaking down these
failures into more specific categories of failure cases shows that attentional failure (35%;
operator has information but fails to attend to it), working memory failure (8.4%; operator
attends to information but forgets it), and mental model failure (18%; operator’s understanding
of the situation does not match reality) account for the most common causes of operator error in
op centers.

Operators of complex systems use a set of cognitive mechanisms that are fallible in predictable
ways. System engineers, developers, and designers can begin mitigating the risks associated with
fallible cognitive behavior by learning about the many factors and mechanisms that influence
operator performance and reliability. Not all these mechanisms can be ameliorated by system
design, but they do suggest areas where systems could support operators. This report will
suggest ways to do that.

Modifying op center designs could help reduce these types of system failures by providing the
information more clearly, more comprehensibly, requiring less attention (perhaps by reducing
other less useful information), and appropriately matching and supporting the operator’s mental

 6

model and tasks. How can these issues be addressed throughout the development cycle of
complex systems? We propose a design process based on understanding the operator, their tasks,
and the technology.

1.2 How to improve designs
The variety and complexity of work being performed in op centers prevents strict design

guidelines from being a “silver bullet” for every system design issue. The different goals,
priorities, and tasks across op centers will likely add up being nearly equal to the number of op
centers itself. However, the common element across op centers is the role of human operators.
Operators serve as the interface between the wide range of information sources and the higher
command structure. This can involve a vast variety of tasks ranging from call intake and
prioritization within an emergency response center to monitoring a radar for airborne threats.
Furthermore, the task variety is compounded by having a single operator be responsible for
multiple tasks. For example: an operator at a 911 dispatch center will often be simultaneously
responsible for (a) providing emotional support and guidance to the caller, (b) recording crucial
information about the situation, (c) alerting appropriate emergency responders, and (d)
answering questions for emergency responders while en route.

Simply providing a set of design guidelines will not suffice because one size does not fit all.
Due to the varied nature of tasks and systems across operation centers, we will need to provide a
suitable foundation for designers to guide their decision making when there is no clear solution.
Thus, this report summarizes a best practice process and design issues to keep in mind when
designing operations centers. This report goes further, however, by providing a worked example
of design and design steps for an example system.

This report spends more time defining a useful interface design process than giving simple
guidelines for design. This user-and-task-oriented process should lead to better interfaces that
support operators and do this in a better way than simply providing and following a set of 10
‘rules’ about font size, which might need to vary, and which will conflict at times with rules
about how many objects to put on a screen. And, yet, in providing background knowledge about
operators and their tasks, there will inevitably be nuggets of results that look like and work like
guidelines.

The complexity and variety of tasks within an op center means that the system designers will
need to know their users, their users’ tasks, and the technology and then combine these using
their own judgment within the design process. They will have to use judgment when aspects of
the users and their tasks are not fully known. They will also have to use judgement to prioritize
tasks or user types and to balance different design requirements.

The design recommendations offered by this report will often provide “safe” recommendations
for designers. Design recommendations will be accompanied by brief supporting details meant to
substantiate the information. This self-contained document will provide system designers with a
framework for improving user experience and performance by incorporating human-centered
design principles into the design and implementation of critical systems.

System designers will benefit greatly from understanding the foundational concepts and
literature that support this guidance. This report provides a simple review of the literature to
support this guidance. This review serves several purposes: (a) offering motivation for including
the topics chosen, (b) describing the related research that has contributed to the high-level
guidance, and (c) providing readers with a convenient method to learn more about a topic if
needed. While not every system developer will choose to read this document, it provides

 7

interested readers with a more condensed treatment than available from reading several books on
user-centered design and users. The final review and guidance document will be detailed enough
to provide further guidance in a standalone format.

1.3 Risk-Driven Design
The design and performance of an operation center will depend on financial considerations,

task constraints, and the goals of the designers. However, clearly there are limitations to what is
possible for any given design process (e.g., deadlines, access to user testing, ambiguous
information). In an ideal world, every project would have ample time, personnel, and funding to
be able to create the best product possible: clearly this is an unrealistic scenario. Thus, designers
and other stakeholders must make decisions about how to ensure project success throughout the
design process.

We propose that the Risk-Driven Incremental Commitment Model (RD-ICM) provides the best
framework for creating systems including assessing the risks associated with design choices
(Pew & Mavor, 2007). Implementation of RD-ICM involves assessing the risk associated with a
given decision. Boehm and Hansen (2001) define risks within the RD-ICM as “situations or
possible events that can cause a project to fail.” RD-ICM uses an iterative, flexible procedure to
prompt the stakeholders to make candid assessments of what the risks are at each stage of the
project. Implementing RD-ICM effectively may lead to decisions contrary to the dogmatic idea
that user experience should be a priority at every stage. The RD-ICM in spiral form is shown in
Figure 1.

Figure 1. The RD-ICM model as a spiral of development.

Reprinted from Pew and Mavor (2007).

 8

The RD-ICM and risk-driven design require four key features:
1. Systems should be developed through a process that considers and satisfices the needs of

stakeholders, that is, provides a good and achievable but not necessarily best solution.

2. Development is incremental and performed iteratively. The five stages (exploration, valuation,
architecting, development, and operation) are performed for each project’s lifecycle.

3. Development occurs concurrently across various project steps through simultaneous progress on
individual aspects of the project, however effort towards each aspect varies over time.

4. The process explicitly takes account of risks during system development and deployment to
determine prioritization for resource deployment: Minimal effort for minimal risk decisions; high
effort for high risk decisions.

In addition, each stage has phases of (a) stakeholder evaluation and valuation, (b) determining
objectives and alternatives, and constraints, (c) evaluate those alternatives and identify and
resolve risks, and (d) develop and verify next level product. This approach allows work on risks
to proceed in parallel and comes back to value the alternatives with the stakeholders.

Here is an example of how the RD-ICM could shape design choices. During the early design
process of a complex system, the risks of not getting the system up and running (e.g., perceived
project failure by management, or technical connection issues) may outweigh the risks associated
with having a non-ideal interface design (e.g., frustrated users). Instead, the UX design choices
could be pushed down the pipeline and then reassessed at a later stage. This would enable the
engineering team to focus on creating something that “works.” However, once a functional
system is formed, the team would reassess the risks. If the interface fails to convey critical
information in a consistent manner to most users, now the risks of a user misinterpreting a signal
may outweigh the benefits of adding further features to the system. Each stage has its own
iterative assessments of how to successfully complete the project. Further information on this
approach is available from the National Research Council Report (Pew & Mavor, 2007), a
special issue of the Journal of Cognitive Engineering and Decision Making (Pew, 2008), and an
overview in the FDUCS textbook (Ritter, Baxter, & Churchill, 2014).

So, if you accept a risk-driven process that includes human operator related risks, you still must
be able to recognize and reduce these risks. This report seeks to provide background knowledge
to help developers judge and ameliorate the risks to system success that developers face during
the design and implementation process of control rooms. We hope to provide knowledge and
guidance that can help designers understand how their design choices may affect task
performance throughout the lifetime of the system.

Thus, we suggest following a risk-driven spiral model. This includes formal reviews with
stakeholders at each cycle to assess risks, and work focused to reduce risks, not just build a
system. This approach uses a range of design documents as shared representations between the
stakeholders and the designers and implementers. We include an example set in Appendix 1.

1.4 The design problem space for op centers
This document reviews how risks for failures due to human performance can be alleviated

throughout the design process of interfaces within operations centers. Thus, designing an
interface for an op center is the design problem. We briefly review this design space and provide
an overview of an example before addressing further risks and issues that are common based on
users.

 9

Op centers act as the nervous system within a larger body directed to monitor or respond to a
set of events. The op center aggregates information input and output to facilitate a rapid response
to changing conditions. The specific procedures used are typically guided by senior staff while
operators themselves will be responsible for interpreting information, transmitting orders, and
following preset procedures for specific situations.

There are three components to this design problem: the technology to support and implement
the system, the users, and the users’ tasks. The first item is briefly noted as an important
component that will support and constrain designs. The final two are the focus of this report so
we address them together.

1.4.1 Know your technology
The most important aspect, as noted elsewhere, is perhaps that the system itself works. That

technology allows the information associated with the op center to be obtained and presented to
an operator. Most designers of technology will be familiar with these aspects. So, the first issue
in design is to know what the technology can and cannot do. This technology includes sensor and
communication systems. This technology also needs to include interface design and display
systems. These systems (technology and interface) are likely to be different from other
technology systems and may require different designers and implementers. In addition, the
interface tools need to be able to support the designers to create usable interfaces, which not all
tools support well (Pew & Mavor, 2007; Ritter et al., 2014).

Knowing these two technologies will help with the inevitable choices about fitting the man to
the machine vs. fitting the machine to the man. Sometimes, it will not be possible to produce fits
in one of the two directions. Knowing the technology will help reduce problems in both
directions.

1.4.2 Know your users and their tasks
The focus of this report is to explain how to know the users of the op centers, the operators, and

how to know their tasks. Human operators and their tasks will in many cases be as complex as
the technology. The only difference is that many technology designers have been trained in
technology, but not trained in the science of how operators think, learn, and do their tasks. This
report notes some of the literature, results, methods for understanding operators to help in design.
Similarly, it will describe task analysis, which is a useful tool for specifying, implementing, and
checking op center designs.

The technology may be able to deliver, but will the operator be able to understand and use the
system at speed? Will the tasks, including their microstructure and dependencies be supported?
Or, will the operator have to correct and store information (in a more fragile memory than
computer memory)? These types of mismatches between operator and system are a cause of
system failure.

The gold standard in design (Card, Moran, & Newell, 1983; Pew & Mavor, 2007; Ritter et al.,
2014) is to know the operators, know what tasks they are trying to perform, and then use the
technology as best it can be used, to support the tasks based on the operator’s capabilities.
Designers that use themselves or their use of their own systems as a reference instead of the
actual users commit a fundamental error, that leads to operators not knowing how to use a
system. This can be called the fundamental attribution error of design (Baxter, Churchill, &
Ritter, 2014), which is where the designer assumes the user is like themselves. As we note in our

 10

example case in this report, this would often be a mistake and lead to problems in usability
because the designer and the operator have different knowledge, skills, and abilities.

In addition, leaving out tasks or making them less easy to perform, making state information
visible only upon query, are all mistakes that are easily avoided, but require knowing the
operator and their tasks.

Knowing the frequency and importance of tasks is also important, so that common and
important tasks should be more easily and safely accomplished than less common and less
important tasks. When these two factors collide, frequency and importance, then that is where
design choices are available, and sometimes it is appropriate to ask the stakeholders to answer
these more nuanced questions.

There are numerous guidelines on how to create task analyses (e.g., Ritter et al, Ch. 11, 2014).
There are tools to support TA (i.e., Cogulator1), but often plain text documents provide the best
value and are useful enough for most designs. TA is a lot like pizza–while the balance of
contents may vary in approaches, most versions are usable and enjoyable.

1.4.3 Test designs broadly and with cognitive walkthroughs
During design and implementation there may be unknown aspects of the user, their tasks, or the

interaction of these two components with the system. A way to reduce the risk of system failure
is to test the resulting system. This test can be quite simple, for example, simply to see if the
tasks can be performed, but it could also include many more formal types of tests. Pew and
Mavor (2007) review the range of these tests, and there are multiple textbooks describing them
(e.g., Cairns & Cox, 2008; Lewis & Rieman, 1994). These tests reduce a range of usability risks
and take a wide range of types and amounts of resources.

The simplest test is to have naïve operators use the interface and observe them. This approach
is explained in many textbooks, including Ritter, Baxter, and Churchill (Ch. 13, 2014). They can
take from 10 min. and cost next to nothing, when you ask a colleague to use the interface and
take away a small insight to $100k when you formally run many users at their own site and
prepare a formal report.

We also suggest using what is called a cognitive walkthrough (Polson, Lewis, Rieman, &
Wharton, 1992) to see that the tasks indeed be performed. Cognitive walkthroughs are a method
for evaluating the learnability and usability of an interface by simulating the cognitive activities
of the user during normal tasks. The typical method for performing cognitive walkthroughs
begins with describing goals and tasks that are required by the system. First, the goal structure of
the model is generated from expert interviews, prior research, and other forms of information
gathering. The goal structure, like a task analysis or using a task analysis, is arranged in a
hierarchy. The top goals represent the overall task. Each top goal is composed of intermediate
level goals (i.e., subtasks), each of which is composed of a set of individual actions.

Cognitive walkthroughs, when performed successfully, should determine whether the operator
of a system is making the correct connections between each level of the goal. That is, the analyst
applies the goals to the interface to produce the behavior. If the analyst cannot make the
mapping, it suggests an area for improving the interface. If the analyst is too familiar with the
interface, then they will not see problems users will see, at least novice users. The data collected
from cognitive walkthroughs can enable developers to provide supplementary “clues” or signals
to the operator at specific locations to ensure that each goal, sub goal, and individual action

1 http://cogulator.io/

 11

provide a coherent information set capable of being understood and followed by the operator
(Blackmon, Polson, Kitajima, & Lewis, 2002; Polson et al., 1992).

Cognitive walkthroughs require a task analysis, and then appear to take between an hour and a
short day to perform. The length of time is based on the number of tasks and how difficult they
are to perform. They may require domain knowledge, and thus may be done in teams, the
analyst working through the task analysis and the domain expert making the decisions.

Where detailed time predictions are useful, we recommend using the Keystroke Level Model
by Card, Moran, and Newell (1980; 1983). This approach provides time estimates based on the
keystrokes, mouse moves, mental operators, system response time, and other operators. The
times are engineering estimates (i.e., +/- 20%), but are basically allow fair comparisons of
different interfaces and make suggestions about where time is being spent and could be reduced.
The regularity of the interactions across subtasks also suggests how much needs learned by the
users and where knowledge may be misapplied.

There are numerous ways to reduce system failure due to usability problems. This section
noted a few and how to find more. Next, an example system is introduced to ground this
discussion with examples of how potentially abstract principles can be put into practice.

1.5 Example task: The Mars Water Detection System
This paper will use a hypothetical use case to provide context for readers. The scenario is based

on designing an op center for command and control of a remote Water Detection System (WDS)
to accompany a manned mission to Mars. The WDS will arrive alongside the mission team and
begin operation following its assembly by the team. Following its activation and an initial system
check, the op center on Earth will take over sole command of the WDS for a 10-year mission.
Scientists in the program office will make large-scale decisions to support the mission of finding
water, while the Earth-based operators implement action-plans and monitor the various systems
for any current or upcoming issues. We next detail select information to offer an overview of the
example scenario. A more detailed description is found in Appendix 1.

1.5.1 Operation center organization
The WDS is one part within the larger structure of an op center hosting dozens of systems that

require constant oversight. While the WDS is important for the mission, it may not be the
primary focus for the workers at any given time. The command structure of the op center
involves bi-directional communication between scientists from the Program Office who funded
the WDS and the operators responsible for direct interaction with the systems. Figure 2 shows
example possible interface designs for a system like the WDS. While the design will vary
depending on the needs of the system, these systems often will present many different metrics for
system performance. Operators will monitor the system, pass along alerts, and update the alerts
depending on their risk assessment for a given situation. Scientists will take this information and
pass back commands for the operators to transmit. Certain tasks will be able to be completed
without direct contact with a supervisor, while others will need direct response from supervisors
prior to action.

 12

Figure 2: Two example interface designs for the Water Detection System monitoring screen.

1.5.2 Water Detection System structure
The WDS is comprised of several subsystems. The core system in the WDS is the Main

Control Element (MCE). The MCE acts as the brain in the field by enacting orders from earth,
monitors other subsystems, and linking the subsystems together. The additional subsystems each
perform specialized tasks (e.g., communicating with Earth, navigating the WDS, or collecting
physical samples), however, all subsystems share a set of key features that the operators may
interact with over the course of the mission. These features are shown in Table 1.

 13

Table 1. Key features built into each subsystem of the WDS.

Feature Description
Status The current state and functionality of the subsystem, subsystem-specific

information, and environmental measures. The MCE checks and stores the
status of other subsystems until information is passed to earth.

Event Logs Each subsystem records detailed event logs from all executed commands.
Event logs are periodically transferred to the MCE before being passed to
earth.

Configuration Subsystems maintain a set of configuration fields that determine how the
subsystem performs its tasks. For example, the MCE will have a modifiable
field for checking a subsystem’s status that determines how long to wait for
a response before initiating troubleshooting procedures.

Commands Commands for subsystems will include a time reference and may include
additional data if needed. Commands are first sent to the MCE before being
passed to the appropriate subsystem.

Redundancy Nearly every subsystem has an A and B side to provide a backup element in
case of any issues, however only one side of each subsystem operates at any
given time. These redundant systems are an identical copy of the original
system.

1.5.3 Example issues
System designers may be unable to anticipate every problem within a system; however, the

risk-driven incremental commitment model drives the designers to try to understand what issues
are most likely to arise. Table 2 shows some example problems that could arise throughout the
lifecycle of the WDS system, the risk of these problems occurring, the solution, and who handles
them.

The WDS is designed to autonomously handle most issues that arise, but human interaction is
required on a regular basis. Many of these tasks are simple maintenance and acknowledgement
of warnings. For example, when batteries are low, the operator is required to acknowledge the
low battery threshold. No action is required other than clearing the notification. Occasionally,
however, the WDS will face an urgent problem that requires human input. These scenarios are
rare, so the operator has limited training in how to address the issues.

 14

Table 2. Example problems faced by the WDS that require operator intervention.

Problem Description Risk Solution Personnel

WDS is navigating in a crater and
gets stuck. The operators need to
escalate the issue quickly because
the WDS witnessed unexpected
terrain. The mappings of Mars
must be updated appropriately.

High Operator from Earth takes over
navigation and assumes manual
control. The typical operator is
not trained in this task, so the
supervising manager must take
control.

Operator,
Supervisor

Dust storm prevents batteries from
charging. MCE cannot complete
all the scheduled commands for
the day.

Moderate CE alerts the NASA operators
of the low battery status.
Operator must retask the day’s
commands because the ANE
would use all the remaining
power.

Operator,
Supervisor

Wall of Screens has many other
systems represented at the same
time. If the WDS has a problem, it
might take a few days for the
engineers to remote in to fix the
issue. Therefore, the overview
screen will remain in degraded
state. The problem arises when
something else goes wrong on the
system.

Low Modify interface to facilitate
proper information presentation.
While issues may not be
initially present, the possibility
of other errors being missed due
to clutter is increased.

Operator

1.6 Principles for design
Based on the target system description, the example system, and the design process, we can

provide an overview of the report as a set of design principles. These principles provide guidance
on high-level concepts that the designers can use to improve the systems they create. Though
generally directed towards improving performance across the human-machine interface, these
principles will often apply to the entire process of designing complex systems.

Principle 1: Don’t assume the user is how you think you are.
One of most important considerations for designers is to dispel the assumption that your users

are just like you or how you think you are (we make the distinction because you might not think
or work exactly like you think you do). Unless your user is a software or systems engineer, you
will in nearly every case need to adjust your design to meet the operator’s system-related needs,
capabilities, and wants (in that order), and how they are different from you.

Designers often (perhaps due to the ready availability of themselves and the unavailability of
example operators) make the risky assumption that the operator is just like them—this is almost
never the case. What this suggests, then, is to provide designers and engineers the ability to
consult users and other stakeholders throughout the design process. Knowing users can include
talking with them, watching them work, having them use your interfaces, reading their

 15

biographies, or watching movies about their work environments (whether documentaries or even
fictional accounts).

Understanding the operator enables engineers to mold the system design around the capabilities
and constraints of its operators. Countless studies have shown that engineers often fail to
understand their users. This knowledge is the foundation of user-centered design and leads to
increased performance, financial savings, and safer systems (Lewis & Rieman, 1994; Pew &
Mavor, 2007; Ritter et al., Ch1, 2014).

Principle 2: All design choices have tradeoffs. Don’t go in blind.
Most design choices have tradeoffs. This basic fact will provide engineers with difficult

decisions throughout the design process. For example, a larger font means less on the screen;
more on the screen is often helpful. How to resolve this design choice requires knowledge of the
task and operators. Use of the risk-driven spiral model helps engineers make the best decision
given the constraints by consulting with stakeholders and using what has been learned by others.

For example, recognition memory is more robust than recall memory. While searching for files
on a system, it is usually easy to point-and-click around a series of folders to find some item.
Using a keystroke-based system (like a command line) might be faster but will require either
more skilled users or more training.

As another example, speed and accuracy have conflicting methods for improving performance.
Emphasizing speed will often require sacrificing accuracy (i.e., more errors). While ideal
solutions are not always possible, designers can meet expectations by understanding the
expectations for task time and error rate.

Many studies have explored how users’ decision making, reaction time, and error rate change
in response to changing task decisions. The Hick-Hymen law predicts that choosing between
more options (e.g., 3 choices in a menu vs. 5 choices) takes longer, but the menu is more likely
to contain the correct choice. Signal detection theory shows a similar tradeoff between hits,
misses, false alarms, and correct rejections.

When possible, engineers should make informed decisions about the tradeoffs between
outcomes caused by different design choices.

Principle 3: Use multiple designs.
When designing a new display or component, create and consider multiple versions. Get

feedback on the possible designs from as objective a source as you can.
When you create a new display, particularly high stakes or main displays, you should consider

multiple versions. Considering multiple versions of designs tend to lead to better designs at least
in the tasks that have been studied (Dow, 2011). The best objective source for feedback is often
actual users.

Research by Steven Dow (originally at Stanford, then CMU and now UCSD), examined design
in the egg drop task. In this task, designers were given a set of materials and asked to design a
protective cradle for the egg to be dropped in. Groups that designed more examples and that
tested more often had reliably higher distances that their eggs could be dropped. He argues that
this will apply to other design tasks, and we agree.

1.7 Summary
Throughout the design of an ops center such as the WDS system and interface, the engineers’

top priority will be the creation of a working product. However, engineers must account for the

 16

risks associated with all aspects of the project. Often, the risks associated with some module’s
reliability or function may trump the human element: human error requires a task that can be
failed. However, as the iterative design process advances, and the technology itself becomes
more reliable, the human operator becomes more likely to be the point-of-failure within a
system. System engineers will be neglecting a crucial component of their system if they do not
account for the system’s compatibility with the human operators. While this process will have
any number of constraints and variations in its implementation, the designers should be confident
that their system can be effectively used by the target population. The user interface should
facilitate high performance without undue stress on the operators.

Table 3 notes some questions that designers might have in mind when designing and
implementing control rooms. In the conclusion to this report we will note how the review has
answered them. The book now describes the factors that give rise to the principles in Chapters 2
and 3. An example application is provided in the appendices.

Table 3. Questions to be answered by this document for systems like the WDS

Process Performance

1) What user interface features reduce user stress and improve and maintain level of performance?

2) Which user interface design factors mitigate performance degradation (speed, accuracy) during the
execution of detailed procedures for trouble shooting?

High Throughput Reaction Times

3) What levels of fast and complex interfaces impair or enhance user reaction time and accuracy?

4) What are the reaction time and accuracy for a user to react to an alert and respond to the alert with the
correct actions using the task UI? What are the upper limits of number and speed of alerts before
performance degrades?

5) What are the reaction time and accuracy for a user to distinguish between levels of criticality using
the task UI?

6) What are the effects of time on reaction time and accuracy for a user using the system?

Interface Generalizable and Individualized Effectiveness

7) Which interface design elements vary and do not vary in effectiveness across various demographics?

8) Which of the above questions are affected by age and prior education?

 17

2. User-Centered Design and Situation Awareness
The full gamut of factors that can contribute to the success of an interface is difficult to

describe within a single report. Instead, we will identify some of the most significant factors that
can be used by engineers during their design of an interface. For a more comprehensive review,
we recommend: (a) Foundations for designing user-centered systems: What system designers
need to know about people (Ritter et al., 2014), and (b) Designing for Situation Awareness: An
Approach to User-Centered Design (Endsley, Bolte, & Jones, 2003).

This report offers design guidelines for optimizing the performance of the human component of
the operation centers for asynchronous, autonomous systems. User-centered design (UCD)
provides the foundation for this task through basic tenets of its design philosophy. Designers can
achieve UCD by designing for situation awareness (SA, explained below) in operators.
Guidelines developed in these chapters will provide concise takeaways while selected
information on related cognitive mechanisms will provide context.

Thus, this paper will follow this logic. First, we describe the tenets of UCD. These provide
high-level questions that engineers can apply to their system at any point in the design process.
Next, the connection between operator performance and SA is explained. Performance levels of
SA correspond with cognitive mechanisms used to perform a task. The final section describes the
cognitive mechanisms, their influences, and offers design guidelines for ensuring compatibility
between user capabilities and system interface.

2.1 User-Centered Design
The operator is a component of the system just like the sensors or underlying code. High-

performance systems will incorporate operator capabilities into their design. This requires
creating a system that follows principles of user-centered design. Though UCD is often
associated with user-experience, Designing for Situation Awareness: An Approach to User-
Centered Design (Endsley et al., 2003, p. 5) explains their difference in underlying philosophy:

User-centered design challenges designers to mold the interface around the capabilities
and needs of the operators. Rather than displaying information that is centered around
the sensors and technologies that produce it, a user-centered design integrates this
information in ways that fit the goals, tasks, and needs of the users. This philosophy is not
borne primarily from a humanistic or altruistic desire, but rather from a desire to obtain
optimal functioning of the overall human-machine system.

The three primary tenets of UCD, shown in Table 4, describe the high-level goals of UCD.
Each tenet is expanded over the next few pages alongside some explanation and examples.

Table 4. The Central Tenets of User-Centered Design as summarized
 by Endsley, Bolte, et al., 2003.

1. Organize	 design	 around	 the	 user’s	 goals,	 tasks,	 and	 abilities.	

2. Technology	 should	 be	 organized	 around	 the	 way	 users	 process	 information	 and	 make	 decisions.	 	

3. Technology	 must	 keep	 the	 user	 in	 control	 and	 aware	 of	 the	 state	 of	 the	 system.	

 18

To illustrate these tenets, consider driving as an example. Figure 3 shows a car’s dashboard.
With respect to Tenet 1, what are the primary and secondary goals of the user when using this
interface? Design should reflect the importance of each goal. While operating a vehicle, the
primary goal is to arrive safely at the location while balancing time as a secondary goal.
Consider how the dashboard shown in Figure 3 matches the goals, tasks and abilities of the
driver. The speedometer is large and detailed, providing a quick reference of speed while
driving. This is the primary gauge that will be used while in motion and prominence in the
display. The large tachometer provides instant feedback about the operator’s input on the
system, but without the same detail as the speedometer. Broad markings and the red line provide
simple indicators of system state. Engine temperature, and gas level gauges are small because
they have relatively minor or infrequent usage. Red lines indicate when direct action needs taken.

Figure 3. Images of a basic automobile dashboard 2. The full dashboard shows four gauges from left to right:

tachometer, speedometer, fuel level, and temperature.

What are the primary and secondary tasks that a user will perform on this interface? The
design should reflect the importance of each task. While driving, the primary task for this
interface is checking the speed. Secondary tasks are monitoring the overall state of the vehicle.
The speedometer has detailed markings to approximately match speed limits (10 mph
increments). The tachometer only provides broad details and a red line indicating a “unsafe
state”, matching the detail that a user requires for monitoring the state.

With respect to Tenet 2, the information in Figure 3 is makes the speed easy to see, both to find
the indicator and to find the speed it represents. The other information for less important tasks is
given less room. Where exact numbers are needed, such as miles traveled, this is provided as a
number. Would a typical user be able to understand this system? Users and designers are often
not the same skill level. In the case of a car, the average driver is not a mechanic, so they often
do not need detailed information on issues. An indicator to check your engine may be enough as
the layman may not gain any value from additional information. Thus, Figure 3 shows Tenet 2 in
practice for the dashboard of a car. For the average driver, the check engine light provides only
the necessary information to solve further problems and nothing more.

With respect to Tenet 3, the relevant information is provided to control the system. In this case,
a user working through sequential information on a display expects the next area of focus to be

2 Image from Free Images https://www.freeimages.com/photo/stock-in-car-dashboard-1421520

 19

on a path from left-to-right, top-to-bottom (like when reading). For the state of a car, the water
temperature and gas tank level are in a fine order. More complex interfaces may require a
different order, and power plant control rooms often order the displays based on their location in
the plant.

In Figure 3, if other information not related to driving the car, was presented, such distance
from home, type of fuel in the tank, or brand of tire, the driver’s ability to drive would be less
supported. If the prominence and organization did not match the driver’s eye, for example a less
clear (or smaller) font, or in a different order, then the driver’s performance could suffer.
Finally, if the state of the car was less visible, or less appropriately matched to the frequency and
importance of goals, performance would suffer.

These tenets are not perfect, however, and do not always give clear guidance. Consider the
display in Figure 4. Here, the tenets do not provide direct guidance. The choice between these
two designs must be based on the details of the goals and task priorities. If these are not known,
they must be obtained from stakeholders (in the best case) or guessed or inferred in the worst
case.

Together, the three tenets of UCD provide a foundation for how to frame the system design
process around the goals, needs, and tasks of the operators. The various other elements within a
complex system have their own design philosophies or guidelines (e.g., modular design, minimal
complexity, easy replacement of components). The human-system interface is no different. The
tenets of UCD provide an underlying set of principles that should shape the design process for
creating complex systems.

Implementing UCD within complex systems requires a method for understanding and assessing
operator performance during complex work. Endsley’s (1995) theory of Situation Awareness
(SA) fills this need by providing a framework for understanding performance and decision
making. Describing the SA of an operator means describing the product of relevant cognitive
mechanisms that are necessary to perform complex work like decision making and
troubleshooting within an operation center.

 20

Figure 4. Two ways to present display of an automated target identifier. Each design has trade-offs in

operator performance that must be weighed based on the goals and priorities of the system. Image redrawn
and modified by authors. Original figure from Banbury, Selcon, Endsley, Gorton, & Tatlock (1998).

2.2 Situational awareness: A key to UCD
Human operators using complex systems must be able to correctly perceive useful information

while ignoring other stimuli. Situational awareness (SA) provides a framework for describing
human performance at these types of tasks. At its most basic level, an operator with SA
understands what the objects are around them, what the objects are doing, and what the objects
will do. With these types of knowledge, the operator understands the current state and can
project their understanding into possible future states of the system.

Describing an operator’s SA performance will use three iterative stages. Though specific
performance benchmarks denoting each stage may vary depending on the task, the three stages
of SA are typically known as (a) Perception, (b) Comprehension, and (c) Projection. These are
illustrated in Figure 4. First, an operator must be able to perceive the useful information from the
task environment. Second, they integrate individual cues into a model of the current situation.
Third, they use their model of the situation to predict likely outcomes based on their
comprehension of the scenario. Figure 5 uses operating a car to provide an example of what
types of information are associated with each stage.

 21

Figure 5. The three stages of SA applied to task of operating a car. Figure redrawn and modified by authors.

Figure modified from Bolstad, Cuevas, Wang-Costello, Endsley, and Angell (2010).

Thus, operator performance can be improved through incorporating the tenets of UCD in
system design. Improving the UCD of a system requires improving the SA of operators using the
human-system interface. The system design will impact how well operators can develop and
maintain SA during work. Interface design will affect how quickly and easily operators can
advance to each subsequent stage of SA performance and how accurate and complete the
operator’s understanding is at each stage. Similar to shifting gears in a manual car, the stages
progress on a continuous scale where mastery of lower levels of SA is required to advance to the
next stage.

The stages of SA provide a framework for assessing performance and identifying task and
interface factors that can moderate SA performance. Progression through stages of SA will be
impacted by operator characteristics (e.g., fatigue, personal capabilities), environmental effects
(e.g., distractions), and task-related factors (e.g., cognitive resources required, task types,
complexity; Boff & Lincoln, 1988). Each stage requires significantly more resources (e.g.,
knowledge, information, time) than the last. Stage 3 SA should not be expected as the norm for
every operator or every task, however, it is the most useful.

Next, we describe the stages of SA in more detail and provide principles for design based on
using SA as a metaphor for work in op centers. These principles are drawn from Endsley and
colleagues (2003) but are created by us to apply SA to the design of op centers. We include
motivating examples for each stage. Tasks surrounding aviation were the original focus of SA
research before it expanded to include a variety of complex tasks. The discussion of stages will
refer to percentage of errors in each stage and these values refer to errors during common
aviation tasks for pilots, air traffic controllers, and others. It would be reasonable to assume that
similar results would be found for op centers.

2.2.1 Stage 1 – Perception
Perception is the most fundamental aspect of SA. During the common tasks within an op

center, operators are bombarded with informational or perhaps more literally, there are many
displays that they can view, and on each display, there is a lot of information. The situation and
signal content can determine the best course of action regarding how and when to respond to a
signal (if at all). Operators with Stage 1 SA will demonstrate the ability to detect important
signals while discarding irrelevant ones. Given perception’s fundamental role in an operator’s

 22

work, it is unsurprising that perceptual issues account for about 75% of errors in common SA
work (Jones & Endsley, 1996). Causes of Stage 1 errors can be attributed primarily to human
failures (e.g., attentional failure, misinterpretation of a signal), primarily to system failures
(unclear or missing information), or some combination of the two.

Some design principles and examples related to Stage 1 SA are shown in Table 5. For example,
in the WDS (introduced in Ch1 and explained in detail in Appendix 1), a display can indicate
that the battery will be unable to charge at the rover’s current position, so the rover will need to
relocate. This interface needs to make the point clearly. In a recent example, grades to be
inputted were available only through an icon of a man pointing at a screen, rather than the word
“Grades”. The first icon was not interpretable but would have been clear if labeled “Grades”.
Often words in interfaces are underused, but are readily interpretable (Chilton, 1996).

Table 5. Design principles related to Stage 1 SA.

1) Make the information available.

2) Make the information interpretable.

3) Ensure the value and salience of each piece of information; eliminate or suppress unnecessary
signals.

4) Work around the limitations of human perception and cognition by reducing complexity and
workload of the task.

The first principle in this area us to make the information available. This means ensuring the
value and salience of each piece of information is appropriate, and to actively drawing attention
to important signals while minimizing extraneous stimuli. The second principle in this area is to
make the information interpretable by using intuitive, sensible displays. The third principle
extends the first two by promoting a hierarchy of signal significance to ensure that the perceived
signals are the most useful at any given time.

As an example, reconsider the car dashboard shown in Figure 3. Several design features
facilitate Stage 1 SA during typical operation of the vehicle. Compare the prominence of the
speedometer and tachometer to the temperature and gas gauges. The operator must update their
awareness of speed and engine performance much more often than their awareness of
temperature and fuel. Thus, key information is more salient than secondary information.

The design also has a threshold for the gas gauge that provides two indicators of low fuel at
dangerously low levels. First, the red line for gauging fuel level compared to the warning point,
and second, a light that indicates dangerously low fuel levels. This draws more attention when
necessary while always showing some information.

For another example consider the WDS introduced in Chapter 1: when below a certain power
threshold, the dashboard interface displaying the battery information will continually flash a red
symbol indicating the risk to system power. If this alert continues until the battery is charged, the
signal will waste the operator’s attention and cause unnecessary distraction. Why does the signal
remain prominent, even after the solution has been implemented? Once the solution process
begins, there is no need to draw attention to the signal until additional information is received.
The signal’s visual appearance should be able to be muted until an update is needed.

This principle has further implications for the details of displays. It suggests eliminating or
suppressing unnecessary signals and merging compatible signals. Simplify complex signals. For
example, in the WDS an interface showing the overall WDS status may include orientation,

 23

geographic location, battery level, and other information. This information is used by operators
during periodic checks for unexpected changes in status. Reduce complexity and detail when
possible. This can mean only showing integer values for orientation or showing battery level in
whole percentage values rather than in the 10,000’s that are returned. If warranted, reduce
complexity further by simplifying to a binary response for whether orientation is normal or not.

The fourth principle in this area is to work with the limits of human cognition and perception.
Human cognition has natural limits in how much it can process at once. Work around the
limitations by reducing complexity and workload of the task.

For example, a status update for the WDS may include hundreds or thousands of events in a
data log that accompanies the basic system status report. Reserving a space on the interface to
indicate critical or alarming events (e.g., imminent power failure) while hiding data related to
non-important updates will reduce the amount of information necessary for the operator to
perform the most useful tasks.

As another example, some system is rarely interacted with during normal operations. The
interface simply provides a status that is checked hourly by an operator. This interface was
initially expected to be part of a multiple-monitor display for a seated operator, but now it is
checked while standing several feet back. The operator must lean in or squint to read and
understand the information.

Consider physical aspects of how the operator uses the system. An operator sitting at a desk in
front of the screen can effectively monitor more dense signals than someone five feet away.
Ideally, the perceived details of an interface will smoothly transition as an operator views it from
different distances.

Books on visual design of interfaces can provide more information in this area (e.g., Kosslyn,
2007; Tufte, 2001, 2006).

2.2.2 Stage 2 – Comprehension
The second stage of SA involves synthesizing Stage 1 cues into a useable mental model of the

situation. A practiced operator will detect patterns from various stimuli and form a holistic view
of the situation based on their experience with the task and the information presented. Errors
arising from comprehension failure account for about 20.3% of errors (Jones & Endsley, 1996).
Stage 2 errors are often attributed to misinterpretation of an information set, failure to maintain
all the necessary information in working memory, misuse of their mental model, or over-reliance
on default settings (i.e., failing to check a status hidden in a submenu).

Some design principles related to Stage 2 SA are shown in Table 6. The first principle is to
design the system to prevent misinterpretation of signals. Signals should be unambiguous,
consistent, and instantly recognizable.

Table 6. Design principles related to Stage 2 SA.

(1) Actively design the system to prevent misinterpretation of signals. Signals should be
unambiguous, consistent, and instantly recognizable.

(2) Consider how the actual tasks will be done by the operators. If operators will be expected to
multi-task, then build in features to accommodate this

As an example of principle 6.1, the interface that provides the WDS status information may
have a variety of information presented on it using textual and visual signals. Icons can help
reduce text or provide a more grid-like design but should only be used if the operator

 24

understands the meaning (so make sure that the operator understands the meaning through
culture, training, pop-up names, or other means).

Similarly, familiar symbols should have familiar effects. Using an ‘X’, particularly a red ‘X’,
should close or exit something. Red and green follow cultural norms of stop/exit/bad and
go/continue/good respectively. The Apple Design Guidelines3 give an example set of such
guidelines.

The second principle, 6.2, is to consider how the actual tasks will be done by the operators.
Interruptions are a major source of error. If operators will be expected to multi-task, then build in
features to accommodate this and include handling an interruption as a task in your task analysis.
These features can include the ability to postpone the next task so that a task can be completed,
or to remember the state of the suspended task until it can be returned to. In a control room, one
solution could be to simply include a pad of paper (Trafton, Altmann, Brock, & Mintz, 2003).

As an example, operators may have to multitask while monitoring the WDS. The WDS status
interface provides many different pieces of information to an operator, but operators will
typically not have any issues responding to routine events. However, once they need to respond
to some situation, they must split their attention between the normal monitoring and the new
task. This could lead to the operator missing an important warning.

The system could support this task requirement and reduce risk by providing a simplistic view
of critical information during times when the operator may be splitting attention across multiple
tasks. When an operator pulls up a subsystem view alongside an overall status view, the overall
status could have its detail reduced while offering a more salient signal for any changes that
occur, or, simple ways to keep track of state like a pad of paper or a sticky note on the screen,
that could allow the operator to save partial state before dealing with an interruption.

Further information on how cognition is used to comprehend a situation is available in
Endsley’s work (Endsley, Bolstad, Jones, & Riley, 2003; Endsley, Bolte, et al., 2003) and other
books on human-computer interaction (Krug, 2005; Ritter et al., 2014).

2.2.3 Stage 3 – Projection
The third stage of SA is achieved through projecting the model of the situation into possible

outcomes. For example, an air traffic controller could anticipate a dangerous situation based on
how two aircraft are likely to maneuver while changing course and act to avert the future
situation. Though difficult, this type of expertise is essential for high performance in some
complex tasks (Endsley, 2000).

Stage 3 failures account for about 3% of errors in aviation, but the complexity of Stage 3 SA
makes generalizable causes of error difficult to isolate. General causes may include over-taxation
of mental resources, insufficient knowledge of the domain, or over-projecting current trends
(Jones & Endsley, 1996). This type of expertise is difficult to plan around for the engineers
during early stages, thus will be given less focus in this document. Obviously, systems that help
predict the future of object or systems would help operators. Support in this area could include
trend or spark lines showing system state (Tufte, 2006).

One of the most effective ways to design for Stage 3 SA is by eliminating barriers preventing
Stages 1 and 2 SA from being effectively supported. Thus, designers are advised to focus on
solving issues with perception and comprehension before specifically addressing methods for
improving an operator’s ability to project into future states. However, further information about

3 https://developer.apple.com/design/human-interface-guidelines/

 25

supporting projection can be find in Endsley’s work (Endsley, Bolstad, et al., 2003; Endsley,
Bolte, et al., 2003), and work on mental models (Besnard, Greathead, & Baxter, 2004; Kieras &
Bovair, 1984; Moray, 1996; Ritter et al., 2014).

2.3 Summary: Cognitive mechanisms for situation awareness
The three stages of SA provide a broad classification for the performance of operators during

complex tasks. This section only briefly describes SA. This overview gives engineers the tools
needed to consider how SA applies to the systems they design. Next, the cognitive mechanisms
that drive operator performance are described and connected to SA.

This section briefly covers significant cognitive mechanisms used in SA as a way to describe
and summarize them. These mechanisms and their role in SA get more comprehensive coverage
in Chapter 3. We explain there here because these mechanisms can be simulated in a computer
(Anderson, 2007), but can also be productively simulated in the designer’s head to make
predictions about how that part of the system will be used by the operator will perform a task.
Figure 6 shows these mechanisms as they are implemented in the ACT-R cognitive architecture
(Ritter et al., 2014, Ch 1). These components can be seen as distinct subsystems with semi-
independent operations.

As shown in Figure 6, the process of situation awareness will often start with Perception, the
intake and processing of competing sensory cues (or signals) into usable information. In this
approach, perception does not necessarily lead to detection of a signal or to understanding. The
perceptual process requires attention from cognition. Cognition, the central process, directs
processing or focus on the task relevant information while ignoring or not processing the rest.
Attention is a limited resource that must be distributed across appropriate features and is
probably best seen as a process rather than a single buffer.

Figure 6. A schematic of the components of a computational model (ACT-R) of the human operator (Taken

from Ritter et al., 2014).

Top-Down attention is goal-directed towards some feature(s) for the goal while avoiding focus
on distracters (e.g., monitoring speed and position but ignoring billboards while driving).

 26

Bottom-up attention is driven by any of the common features that indicate activity (bright
colors/lights, motion, and others).

Memory is used to perform the task, recruited from the declarative memory buffer or activated
from long term memory (here, in the declarative buffer and the goal buffer), which might be
called Working Memory (WM), which operates as the “RAM” for cognition by storing and
manipulating information chunks for short periods. This stored information has to be maintained
through use, manipulated, and stored in long-term memory, or it is lost. Human memory is more
similar to old drum or plated wire memory, which needed to be continually refreshed, than it is
to current solid-state RAM, which can sit without use and without decay.

Directed attention captures information to be stored in WM. Dual-tasks can be performed well
if each uses only/primarily one WM type or store. For example, remembering a set of numbers is
easier to do while looking at a scene than while solving math problems.

The operator’s mental model is the operator’s internal representation of an external situation.
Their mental model provides the framework that they use handle information for decision
making. This model is stored in memory, which means it can be learned, or partially forgotten,
and might not match the designer’s representation used to understand the system and to create
the interface.

The operator’s mental model of a situation provides the tools needed to handle large amounts
of information. They use their experience from long-term memory to scaffold the intake of new
information, noting what to pay attention to, what to discard, and what to remember for a given
situation. Mental models also include what to do in a situation.

Thus, situation awareness, the awareness of the state of the world, and what is happening and
what will happen, is only possible through an operator’s mental model and its use by a set of
mechanisms similar to what is in Figure 6.

This approach, when applied to op center design, suggests that each stage of the operator’s
processing and response is important for successful system operation. The operator needs to be
able to see and process the stimuli. They need to be able to have attention and time to
understand it, and knowledge that the stimuli is important. They need to have an appropriate
mental model to place the perception into relationship, the mental model, with previous
perceptions as well as current goals. They need to know what to do, and how to respond.

Situation awareness thus provides a way to organize a designer’s model of the operator. It
makes strong suggestions about design when combined with knowing the operator’s capabilities,
their tasks and task priorities, and their mental model of the world, both the longer term and
semantic model as well as the ongoing and evolving model of what is happening at any point in
time.

The next chapter explains these components in more detail to help a designer understand how
an operator might run and apply their mental model.

 27

3. Cognition and Operator Performance
This chapter explains in more detail the primary cognitive mechanisms used by operators to

perform their tasks. This section should help designers have a better mental model of operators.
These details should help a designer understand how an operator does their tasks and thus
support the operator better.

In this approach, based on the cognitive architecture shown in Figure 5, cognition can be
described as an emergent phenomenon arising from a collection of mechanisms. The
mechanisms can be seen as components of an information processing system in the same way
that a computer has components.

The component mechanisms can be described in isolation (visual processing of an object) with
some degree of useful truth. However, it is important to understand that this is a practical
consideration. In truth, cognition relies on an extremely complex, highly interconnected
neurological system.

This chapter explains these mechanisms in detail to help a designer. The mechanisms discussed
here include visual perception, attention (which is perhaps emergent from other systems
interaction and work), memory, and briefly learning. In each section, we note further design
principles to summarize the results to aid design.

3.1 Perception
The most basic level of cognition for operators is the perception of stimuli. While we may be

able to receive signals from a variety of sources, visual stimuli provide the proportional
supermajority of signals. Auditory comes in second, followed in a distant third by tactile (which
does not appear to be used nor needed currently in most control rooms). We will follow this
natural system order in our analysis. Thus, we will primarily focus our discussion on visual
perception.

3.1.1 Visual processing
Understanding the nuances of visual processing enables system designers to build their

interface around the natural capabilities and limitations of the operators. At a basic level, visual
processing is the process of capturing light on some visual sensor and transmitting this
information to the processing system. For many robotic systems, this is a relatively
straightforward process where information only flows one direction. In contrast, human
processing is a bi-directional process including feature detection, goal-directed attention, pre-
attentive assessment of stimuli, and active interpretation of the signals. The complex system
allows us to make a sensible, coherent world out of small snapshots of information without the
need for detailed processing. While humans may excel at particular tasks like pattern detection,
we also can be easily tricked by unconscious misapplication of the heuristics (visual illusions,
misrecognition, not seeing target objects). While some sources of errorful behavior can be
inhibited or corrected through conscious effort, others are essentially reflexive actions without
any reasonable method for self-regulation.

A classic example of our failure to inhibit automatic processing is the Stroop Task (Stroop,
1935). The task is simple. A subject is presented with a color word (i.e., red, blue, yellow)
written in one of those same colors. The task is to name the color of the ink. The experiment has
two conditions, congruous and incongruous. When congruous, the ink color and word will match
(i.e. “red” written in red ink). When incongruous, the ink color and word will not match (i.e.

 28

“red” written in yellow ink). This task seems simple in the congruous condition, but when the
incongruous condition is tested, and the word and its color differ, the subject will typically
stumble through responses, be significantly slower, and make many more mistakes—once we
learn how to read, we simply cannot inhibit the natural response to read text. The mechanistic
explanation is that the reading skill is practiced so much more than the naming skill, thus the
reading skill has to be suppressed to name the color. During the Stroop Task, reading, a normally
beneficial process, is a detriment to our performance.

A more comprehensive overview of low-level visual processing as well as additional resources
can be found in the chapter “Behavior: Basic Psychology of the User” (Ritter et al., 2014, Ch. 4).

3.1.2 Color blindness
Color blindness is a particularly salient concern for designers due to its prevalence among the

population. For the Western population, about 7% of men and 0.5% of women have some form
of red-green color blindness. This causes affected individuals to have difficulty differentiating
red from green. Individuals may also have blue-yellow color blindness, or even total color
blindness but these are significantly more rare than red-green color blindness (Ritter et al., 2014).

There are many different forms of color blindness based on the specific deficiency in the visual
system, but the general design recommendations that alleviate their effects are the same. Good
design will avoid using only color as a signal for an operator. Instead, the design should
incorporate multiple signals into a cohesive message for the operator. For example, an important
alarm could flash bolded text information, have red coloring, and use textual indicators like
exclamation marks to ensure that the message is clear.

Thus, better designs will dual-code results. That is, meaning will not just be encoded by color,
but color and font, or line thickness and name, or line type and texture. Dual-coding stimuli
makes them faster to be recognized and discriminated (Garner, 1974). It may be useful to check
designs against this deficit. There are tools online to show how color-blind individuals perceive
images and interfaces4. They typically take a URL or image file and show how color-blind
individuals would see it. Given the prominence of color-blindness among the general population
(8% of men and 1% of women; National Eye Institute), dual-coding signals and ensuring color-
blind compliance would be well-advised for any system that requires human operators.

3.1.3 Visual search
The visual system can be broadly broken up into two subsystems based on their role. The eye

handles stimulus detection and the brain (in specialized regions) handles stimulus-interpretation.
Stimulus detection occurs within the eye, but the process itself is driven by a combination of
goal-directed attention from the mind (top-down) and automatic processing of salient features
(bottom-up). Top-down and bottom-up directives guide the visual processing and integration of
the environment that occur during visual search.

Visual search of the information displayed on an interface is a core activity for operators,
regardless of the task. As their attention is oriented to the task at hand, the operator will need to
comprehend the information presented on any given interface. Visual processing is an
intermittent process in which our eyes are constantly alternating between saccades (rapid eye
movements to some feature) and fixations (resting moments of information intake). What we
perceive as a continuous experience is actually an intermittent series of fixations that are

4 https://www.toptal.com/designers/colorfilter/

 29

unconsciously aggregated into a coherent, though not necessarily accurate, mental model of our
surroundings (Irwin, Brown, & Sun, 1988). During fixations, the feature-detection relies on
distinguishing target features from distracter features through pre-attentive visual processing
(Healey & Enns, 2012). This summary of vision as being active can be contrasted with folk
psychology and early understanding of vision where humans were understood to see and
understand the whole display at once, whereas, we now know that the eye must search for
information actively on the display and often refresh it (Findlay & Gilchrist, 2003).

During complex tasks that require visual search, both bottom-up feature recognition and top-
down goal-oriented activity influence the performance of the operator at finding that
information. While top-down directives lead visual search towards a certain set of features, our
eyes are unable to fully inhibit the bottom-up feature detection. Given the effects that distracting
features can present for operators, designers should understand what types of visual features
draw people’s attention and the role of higher-level graphical organization.

3.1.4 Pre-attentive visual processing
Once an operator perceives the signals presented by an interface, the visual processing system

immediately begins working to form a coherent mental model of the scene. Cognitive limitations
on information processing prevent humans from scanning, processing, and understanding every
individual signal within the visual field. Instead, we have developed a complex pattern-matching
system that reduces workload without (usually) negatively impacting comprehension.

There are two main processes that occur during the early stages of visual search. The first is
pre-attentive visual processing based on relatively simple features of the objects. Figure 7 shows
examples of the types of features that are easily and immediately detected during visual search.
The common element across these examples is the contrast between features. When objects vary
in orientation, length, or size (compared to other objects their environment), they are identified
and distinguished much more quickly than other objects. Easily distinguished visual features are
more salient to the operator, particularly when the operator is distracted or overworked.

 30

Figure 7. Examples of pre-attentive visual features

(Figure and caption reprinted from Healey & Enns, 2012).

The contrasting features shown in Figure 7 vary in their salience. Just by glancing across the
examples, we can notice a difference in how rapidly we acquire the target stimulus among the
distracters. The image for hue is easily discerned, while lighting direction and 3D depth are more
difficult. Designers must consider the salience of the signals they will present to the operator and
provide the most salient cues to the most important differences.

The second major process of early visual processing is the grouping of individual features into
shared, higher order visual structures. This is known as Gestalt grouping or Gestalt Theory
(Chang, Dooley, & Tuovinen, 2002; Moore & Egeth, 1997). Just as particular features are
distinguished individually, sets of features are organized into visual structures to be further
processed by the viewer. This allows the viewer of the scene to organize the information-dense
world into a coherent set of distinct objects. Just like the processing of pre-attentive visual
features, Gestalt grouping is an involuntary processing step that shapes how a person perceives
the world around them (Moore & Egeth, 1997).

Gestalt Theory encompasses a family of related psychological principles of perceptual
organization used to describe common instances of visual integration. The literature on this
subject is varied and as such, the specific principles can often be described in multiple ways
depending on the situation or researcher. Though not exhaustive, Figure 8 shows nine of the
most common examples of Gestalt principles affecting how we aggregate component pieces of a
visual image. These principles can be used by a designer to group information together or
separate different subgroups appropriately.

 31

Figure 8. Common examples of Gestalt principles affecting image perception.

 (Copied from Ritter et al., 2014, Figure 4-15).

Even without other factors affecting visual processing, Gestalt Theory can serve as a useful
framework for analyzing and improving the design of an interface. Chang and colleagues (2002)
demonstrates how Gestalt Theory can be used to guide the redesign of an electronic learning
tool. During their background research, the authors identified a subset of the many Gestalt
“laws” from prior research and used these as the basis for their redesign process. The redesign
process described by Chang and colleagues provides a useful exemplar of the methodology,
however they did not collect the empirical data necessary to provide a detailed analysis of how
their redesign affected interface performance.

3.1.5 Summary of visual perception and principles
Nearly everything on the interface is a signal or feature. Designers should assess the

importance of each signal as well as the salience associated with it.
To make signals be recognized, change the hue, make it flash, or increase its size, or use pre-

attentive visual features shown in Figure 6 to modify the salience of the information. The inverse
is also true. For irrelevant features at a given point, ensure their salience is appropriate by
modifying their visual representation.

If an operator does not perceive something, they will not know that they missed it. Creating our
mental model requires unconscious assumptions about the world. Do not assume that the

 32

operator will realize that they need to attend to a minor signal or remember to look at something;
help them.

It may be appropriate to test the interface for color-blindness compatibility. Where colors
cannot be changed, one could test the users to support reconsidering changing colors, or to find
other ways to support color-blind users.

Gestalt principles give engineers the ability to predict how operators will perceive their
interface and its functionality. Designing the system layout around these principles can ensure
that the engineer’s intentions are clearly conveyed to the operator.

To summarize how to use results from visual perception in design, we present a few design
principles related to vision.

Principle 3.1: Designing to accommodate color blindness will solve multiple problems
at once.

Color blindness is prevalent among the general population at between 2-7%. Presenting
information with multiple signals and modes can help ensure the message is clearly receiving
regardless of their color perception and faster overall.

Principle 3.2: Colors must be sparingly used, consistent, and reserved for critical
information.

Color can be recognized and interpreted much more quickly than a complex signal, but overuse
reduces the effectiveness. If possible, follow these rules: use no more than 4 different colors,
adopt a dull screen as background, and reserve specific colors for specific signals.

Thus, ensure that color provides a valuable signal to the operator through purposeful use of
specific colors to emphasize critical information on an otherwise dull interface. Often, color can
be a distracter just as easily as a signal if the interface overused or misused. Three specific
examples are shown in Figures 9, 10, and 11.

Figure 9. Labeled example of interface with dull color overall, allowing the green “active pump” signal to

stand out. Figure redrawn by authors and modified from Ulrich and Boring (2013).

Designers must consider how each color used in the system will be interpreted by operators.
Figure 8 shows a relatively dull interface that can be quickly scanned to identify which system
processes are active without any distracting signals. Connecting lines between components

 33

(yellow) are easily distinguished, but the reduced saturation demotes their importance during
typical use.

Figure 9 shows how to use of color within an interface should be considered as a scarce
resource. On a completely plain background, one color can be extremely visible, but each new
color and new use reduces the salience of that signal. Figure 10 shows an example of reducing
the color usage within an interface to highlight critical information (Ulrich & Boring, 2013).

a) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 b)	 	 	 	 	 	

Figure 10. Examples of muted interface with dulled colors, dedicated alarm colors, and merged information
for easier perception. Images (a) and (b) show an initial and revised pressure gauge. Figure redrawn by

authors and modified from Ulrich and Boring’s guidelines ; 2013)

Color is often a major factor used with an interface to code signals with meaning. Color use
will usually use pairs or sets of colors to provide a categorical piece of information for the
operator. Green, yellow, and red, can indicate the system status on a range from healthy to
critical failure. Blue can represent active pumps for a liquid while grey shows inactive. Color is a
valuable signaling method for typical operators, but designers should ensure that their design has
multiple signals indicating critical information.

For example, the gauges shown in Figure 10a may be unable to provide color blind operators
with enough information to ensure system success. Figure 10b shows a revised interface that
would be better suited for all users. Though the second gauge sacrifices some contrast between
the safe and dangerous system states, the thick black line and arrow indicating the critical level
eliminates color blindness as a risk for operator failure.

Principle 3.3: Make text with readable fonts, no more than 3 font types, and of proper
sizes, with simple, short text strings

Reading from screens tends to be slower and more difficult than print-based reading. This may
be due to the difference between projective and reflective light or due to pixel density. Many
operators will not be trained to differentiate font types, so use different fonts sparingly. Improve
readability and comprehension by using readable, simple fonts. Ensure font size is appropriate
for the expected viewing distance. Concise text, accompanied by a symbol or icon, will be faster
than a description and more easily interpreted than an icon alone.

Designers should thus avoid using unnecessarily “fancy” fonts and settle on simple, effective
presentation of the key information. In general, long strings of text should be avoided. They can

 34

be replaced with symbols, bullet points, or at the very least, augmented with emphasized words
to make scanning easier. Figure 11 shows an example of improvement.

Figure 11. Incremental improvement of power level indicator. Final product can be quickly referenced for

general status and examined more closely for detailed information like voltage and time remaining.

In general, reading from digital screens is slower and leads to less comprehension compared to
print-based reading. Researchers have studied the effects of screen-based reading quite
extensively. They consistently find that reading from screens is slower by 10-30%, leads to
increased errors, and fatigues the user more quickly than print reading (Ritter et al., 2014).

Principle 3.4: Ensure signals indicating missing information are clear and obvious.
Operators rely on gathering and interpreting information to make key decisions. Uncertain or

missing information can affect performance through incorrect assumptions by operators.
Missing information from a sensor or system can be a signal to the operator about the situation,

but this is only possible if the operator is aware that the information is missing. When operators
do not realize that some information is missing, they may rely on their base assumption of
normal operating conditions, which can lead to potential disaster.

For example, a pilot operating a plane in cloud cover with malfunctioning terrain sensors can
respond differently if aware of the missing information. If aware of the issue, they could climb to
a safe altitude regardless of any “true” obstacle. If unaware, they may crash after assuming they
were on a safe trajectory.

In the WDS system, signals indicating success for a repeating procedure could be represented
as a simple binary response: success or failure (1a and 3 from Figure 12). If the update schedule
is known to vary by 30 minutes, this could lead to many false alarms if a missing self-test at the
exact due time qualifies as a critical failure. The design in Figure 12 allows operators to quickly
see when the last test occurred and provides an intermediate signal for a missing self-test. This
gives operators a signal to be in a “ready” state to respond to a critical failure.

 35

Figure 12. The role of color to represent missing and aging information.

Principle 3.5: Arrangement of screen components should be useful, consistent, and
close.

Whether designing the full system interface with multiple objects or creating the objects
themselves, limit the amount of distance between signals that are commonly used together.
Basically, have a theory of how the interface will be used, and use the task analysis and operator
knowledge and characteristics to design the interface so that knowledge information on the same
task are near each other.

As an operator scans the system interface during typical monitoring tasks, they will be
generally searching for alarms, alerts, or any sign indicating a potentially risky situation. The
task analysis should provide a summary of the tasks, their importance, and their frequency.
Checking systems with distant components (as measured as travel through the interface) requires
more time and effort to perform well. Additionally, upon identifying an alarm, operators often
will search for signals that confirm the veracity of the alarm. Grouping related components
together makes this easier, reduces strain, and increases their ability to search for information.

Grouping and arrangement should also attempt to follow consistent patterns both visually and
semantically across multiple displays. The design guidelines in Appendix 3 provide guidance
about the semantics and importance.

3.2 Attention
While visual perception can be described as the integration of information through the field of

vision, attention is the “spotlight” that makes a set of stimuli more active or relevant than the rest
through state or use. As operators are presented with a constant array of information, an
executive control system in the mind is directing attention towards features or items in that set of
information. A crucial feature of attention is the enhanced acuity for the target of interest at the
expense of awareness of periphery stimuli (Ritter et al., 2014). The shift in focus can occur due

 36

to the salience of certain features, perceived relevance to a particular goal, or an active process of
cognitive control.

This section will first discuss the basics of the underlying mechanisms of attention and the
effects of task switching. Next, we will describe the causes and implications of limited
attentional resources and the attrition of attention.

Attention plays a crucial role in visual perception by providing a mechanism for isolating
specific features of interest. Visual perception entails making sense of a world with too much
information present; attention is the tool for “working around” this natural limitation. Attention
provides guidance (though not total control) for the sequence of eye saccades and fixations
during goal-directed search for visual features. The interaction between these two mechanisms is
moderated by cognitive control (e.g., goal-directed behavior) and aspects of features in the visual
field (e.g., salience). The interaction between these two forces can affect performance by altering
the usage of “cognitive resources” during a particular task. For example, inhibiting a response to
look at a flashing light requires active control of visual search, and thus attention. The skill at
which a user can inhibit these responses is governed, at least in part, by their working memory
capacity (Unsworth, Schrock, & Engle, 2004). The inverse is true as well: an extremely salient
signal will require fewer cognitive resources to detect.

3.2.1 Attentional vigilance
The role attention plays in cognitive tasks cannot be overstated. While we have primarily been

describing the role of attention on visual processes, attention plays a central role in both internal
(e.g. problem-solving, goal-sustenance) and external cognitive mechanisms (visual search). The
act of maintaining attention on a task is called attentional vigilance, or just vigilance. Tasks that
require vigilance are characterized by the need to maintain attention over an extended period
while attempting to detect target stimuli without responding to neutral or distracting stimuli.
Performance loss is often ascribed to the vigilance decrement, or the performance decline that
occurs over a period of active monitoring. This type of task is extremely common of operators
within an op center.

Sustained attention on a task is impaired by several factors. First, the salience of the goal
signals directly affects the decay rate of operator performance due to the vigilance decrement
(Helton & Warm, 2008). Increased working memory load leads to worse performance on
vigilance tasks. If an operator needs to remember other tasks or keep unnecessary information in
working memory, they will have a higher cognitive load (Helton & Russell, 2011). Depending
on the type of information being remembered, the impact on performance may be reduced. For
example, listening to a supervisor speak (verbal) and watching a graphical display (visual) will
be easier than trying to listen and read (both verbal) simultaneously (Epling, Russell, & Helton,
2016).

3.2.2 Resuming attention: Interruptions and task-switching
Interruptions provide a major risk in disrupting the ability of operators to maintain their

attention on a given task. Unanticipated breaks during the completion of a task have been shown
to increase subjective workload and error rates, even for experienced professionals (e.g., Campoe
& Giuliano, 2017; DeMarco & Lister, 1999). Designers should be aware of how interruptions,
even when planned, can impair performance of operators.

The overall framework for understanding task interruption can be divided into several phases.
First, the worker will be completing some primary task. At some point prior to completing the

 37

primary task, the worker is exposed to a distraction signaling the need to complete a secondary
task. The time between receiving the signal and initiating the secondary task is called the
interruption lag. Next, the worker begins the secondary task. The time to complete the secondary
task is called the interruption length. Upon concluding the secondary task, a period called the
resumption lag occurs until the worker is able to resume the primary task (Trafton et al., 2013).
This process can occur multiple times throughout the completion of a primary task.

The distractions force the operator to lose their attention on one task, begin attending to a
different task, then transition back into attending to the original task. Each time the operator
transfers their focus (in both directions), there will be a necessary “activation period” where the
operator is working through the stages of situational awareness: perceiving the task features,
forming a mental model of the situation, and finally extending their mental model into likely
future scenarios to guide action. This process takes time and leads to performance impairment. It
is also a source of errors. Well-designed systems should attempt to alleviate the risks associated
with interruptions to primary tasks.

The designer will primarily have control over the design of the associated tasks. While a
designer may be able to influence the training of the operator, it is more practical to design the
system and task around a range of skill levels if possible. The first method for reducing the
effects of interruptions on performance is simply removing them from the possible task structure.
Even among experienced professionals working in high-stakes situations, the number of
interruptions is directly correlated with an increased error rate, cognitive workload, and stress
level (Campoe & Giuliano, 2017).

If interruptions cannot be limited, there are several ways to alleviate the performance
impairment. First, designers can provide a preliminary warning signal that indicates an
interruption is imminent (within the next 10 seconds). This allows operators to begin the
preparing to switch tasks without the need to fully place their focus on the new task. Trafton and
colleagues (2003) informally describes the process that occurs after the warning signal as the
operator answering two questions and storing the response in memory: “Now what was I doing?”
and “Now what am I about to do?”. The answer to the first question helps the operator identify
the point at which to resume the primary task, thus reducing the resumption lag. The answer to
the second question prompts the user to gradually begin attending to the interruption task, thus
reducing the interruption lag. The same study demonstrated that providing a warning signal with
10 seconds notice for a distraction reduced the resumption lag by nearly 50% (8 seconds without
warning vs. 4 seconds with a warning) for an unpracticed task. While this effect diminished with
repeated practice, this design guideline is particularly useful for infrequent tasks that may be
minimally practiced.

Besides offering a warning, designers can design interruptions that minimize the performance
impairment. First, interruption length is a large predictor of the resumption lag. Working
memory plays a significant role in managing attention. Long interruptions impair the ability to
rehearse the previous task state, which may lead to an operator forgetting their place in the task.
Designers can account for this by reducing the length of interruptions and preventing
interruptions during high-stakes tasks (Campoe & Giuliano, 2017). Interruptions that force the
operator to change contexts also impair performance. Context-change is a broad descriptor that
may include changing locations, unexpected transitions from visual processing to verbal
processing (e.g. talking to a coworker) or generally unexpected shifts in cognitive requirements
(Marsh, Cook, & Hicks, 2006). So, when possible, allow the operator to finish their current

 38

primary task step. This reduces the resumption lag for computer-based work, though this benefit
disappears for manual work (Campoe & Giuliano, 2017).

3.2.3 Signal thresholds and habituation
Visual input has natural limitations on the strength of the stimuli that can be detected. The

threshold that separates undetectable and detectable stimuli is called a detection threshold. For
the human eye, this is approximately 100 quanta. This somewhat abstract denotation can be
better understood through an example: we can detect a candle flame from 50 km on a clear dark
night (Galanter, 1962). The amount of change necessary to detect differences in a stimulus, such
as differences in color or brightness, is called a just noticeable difference (JND). Interfaces that
attempt to show differences that are not one JND apart (imagine a graduated color chart)
physiologically cannot be recognized.

While human vision can be very sensitive during initial presentation of a stimuli, there is also a
natural process of habituation that occurs during persistent detection of certain stimuli. As an
operator becomes accustomed to a predictable, persistent visual stimulus, they lose the ability to
perceive it without conscious effort, it becomes background to them. For example, people living
next to train tracks stop hearing the trains. Though it is more common with simple stimuli,
habituation can also occur with complex stimuli that require action (e.g., clicking a “confirm
action” box for every action; Ritter et al., 2014).

System designers already will be taking some steps towards accounting for these low-level
issues during the design process. For example, system designers will often use particular visual
characteristics such as flickering or flashing lights, changes in color, or motion to indicate that an
operator’s attention is needed. However, designers should use caution when deciding when to
use alerting signals. When a system is working as intended, the designer should be aiming for
signals that facilitate habituation, that is, the changes appear normal and do not call attention to
themselves. However, once the system detects an alert of some kind, the design principles
become inverted. Rather than facilitating habituation, designers should actively prevent
habituation.

3.2.4 Speed-accuracy tradeoff (How to design for acceptable errors)
There is a constant in human behavior represented by Figure 13. This graph shows that

behavior can be slow and careful with low errors, or rather fast and with higher errors. Operators
will vary in what their curve looks like. Similar operators may be at different points on the same
curve as well. To avoid the extremes, psychology studies often say ‘to work as quickly and
accurately as possible” to attempt to put subjects at some ideal center point.

We note this tradeoff to designers so that when they are observing users, they realize that
operators may be working at different points in the curve. For example, when typing drafts, we
type fast and use spell correction to clean up. When entering passwords, we type slow because
errors particularly take time to correct.

 39

Figure 13. The speed accuracy trade-off curve. Reprinted from Ritter et al., 2014

3.2.5 Summary of attention
Attention can be seen as the tasks and information that the operator is attending to or working

with. There are consistencies and effects that arise from this process. To the extent that
designers can understand the operator and their tasks, they have a role to facilitate the allocation
of attention and to support its use.

To summarize how designers can support operators’ attention, we present a few design
principles related to attention.

Principle 3.6: Present information needed for comprehension directly
Attention and working memory are limited; information shown to the operator should be

processed and integrated as much as possible (but not more) to reduce operator workload and
support the system goals.

Avoid giving operator extra work, particularly for tasks that better suited for technology.
Methods for implementing this can range in complexity, but beneficial design choices will be
structured around eliminating extraneous work for the operator. Simple examples might include
reducing unnecessary mental math or just moving related information closer together (eye
movements take time, as do mouse movements, milliseconds matter; (Gray & Boehm-Davis,
2000) Complex examples include totally redesigning a complicated display around a relatable
design metaphor with a unified representation of the information (Figures 14 & 15).

For example, consider a simple altimeter design. Pilots are often skilled operators with a lot of
experience in their primary tasks. However, the human limits on attention and memory are
always a factor. Designing to improve comprehension will reduce mental strain for experienced
and inexperienced pilots alike.

A pilot need not calculate the difference between assigned altitude and present altitude.
Technology has advanced so that this can be calculated and displayed better than the initial dials.
Simplify the task and use each systems’ strengths. The computer can handle simple mathematical
calculations and could show the values using two lines separated by the deviation. The pilot can
then visually identify any issues with altitude much more quickly as a visual process.

Compare the two altimeters in Figure 14. On the left, the pilot must do an abstract calculation
to compute the difference and direction between present and assigned altitude. On the right, the
difference is shown visually, a much faster and less error-prone task.

 40

Figure 14. The interfaces for two different altimeters. The Radiant Digital Altimeter5 (a) requires the pilot to
mentally compare their altitude to the set value while accounting variables affecting the instrument accuracy.

The Garmin G5006 (b) simplifies this by including a spatial comparison between accurate barometric
altitudes and clear representation of current altitude and ground level.

As another example that is more complex, consider Figure 15. It provides a redesign of an
airplane’s control panel around a more direct plane metaphor. Flying with traditional airplane
displays requires the pilot to mentally calculate their current flight relative to the limits based on
the flight envelope (i.e., stable flight based on related parameters like airspeed, altitude, and
orientation). This mental calculation is difficult and cognitively taxing, particularly during times
of high workload from adverse conditions like fog or turbulence. When vision is impaired, pilots
rely solely on instrument flight (IF) with no visual reference frame.

This risky situation led to Temme, Still, and Acromite (2003) to propose an interface titled
“Oz” that portrays the key information as an integrated display built around a digital plane
(Figure 15a). This display presents exactly what the pilot needs to know for the task: current
aircraft performance compared to aircraft limits and optimal values. A comparison between old
and new displays are shown in Figure 15 (b and c).

Figure 15. The design and implementation of the OZ compared to a traditional cockpit.

 (Images from Temme et al., 2003).

Although the OZ display initially appears complex to new users, it was designed to support
common tasks based on a mental model of the plane. This was confirmed via testing when the
OZ interface performed significantly better than conventional displays. With the OZ display,
subjects with no flight experience immediately showed greater flight precision (for orientation

5 a: http://www.beliteaircraftstore.com/radiant-digital-altimeter-1/
6 b: https://www.manualslib.com/manual/1230544/Garmin-G500.html?page=53#manual

 41

and altitude) and reduced performance loss from turbulence than when using the typical display.
After about 80 hours of flight time with both displays, subjects attempted to perform a reading
task while operating the plane. This was essentially impossible with the conventional display, but
subjects saw almost no loss in performance when using OZ. Similar designs could be created for
control rooms, perhaps as a summary supporting task performance while retaining the raw data
visible behind the summary display.

Principle 3.7: Support operators to deal with interruptions.
To summarize, to support operators to deal with interruptions:

1) High-stakes work should be distraction-free.

2) Warn operators that an interruption is imminent when possible, that is, allow operators to prepare
for task-switching.

3) Promote completion of primary task steps before beginning secondary tasks. Simplify the process
for resuming a postponed task. This can be done by suspending the secondary task,
autocompleting the primary task, or provide note-taking about the status of the primary task.

4) If interruptions are necessary, reduce the distance and difference between the primary and
secondary tasks as measured semantically or syntactically.

Principle 3.8: Use stimuli habituation appropriately.
Even salient signals will become habituated with repeated presentation.
Constant presentation of a signal leads to habituation, and thus reduced detection and attention
by operators. Designers should create a hierarchy of signal salience to ensure the right signals
get through.

3.3 Working memory and cognition
Following the perception of information from the environment, the operator needs to use that

information to make decisions and complete their work. Task-related information must be
analyzed, manipulated, and transformed into useful information that can guide the actions taken
by the operator. The operator must integrate their knowledge of the state of the world with their
mental model of the task. For example, an operator sees that the temperature of some module is
above the safe threshold and the battery is running low. The operator stores these facts in their
short-term memory and then consults their long-term memory for how to respond to the issue.
The response is then also added to short-term memory alongside the facts about the world state.
The operator performs the response on the system, ensures the problem is fixed, and then
discards the old information before moving onto their next task. Variations of this process occurs
many times throughout an operator’s shift. These human memories do not work as well (at least
under conventional views) as computer memory, so designers familiar with computers should be
aware of the differences. Designers should particularly be aware of the differences because their
own mental models of their own memories are likely to be particularly incorrect—if your
memory fails you are unlikely to be able to notice this!). This section will describe how working
memory and long-term memory affect operator performance.

3.3.1 Working memory
Often, the work performed in op centers requires operators to integrate snippets of information

from various sources to come to a decision or understand the situation. This process of storing

 42

and manipulating that information occurs within the working memory of the operator. Working
memory stores and manipulates information for near-term use (Ricker, AuBuchon, & Cowan,
2010). Some tasks require multiple pieces of information to be analyzed and processed near-
simultaneously; working memory enables people to handle this by offering a “scratchpad” for
relevant information. Though particularly relevant during the performance of complex tasks,
working memory is a foundational mediator for how each person interacts with the world.
Working memory acts as a store for both internal events (i.e., recalling long-term memories) and
external events (i.e., perceiving visual signals). In many ways, working memory is often
analogized to be comparable to the RAM of a computer system, whereas long-term memory is
like the ROM. The RAM, or working memory, allows rapid data access, efficient manipulation,
and quick turnover between processes. The ROM, or long-term memory, provides a slower,
semi-permanent location for information storage and retrieval.

The RAM-ROM analogy also applies to the limitations of working memory. While long-term
memory does not appear to have a clear storage limit in humans, working memory is constrained
by a capacity of only a few items—the most common general storage limit is about seven items
plus or minus two items (Miller, 1956). The seven-item limit is overly simplistic but provides a
useful anchor for working memory capacity. Working memory capacity also varies across the
population with greater working memory capacity being associated better performance at
cognitive tasks (Just & Carpenter, 1992), and how abstract and how well known the concepts are
(less abstract and more practiced tasks are easier to remember and use; Ritter et al., 2014, Ch. 5
for more information).

The approximate limit for working memory capacity becomes even more complex due to
processes like chunking. Chunking refers to a mental process for grouping sets of individual
information pieces into easily recognizable sets. For example, it will be easier to remember a
sequence of items like “N S A F B I” (chunked as: NSA, FBI) than “Q G Z T Y V” (not
chunkable by most; Chalmers, 2003; Ellis, 1996). Chunking mechanisms can be leveraged by
system designers to increase the practical working memory capacity of the users.

Modern theories of memory suggest that working memory is built from specialized subsystems
that differ based on their input: the “visuospatial sketchpad” for visual spatial information and
the “phonological loop” for verbal information (Baddeley, 2000). This distinction between
verbal and visual working memory stores is important because these two systems can perform
semi-independently without much interference (i.e., loss of performance) between them. When
implemented successfully, this can allow someone to drive a car while listening to an audiobook
with almost no loss of performance for the primary task (Granados, Hopper, & He, 2018).
However, implementing this concept is not necessarily foolproof. When the secondary task
requires too much mental effort (i.e., maintaining a conversation vs. passive listening), driving
performance tends to be degraded to a noticeable degree (Strayer, Drews, & Johnston, 2003).
While multi-tasking is best avoided, making attempts to isolate the tasks to distinct working
memory stores can provide some measure of risk-reduction.

For the designer, there are a few takeaway implications for design. (a) Working memory has
limitations on capacity and performance. Don’t use it up asking the user to remember items the
system can remember for them. (b) Chunking of items can increase the functional working
memory capacity. Support chunking when you can by putting items in a canonical order,
spacing items to support chunking (e.g., FBI vs F__:B-I) and understanding the patterns
operators know and choose. (c) Working memory has a time-based decay. Maintenance requires

 43

rehearsal at some cost to the operator’s cognitive resources. Don’t expect users to remember
information across minutes.

3.3.2 Cognitive load
Cognitive work is inherently taxing on our mental resources. We have previously discussed the

impairment of cognition as it relates to attention, but higher-order processes are also affected.
Throughout the performance of cognitive work within an op center, operators are presented with
information that must be monitored and assessed and may need to be compared across time.
These types of work are inherently difficult, particularly when during long periods of performing
the tasks. Cognitive load theory (CLT) describes how the various factors like working memory
load, personal stress, and task difficulty can provide an overall decrement on performance of
cognitive work (Sweller, 1988). Cognitive load theory provides a way to compare task difficulty
(relative to the expertise of the user) across different task environments. Reducing cognitive load
provides a broadly effective way to improve performance by freeing up working memory
capacity for more important tasks like integrating information and learning. CLT is a useful
concept, but currently it lacks units and an objective way to measure it. We find it useful non-
the-less.

A review of cognitive load’s role in human-computer interaction design is provided by
Hollender, Hofmann, Deneke, and Schmitz (2010). This review integrates CLT research into a
useful framework for systems engineers. They posit three main types of cognitive load: intrinsic,
extrinsic, and germane. Intrinsic cognitive load refers to the inherent complexity of the
information being processed by the user. Comparing intrinsic load can only really be done by
comparing two tasks rather than by providing a standalone value. For example, driving on an
empty highway would likely provide less inherent complexity compared to driving on a busy city
street.

Extrinsic cognitive load refers to environmental and context-dependent factors that provide
unnecessary contributions to task difficulty. Integrating spatially distant information from
displays that are on opposite ends of the room will be inherently more difficult than if the
displays were side-by-side due to the required storage of the information in working memory
between task steps.

Finally, germane cognitive load refers to the beneficial cognitive work that improves task
performance. Learning and practice of the skills and schema required to perform a task also
require cognitive resources, in contrast to unhelpful portions of the overall cognitive load. All
three types of load contribute to the overall working memory needs of any given task, and the
ideal task will reduce the intrinsic and extrinsic load to provide more resources for the beneficial
mechanisms that occur from germane cognitive load.

Reducing the cognitive load of extraneous tasks can provide a consistently useful method for
improving the performance of operators. A simple method for reducing cognitive load is by
enforcing consistency across the layout, color scheme, and overall information presentation style
for components of an individual system and across multiple systems (Chalmers, 2003). Even
experienced users that may switch between a Windows OS and Mac OS will know the feeling of
attempting to use a Mac-only shortcut on a Windows machine (or vice versa).

Many of the recommendations for reducing cognitive load can be succinctly described as
reduce the space and distance between co-dependent information. In some cases, this can be a
relatively simple process with multiple solutions. Disparate information sources could be split
across multiple displays to maximize information presentation, or alternatively, a single display

 44

could be trimmed of unnecessary information to bring the most important features onto a single,
more efficient display (Brown, Greenspan, & Biddle, 2013). Other cases provide less clarity in
determining the best practices for a given context. Providing redundancy in feature presentation
can help reinforce certain information, but the additional features inherently increase the intrinsic
cognitive load during interaction with the system (Grunwald & Corsbie-Massay, 2006).
Engineers and other stakeholders must use the risk-driven approach to make informed decisions;
competing design recommendations are rarely weighted on easily comparable scales. Krug’s
(2005) approach provides further suggestions to reduce cognitive load.

Further ways to support operators by reducing cognitive load in them is by increasing cognitive
load in the system. This includes (a) Reminding operators to do tasks that need to be done. (b)
Reduces cognitive load by simplify tasks that that can be simplified in actions number, length,
and complexity. (c) Automate tasks that can be automated. Like your turn signal automatically
shutting off when you return your tires to straight.

3.3.3 Summary of working memory and cognition
Working memory is used extensively by cognition. More is usually better, and less stress on

working memory by decreasing the amount required and the time information has to be held also
reduces errors. To summarize how designers can make best use of operators’ working memory,
we present a design principle related to working memory.

Principle 3.9: Reduce the cognitive resources used during multi-step tasks
Operators’ cognitive resources like working memory and attention are limited, and these

limitations are made worse by fatigue, stress, and task difficulty. Simplifying the work will
reduce workload and make errors less likely to occur.

Simplifying tasks can be done in many ways depending on the specific scenario. The common
factor for all successful implementations of this guideline is a reduction in the amount of
working memory, attention, or any other cognitive resource needed to perform the task.

If an operator is alerted for a task that needs done in thirty minutes, the system should provide
an additional reminder at the appropriate time rather than relying on the operator’s memory.

If a common task requires several steps to complete, provide an interactive task checklist that
indicates the current state of the procedure. (Checklists are very helpful to support complex
tasks). A simpler solution could be incorporating a window showing all inputs and outputs for
the system with associated timestamps.

3.4 Summary
The mechanisms that operators use to perform their work influences how the work gets done,

what errors are likely to occur, and how to design to support it in the same way that how the
components in electrical circuits work influences how they produce their outputs, what errors are
likely to occur, and how to design with them. The most salient mechanisms of operators to
improve the design of op centers are perception, attention, and working memory. These are used
to generate operator behavior. They interact, and good design will be based on a theory of how
they are used by operators to perform their tasks based on the information presented to them in
the interface.

We include design principles to help with design. When these principles contradict
themselves, which design principles and guidelines will inevitably do, the design should resort to
the tasks, their importance and frequency, to resolve the design tradeoffs.

 45

There are also other mechanisms of operators, shown in Figure 5, that will influence op centers.
These mechanisms include motor output and other forms of perception. An overview of these
mechanisms is available in Ritter et al. (2014) including further readings.

 46

4. Conclusion
This report summarized a process for designing and implementing op centers in Section 1. As

the work is performed, risks are assessed using a spiral development model that checks with
stakeholders at each major phase, and adjusts the process based on the risks that can be perceived
at that stage. The intermediate and final system can be assessed using simple usability tests as
well as cognitive walkthroughs.

The process uses shared representations of the operators, their tasks, and the context of the
work. An example of these is provided in Appendix 1. These shared representations are used to
design and create an op center. Appendix 1 with its subsections provides an example set of
documents for knowing your users and their tasks. Larger systems will need correspondingly
larger and more complex documents. Smaller systems will need less. Systems only used by their
developers might not need anything, but systems that are designed without these documents are
designed informally and solely their designer’s use, not for the operators. As architects would
discuss blueprints particularly before building a project, op center designers should expect to
prepare and discuss these documents during design with other stakeholders, such as managers,
future operators, and funders. These discussions can reduce misunderstandings, lead to
supporting all the tasks for all stakeholders, defend designs, and help keep the relevant goals,
mission, and tasks in mind when designing a system. Using these documents reduces risks (Pew
& Mavor, 2007).

Sections 2 and 3 provide design principles that managers, designers, and implementers can be
informed by. These stakeholders can also be informed by greater knowledge of the operators as
a type of system component. Section 3 provides a short overview of the types of knowledge of
operators that can help inform system design and implementation. Further sources for learning
more are noted in each section.

This report should also be seen as an initial review. There is more to know about how to
support operators than is covered here. Appendix 2 provides pointers to further information on
how to support operators in control rooms and to support the designers who create them.

4.1 The need for user-centered design
One of the difficulties with this approach will be investing the perceived additional time and

effort to avoid the risks that this approach helps mitigate, ameliorate, or avoid. Typically, this
approach takes additional effort, and organizations do not always see the risks until they arrive.
There is evidence, however, that a mindful approach can overall reduce costs (Booher &
Minninger, 2005).

A problem that remains then, is to provide evidence that there are risks and that this approach
helps reduce risks and their impact. Pew and Mavor (2007) call for examples to help motivate
the different team members to appreciate how usability can influence system performance.
Table 7 notes a few examples. Support from management for this more engineering-based
approach as well as further local examples could be useful to motivate implementer and
technology designers to take operator tasks and their knowledge, skills, and abilities more
seriously.

Keeping a list of known risks and accidents could be helpful in several ways. The particular
risks to op centers’ success may be difficult to quantify and will often arise from unexpected
events. It may be worthwhile for an organization to keep track of misses and near misses to
accidents, as NASA does for air traffic control in the NASA Aviation Safety Reporting System.

 47

Table 7. Examples of usability problems leading to accidents (or extreme training or testing avoiding them).

Further examples are available in Casey (1998).

The USS Vincennes Incident
The US Airways Flight 1549 that landed in the Hudson River
A Tomahawk launch system that was cancelled for not meeting response time when the
problem was known (Chipman & Kieras, 2004).
Task analyses of various Army projects that lead to saving $100M’s across multiple projects
(Booher & Minninger, 2005).

4.2 The need for better shared representations
Another problem is the usability of the shared representations themselves. The managers,

designers, and implementers can come from different intellectual backgrounds, and have
different assumptions themselves. There is a need to translating some representations to
“engineer speak”, and perhaps in the other direction. There is a young literature on how to
prepare knowledge about design aspects to share with other team members. This is a problem
noted by Pew and Mavor (2007), where it is called shared representations, and work remains to
make the shared representations are as useable as they can be.

4.3 Open problems
We can now revisit Table 3, presented here as Table 8. The responses are included in the table

for convenience of reading and presentation.
As the material in Table 8 notes, there remain open problems with applying this approach.

How detailed the documents for particular op centers and even different technologies will vary
and will have to be adjusted. The risks that arise in the use of particular op centers will vary with
the domain that the op center is supporting. This approach does not guarantee a perfect or even a
better system, but it overall reduces risk and the probability of system failures.

 48

Table 8. Questions answered by this document.

Process Performance
1)	 What	 user	 interface	 features	 reduce	 user	 stress	 and	 improve	 and	 maintain	 level	 of	 performance?	

Reducing cognitive load will reduce user stress and improve and maintain performance.
This load depends on multiple aspects of an interface. Making each of the substeps in the
user’s tasks will support this. Doing so is done by matching the user’s capabilities with
the interface.

2)	 Which	 task	 UI	 factors	 design	 mitigate	 performance	 degradation	 (speed,	 accuracy)	 during	 the	
execution	 of	 detailed	 procedures	 for	 trouble	 shooting?	

The factors noted in answer 1, as well as avoiding interruptions or supporting their
graceful entry and exit.

High Throughput Reaction Times
3)	 	 What	 levels	 of	 fast	 and	 complex	 interfaces	 impair	 or	 enhance	 user	 reaction	 time	 and	 accuracy?	

The factors are detailed in the review. Briefly, making perception of the task fast and
easy, reducing the cognitive load by type and number of substeps, and making the output
easy.

4)	 	 What	 are	 the	 reaction	 time	 and	 accuracy	 for	 a	 user	 to	 react	 to	 an	 alert	 and	 respond	 to	 the	 alert	 with	
the	 correct	 actions	 using	 the	 task	 UI?	 What	 are	 the	 upper	 limits	 of	 number	 and	 speed	 of	 alerts	 before	
performance	 degrades?	 	

We have ways to estimate the time to handle an alert. The Keystroke Level Model (Card
et al., 1980, 1983) can be used to estimate response times. The upper limit must be based
on an interface specified in enough detail to make predictions. The field does not have to
our knowledge tools to fully compute the upper limit because the limit would depend on
many things that we don’t yet have fully computational or algorithmic equations for.

	

5)	 What	 are	 the	 reaction	 time	 and	 accuracy	 for	 a	 user	 to	 distinguish	 between	 levels	 of	 criticality	 using	
the	 task	 UI?	 	

This time would depend on the perceptual display, the relatively frequency of signal and
noise, the payoffs between signal and noise. We do not know of an equation to compute
this, but an equation could be created for fixed measures and validated empirically with
operators.

6)	 What	 are	 the	 effects	 on	 reaction	 time	 and	 accuracy	 for	 a	 user	 using	 the	 system	 over	 time?	 	 	

In general, with practice, reaction time goes down (Ritter et al., 2014, Ch. 5), but fatigue
goes up. There are formulas to compute the general effect of fatigue (FAST ;Hursh et al.,
2004). They are validated but require some examination and understanding before use in
a given situation.

 49

Interface Generalizable and Individualized Effectiveness
7)	 Which	 interface	 design	 elements	 vary	 and	 do	 not	 vary	 in	 effectiveness	 across	 various	 demographics?	

Design elements will vary based on previous experience with the design elements. The
design elements would have to be specified to fully answer this question.

8)	 Which	 of	 the	 above	 questions	 are	 affected	 by	 age	 and	 prior	 education?	

All of these questions are affected by age and prior education. Just how, varies on the
question and the type of education. Typically, people become slower with age with raw
response time, but this is typically not seen due to additional practice that contributes to
lower response times as well as more knowledge which leads to better strategies and less
search and problem solving. Prior education that gives practice on the task or related
tasks decreases time. Education that teaches useful theory will lead to better strategies
that will in time but perhaps not immediately reduce response time. Further reviews are
available.

 50

References
Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe? Oxford: Oxford University

Press. https://doi.org/10.1093/acprof:oso/9780195324259.001.0001
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive

Sciences, 4(11), 417–423. https://doi.org/10.1016/S1364-6613(00)01538-2
Banbury, S., Selcon, S., Endsley, M. R., Gorton, T., & Tatlock, K. (1998). Being certain about uncertainty: How

the representation of system reliability affects pilot decision making. In Proceedings of the Human Factors
and Ergonomics Society Annual Meeting (pp. 36–39).

Baxter, G. D., Churchill, E. F., & Ritter, F. E. (2014). Addressing the fundamental attribution error of design
using the ABCS. AIS SIGCHI Newsletter, 13(1), 76–77.

Besnard, D., Greathead, D., & Baxter, G. D. (2004). When mental models go wrong. Co-occurences in dynamic,
critical systems. International Journal of Human-Computer Studies, 60(60), 117–128.

Blackmon, M. H., Polson, P. G., Kitajima, M., & Lewis, C. (2002). Cognitive Walkthrough for the Web. In
Proceedings of CHI 2002 (pp. 463–470). ACM Press.

Boehm, B., & Hansen, W. (2001). The Spiral Model as a Tool for Evolutionary Acquisition. CrossTalk, 14(5), 4–
11. Retrieved from http://nkhalid.seecs.nust.edu.pk/SE/software p. models readings/presentation 1.pdf

Boff, K. R., & Lincoln, J. E. (1988). Engineering data compendium: Human perception and performance.
Wright-Patterson Air Force Base.

Bolstad, C. A., Cuevas, H., Wang-Costello, J., Endsley, M. R., & Angell, L. S. (2010). Measurement of situation
awareness for automobile technologies of the future. Performance Metrics for Assessing Driver Distraction:
The Quest for Improved Road Safety, 4970(May 2016), 195–213. https://doi.org/10.4271/R-402

Booher, H. R., & Minninger, J. (2005). Human Systems Integration in Army Systems Acquisition. In H. R.
Booher (Ed.), Handbook of Human Systems Integration (pp. 663–698). Hoboken, NJ, USA: John Wiley &
Sons, Inc. https://doi.org/10.1002/0471721174.ch18

Brown, J. M., Greenspan, S. L., & Biddle, R. L. (2013). Complex activities in an operations center: A case study
and model for engineering interaction. In Proceedings of the 5th ACM SIGCHI symposium on Engineering
interactive computing systems - EICS ’13 (Vol. 2, p. 265). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2494603.2480310

Cairns, P., & Cox, A. (2008). Research methods for human-computer interaction. (P. Cairns & A. L. Cox, Eds.).
Cambridge University Press.

Campoe, K. R., & Giuliano, K. K. (2017). Impact of Frequent Interruption on Nurses’ Patient-Controlled
Analgesia Programming Performance. Human Factors, 59(8), 1204–1213.
https://doi.org/10.1177/0018720817732605

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time with
interactive systems. Communications of the ACM, 23(7), 396–410.
https://doi.org/http://doi.acm.org/10.1145/358886.358895

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer Interaction. Hillsdale, N.J.:
Lawrence Erlbaum.

Casey, S. M. (1998). Set phasers to stun: And other true tales of design, technology, and human error. Santa
Barbara, CA, USA: Aegean.

Chalmers, P. A. (2003). The role of cognitive theory in human-computer interface. Computers in Human
Behavior, 19(5), 593–607. https://doi.org/10.1016/S0747-5632(02)00086-9

Chang, D., Dooley, L., & Tuovinen, J. E. (2002). Gestalt Theory in Visual Screen Design - A New Look at an Old
Subject. In Selected Papers from the 7th World Conference on Computers in Education (WCCE’01) (pp. 5–
12). Copenhagen. Retrieved from http://crpit.com/confpapers/CRPITV8Chang.pdf

Chilton, E. (1996). What was the subject of Titchner’s doctoral thesis. SigCHI Bulletin, 28(2), 96.
Chipman, S. F., & Kieras, D. E. (2004). Operator centered design of ship systems. In Engineering the total ship

symposium. NIST, Gaithersburg, MD: American Society of Naval Engineers.
DeMarco, T., & Lister, T. (1999). Peopleware: Productive projects and teams. New York, New York, USA:

Dorset House Publishing.
Dow, S. (2011). How prototyping practices affect design results. Interactions, 18(5), 54–59.
Ellis, N. C. (1996). Sequencing in SLA: Phonological memory, chunking, and points of order. Studies in Second

Language Acquisition, 18(1), 91–126. https://doi.org/10.1017/S0272263100014698

 51

Endsley, M. R. (1995). Toward a Theory of Situation Awareness in Dynamic Systems. Human Factors: The
Journal of the Human Factors and Ergonomics Society, 37(1), 32–64.
https://doi.org/10.1518/001872095779049543

Endsley, M. R. (2000). Theoretical Underpinnings of Situation Awareness: A Critical Review. Situation
Awareness Analysis and Measurement, 3–32. https://doi.org/10.1016/j.jom.2007.01.015

Endsley, M. R., Bolstad, C. A., Jones, D. G., & Riley, J. M. (2003). Situation Awareness Oriented Design: From
User’s Cognitive Requirements to Creating Effective Supporting Technologies. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 47(3), 268–272.
https://doi.org/10.1177/154193120304700304

Endsley, M. R., Bolte, B., & Jones, D. G. (2003). Designing for situation awareness: An approach to user-
centered design. (M. R. Endsley, Ed.) (1st ed.). New York, New York, USA: CRC press.

Epling, S. L., Russell, P. N., & Helton, W. S. (2016). A new semantic vigilance task: vigilance decrement,
workload, and sensitivity to dual-task costs. Experimental Brain Research, 234(1), 133–139.
https://doi.org/10.1007/s00221-015-4444-0

Findlay, J. M., & Gilchrist, I. D. (2003). Active Vision: The psychology of looking and seeing. Oxford, UK:
Oxford University Press.

Galanter, E. (1962). Contemporary psychophysics. In R. Brown, E. Galanter, E. H. Hess, & G. Mandler (Eds.),
New directions in psychology (pp. 87–156). New York: Holt, Rinehart, Winston.

Garner, W. R. (1974). The processing of information and structure. Potomac, ML: Erlbaum.
Granados, J., Hopper, M., & He, J. (2018). A Usability and Safety Study of Bone-Conduction Headphones During

Driving while Listening to Audiobooks. Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 1373–1377. https://doi.org/10.1177/1541931218621313

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: An introduction to microstrategies and to their
use in describing and predicting interactive behavior. Journal of Experimental Psychology: Applied, 6(4),
322–335.

Grunwald, T., & Corsbie-Massay, C. (2006). Guidelines for cognitively efficient multimedia learning tools:
educational strategies, cognitive load, and interface design. Academic Medicine  : Journal of the Association
of American Medical Colleges, 81(3), 213–223. Retrieved from
http://journals.lww.com/academicmedicine/Fulltext/2006/03000/Guidelines_for_Cognitively_Efficient_Multi
media.3.aspx

Healey, C., & Enns, J. (2012). Attention and visual memory in visualization and computer graphics. IEEE
Transactions on Visualization and Computer Graphics, 18(7), 1170–1188.
https://doi.org/10.1109/TVCG.2011.127

Helton, W. S., & Russell, P. N. (2011). Working memory load and the vigilance decrement. Experimental Brain
Research, 212(3), 429–437. https://doi.org/10.1007/s00221-011-2749-1

Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of vigilance. Acta Psychologica,
129(1), 18–25. https://doi.org/10.1016/j.actpsy.2008.04.002

Hollender, N., Hofmann, C., Deneke, M., & Schmitz, B. (2010). Integrating cognitive load theory and concepts of
human-computer interaction. Computers in Human Behavior, 26(6), 1278–1288.
https://doi.org/10.1016/j.chb.2010.05.031

Hursh, S. R., Redmond, D. P., Johnson, M. L., Thorne, D. R., Belenky, G., & Balkin, T. J. (2004). Fatigue models
for applied research in warfighting. Aviation, Space, and Environmental Medicine, 73(3), A44–A53.

Irwin, D. E., Brown, J. S., & Sun, J. (1988). Visual masking and visual integration across saccadic eye
movements. Journal of Experimental Psychology. General, 117(3), 276–287. https://doi.org/10.1037/0096-
3445.117.3.276

Jones, D. G., & Endsley, M. R. (1996). Sources of situation awareness errors in aviation. Aviation, Space, and
Environmental Medicine.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working
memory. Psychological Review, 99(1), 122–149. https://doi.org/10.1037/0033-295X.99.1.122

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning how to operate a device. Cognitive
Science, 8, 255–273.

Kosslyn, S. M. (2007). Clear and to the point: 8 psychological principles for compelling PowerPoint
presentations. New York, New York, USA: Oxford University Press.

Krug, S. (2005). Don’t make me think: A common sense approach to web usability (2nd editio). Berkeley, CA:
New Riders Press.

Lewis, C., & Rieman, J. (1994). Task-Centered User Interface Design: A Practical Introduction.

 52

Marsh, R. L., Cook, G. I., & Hicks, J. L. (2006). Task interference from event-based intentions can be material
specific. Memory & Cognition, 34(8), 1636–1643. https://doi.org/10.3758/BF03195926

Moore, C. M., & Egeth, H. (1997). Perception Without Attention  : Evidence of Grouping Under Conditions of
Inattention to shape constancy . Similar findings have been reported for. Journal of Experimental Psychology.
Human Perception and Performance, 23(2), 339–352.

Moray, N. (1996). A taxonomy and theory of mental models. In Proceedings of the Human Factors and
Ergonomics Society 40th Annual Meeting (pp. 164–168).

Pew, R. W. (2008). Some New Perspectives for Introducing Human-Systems Integration into the System
Development Process. Journal of Cognitive Engineering and Decision Making, 2(3), 165–180.
https://doi.org/10.1518/155534308X377063

Pew, R. W., & Mavor, A. S. (2007). Human-System integration in the system development process: A new look.
National Academies Press.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces. International Journal of Man-Machine Studies, 36(5), 741–773.
https://doi.org/10.1016/0020-7373(92)90039-N

Ricker, T. J., AuBuchon, A. M., & Cowan, N. (2010). Working memory. Wiley Interdisciplinary Reviews:
Cognitive Science, 1(4), 573–585. https://doi.org/10.1002/wcs.50

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for Designing User-Centered Systems.
London: Springer London. https://doi.org/10.1007/978-1-4471-5134-0

Strayer, D. L., Drews, F. A., & Johnston, W. A. (2003). Cell Phone-Induced Failures of Visual Attention During
Simulated Driving. Journal of Experimental Psychology: Applied, 9(1), 23–32. https://doi.org/10.1037/1076-
898X.9.1.23

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6),
643–662. https://doi.org/10.1037/h0054651

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 12(2), 257–
285. https://doi.org/10.1207/s15516709cog1202_4

Temme, L. A., Still, D. L., & Acromite, M. (2003). OZ: A human-centered computing cockpit display. In 45th
Annual Conference of the International Military Testing Association (pp. 70–90).

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an interrupted task:
Effects of prospective goal encoding and retrospective rehearsal. International Journal of Human Computer
Studies, 58(5), 583–603. https://doi.org/10.1016/S1071-5819(03)00023-5

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.
Tufte, E. R. (2006). Beautiful evidence (2nd ed.). Cheshire, CT: Graphics Press.
Ulrich, T. A., & Boring, R. L. (2013). Example User Centered Design Process for a Digital Control System in a

Nuclear Power Plant. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1),
1727–1731. https://doi.org/10.1177/1541931213571385

Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working memory capacity and the antisaccade task:
individual differences in voluntary saccade control. Journal of Experimental Psychology. Learning, Memory,
and Cognition, 30(6), 1302–1321.

 53

Appendices

Appendix 1: Detailed Problem Space: A Water Detection System
(WDS)

SatCorp is an imaginary corporation that builds user interfaces for a unique class of command
and control systems. These systems, while all unique, have many features that are consistent
throughout their designs. The goal of this fictitious use case is to enable readers to consider an
example case that is typical of such op centers. The initial draft of this system description was
created with Mark Foster of L3Harris Technologies. The system description includes an
overview, system architecture, key features, example day in the life (or scenarios), typical issues,
user types, and task analysis. Each of these could and should be expanded in more detail for real
op centers. A set of these descriptions provides a solid basis for designing with the operator in
mind.

A1.1 Overview
The fictitious use case involves building a user interface to command and control a remote

Water Detection System (WDS). This WDS will be deployed to Mars in an attempt to detect
pockets of water underneath the surface or traces of water in the soil on the surface.

The WDS will take 5 years to develop and test before its ready to deploy. Once ready, it will
be sent to Mars as part of larger manned mission. Due to space constraints on the manned
vessel, the WDS will be disassembled before launch. It will be the responsibility of the team on
this space mission to assemble the WDS, perform some initial checkout of the system, and
ultimately deploy the WDS on the surface of Mars. During the assembly and checkout of the
system, the team will command and control the system via a laptop with a local LAN connection
to the WDS. The system checkout of the system is intended to exercise the different parts of the
system to make sure they are still operational. Spare parts have been shipped with the system in
case anything has been damaged in transport.

Once deployed on the surface of Mars, the WDS is expected to a have a 10-year mission where
it is solely commanded and controlled by NASA’s operations center. The operators in NASA’s
ops center are on duty 24/7. The WDS is only one of dozens of systems they monitor. Decision
making with regards to how the WDS is utilized comes from the scientists in the Program Office
who funded the development of the WDS. It is the Program Office’s charter to find water
sources in other locations throughout our solar system.

This example (and associated material) ignores the communication delays with Mars because
most op centers do not deal with such long time-delays in communication media (although they
will see delays in reports from other systems).

A1.2 System architecture
The WDS is comprised of several elements. These elements are listed with a brief description

of each.

 54

Main Control Element (MCE)
The MCE acts as the brain in the field. It is the responsibility of the MCE to facilitate

commands from Earth and collect data and status to send back to Earth. More specifically, when
commands are sent to the WDS, the MCE oversees executing those commands. Commands that
are scheduled for future date, will reside in the MCE until it is time to execute such commands.
Commands for immediate execution will be executed upon receipt. Depending on the command
type, the MCE is tasked with powering on the necessary elements and forwarding subcommands
to those elements. All the while, the MCE is also constantly polling the other elements for
status. In addition, the MCE provides storage for water analysis data from the Rock and Sand
Exploration Element and Deep-Water Detection Element. When the WDS sends data home, it is
the responsibility of the MCE to bundle element status and water analysis data, perform
compression and encryption, and then forward that data when appropriate to the
Communications Element.

Communications Element (CE)
The CE contains the antenna for communicating with Earth. This antenna is single-duplex and

therefore can only receive or transmit at a given time. Due to this limitation, the antenna is by
default in receive mode to receive commands from Earth. The team on Earth must command it
into Transmit mode to transmit data home. Typically, the team will schedule several Transmit
commands per day on the MCE that cover roughly a week.

Autonomous Navigation Element (ANE)
The ANE controls the components of the WDS that are responsible for moving the WDS from

one location to another. The ANE includes cameras for a taking pictures of the terrain around it
and has special image detection algorithms for identifying obstacles it must navigate around.
The ANE can be commanded to move from point A to point B, and on its own determine the best
route to get there that may not be a straight line if obstacles are in the way. In addition, this
element controls the drive motor, wheels, and steering functionalities. It also controls the
emergency assist wheels and arms that enable it to get out of precarious physical situations.

Rock and Sand Exploration Element (RSEE)
The RSEE controls the shovel like apparatuses the WDS is equipped with. It also controls the

cameras and sensors that are used to evaluate a segment of sand or rocks. Data recorded from
this element is forwarded to the MCE for storage until it is sent back to Earth for analysis.

Deep Water Detection Element (DWDE)
The DWDE controls the drill and soil probe the WDS uses to search for water underneath the

surface. When commanded to do so, the DWDE will drive the probe into the ground to gather
water analysis data. In cases where the ground is too solid, the DWDE will remove the probe,
and use the drill to loosen the ground underneath the surface. After drilling, the probe is
reinserted into the ground to continue gathering water analysis data. Like the RSEE, data
recorded by this element is forwarded to the MCE for storage until it is sent back to Earth for
analysis.

 55

Power Generation Element (PGE)
The PGE consists of solar panels and the system batteries. The PGE has a set of solar panels

that are distributed around the WDS. These panels are used to generate power and charge the
system batteries. The solar panels can rotate and tilt as needed to maximize sun exposure. The
PGE is responsible for calculating the ideal rotation and attitude.

A1.3 Key features of the WDS
The following sections outline the key features the user interface must accommodate.

Status
All six system architecture components listed above contain numerous status items that must be

reported on a regular basis. Status can range from environmental measures such as pressure,
temperature, and humidity, to element-specific status such as current speed (mph or kph) for the
ANE.

One of the roles of the MCE is to periodically poll all the components for their latest status
values. The MCE then stores all these values until the next opportunity to transmit data to Earth.
It is important to note, the MCE polls only the A or B side of a given component, depending on
which side is currently booted. If the MCE attempts to poll a given component that is
unresponsive, the MCE can power cycle that component or even switch sides of that component.
This usually only occurs after some threshold of unresponsive polls. This threshold is
configurable.

Event Logs
Like reporting status, each component is recording an event log of the activities that component

is executing. Periodically, when a given component’s log reaches a given threshold, that
component will start a new log, and transfer the old log to the MCE. The MCE will send all the
logs home at the next opportunity to transmit data to Earth. The command and control GUI back
on Earth will consolidate these logs into a single system log, but typically needs to filter out
element specific details.

Configuration
Each element also maintains a set of configuration fields. For example, the MCE may be

configured to power cycle a given component after a certain number of unresponsive polls by the
MCE. This value is configurable because different scenarios may want to power cycle if 3 polls
are unresponsive, while others may want to wait until 10 polls without responding. In addition,
whether to power cycle a component or power cycle a component and switch sides is another
configurable feature of the MCE. Another common configuration field is which side of a
component to use. The MCE holds a field for each component, such that when commands are
received from Earth, the MCE know which (A or B) side of each component to power on to
execute the commands.

Commands
While commands are always sent to the MCE, each component supports a set of its own

commands. For example, a Transmit command that is scheduled for one week from the current
day would reside on the MCE’s schedule for a week. Then shortly before the Transmit
command, the MCE would power on the CE, pass it the Transmit command, and a bundle of data

 56

to transmit. At the scheduled time, the CE will then execute transmitting the data bundle back to
Earth.

Redundancy
The WDS system will be deployed to Mars for a 10-year mission. During those 10 years, there

will not be any maintenance missions, so every part of the WDS must have built in redundancy
to assure the system can last 10 years. Except for the PGE’s solar panels, every component has
both an A and B side. For example, the MCE has two processor boards. One known as the A
side and one known as the B side. The system only uses one at a time but can be configured to
use either side. Furthermore, each side of a component has its own status. For example, the
RSEE uses advanced moisture sensors to detect traces of water in the soil. In this case, the A
side has a set of moisture sensors, and the B side has a completely different set of moisture
sensors. Similarly, the network that connects all these components is also completely redundant.
There is an A and B network.

A1.4 Day in the life
A day in the life of the WDS is often unique. Table A1.1 is a timeline for an example 24-hour

period (24 to a day, scaled from the Martian cycle). For the purpose of this use case, the Mars
daylight hours will mirror those of Eastern Standard Time.

Table A1.1. Example Day for WDS.

Time Activity
00:00 –
06:00

System idle time to avoid draining batteries below emergency shutdown
threshold.

06:00 –
06:15

Receive the following Immediate commands from Earth:
 * Relocate to the Tarakan Crater.
 * Survey the surface of the Crater.
 * Find Location of the Tarakan Crater Low Point.
 * Relocate to Tarakan Crater Low Point.
 * Probe the Tarakan Crater Low Point.
Because these commands are “Immediate” commands the MCE will begin
executing them in the order they were received. The MCE will maintain a
queue of these commands until they are all complete.

06:15-07:25 The MCE begins the first Relocate command. It starts by powering on the
ANE. The ANE takes about 4 minutes to boot. Once booted, the MCE
passes the command to the ANE. The ANE begins calculating its
navigation plan to the Tarakan Crater.

06:25-07:25 The ANE drives the WDS towards the Tarakan Crater.
07:25-07:30 The ANE is continually imaging the terrain and detects an obstruction in its

path to the crater. The ANE stops driving and recalculates a new navigation
plan.

07:30-07:35 The ANE continues driving towards the Tarakan Crater.
07:35-07:40 While driving, the MCE powers on the CE, as there is a scheduled Transmit

command for 08:20 today. The CE takes about 3 minutes to boot, but the
MCE has several GB of data that will take about 30 minutes to bundle,
compress, encrypt, and copy over to the CE. All of this will occur in the

 57

background while the system is doing other activities.
07:40-07:50 The ANE finishes driving to the crater and locates itself in the center most

point of the crater.
07:50-07:55 The MCE receives events from the ANE that the Relocate command is

complete. The MCE then begins the Survey command. It starts by
powering on the RSEE. Even though the Relocate command is complete,
the MCE does not power off the ANE, as the MCE knows it will need the
ANE powered up to conduct the Survey command. Once the RSEE has
booted, the MCE sends both the RSEE and ANE the Survey command.

07:55-08:20 The two elements then begin executing their commands in tandem. A
survey is conducted by the ANE slowly navigating the WDS over a given
area, while the RSEE continually scoops sand and rocks to gather water
analysis data. Both elements are logging events while executing their
commands. The MCE will monitor both their event logs to make sure they
are staying synchronized. Due to the size of this crater, this survey will take
up most of the day.

08:20-08:30 The CE executes a Transmit command.
The Survey continues.

08:30-12:30 The Survey continues and completes.
12:30-12:40 The MCE finishes receiving the water analysis data from the RSEE and the

corresponding events such that the MCE knows the RSEE has completed
the survey. The MCE shuts the RSEE down.

12:40-12:45 The MCE kept the ANE power up, and now passes the Find Location
command to the ANE. The ANE uses its terrain data to determine the
lowest point of the crater. Via events the MCE is notified the ANE has
completed the Find Location command.

12:45-12:55 The MCE passes the next Relocate command to the ANE. The ANE drives
the WDS to the low point of the crater.

12:55-13:10 The MCE sees the ANE has completed the second Relocate command and
powers down the ANE. The MCE then powers up the DWDE. The DWDE
takes about 8 minutes to boot up. Once booted, the MCE passes the Probe
command to the DWDE for execution.

13:10-17:40 The DWDE executes the Probe command but encounters a lot of solid rock.
This forces the DWDE to alternate between Probe and Drill frequently.
After over 4 hours of mostly drilling, the batteries have taken a significant
hit, because the solar panels cannot keep up with the power needs of the
drill.

17:40-19:35 A (configurable) low battery threshold is reached that causes the MCE to
take over and pause the Probe command. The MCE powers down the
RSEE and transitions into an idle mode to allow the system to charge.

19:35-22:00 The sun has set, and system can no longer charge the batteries again until
the next day.

22:00-22:50 The MCE powers on the CE, as there is another scheduled Transmit
command for 22:40 today. While the batteries are still not charged enough
for a drilling activity, the battery threshold for a Transmit is much lower.
Batteries are sufficient for a Transmit command and therefore the system

 58

successfully transmits at 22:40.
22:50-23:59 System resumes idle mode. This will continue until the next day’s sunrise.

A1.5 Example issues
The WDS is designed to autonomously handle issues that arise, but human interaction is

required on a regular basis. Many of these tasks are simple maintenance and acknowledgement
of warnings. For example, when batteries are low, the operator is required to acknowledge the
low battery threshold. No action is required other than clearing the notification. Occasionally,
however, the WDS will face an urgent problem that requires human input. These scenarios are
rare, so the operator typically has limited training in how to address the issues. Here are some
examples:
Problem: The WDS is navigating in the crater and gets stuck.

Operator from Earth must manually drive the WDS and control the ANE. The typical
operator is not trained in this task, so the supervising manager must take control. The
operators need to escalate the issue quickly because the WDS witnessed unexpected
terrain. The mappings of Mars must be updated appropriately.

Problem: Dust storm prevents batteries from charging.
The MCE cannot task all the scheduled commands for the day. The CE alerts the NASA
operators of the low battery status. The operator must re-task the day’s commands
because the ANE would use all the remaining power. This task is simple and can be
completed by a novice employee but will require review by a supervisor.

Problem: Wall of Screens has many other systems represented at the same time.
If the WDS has a problem, it might take a few days for the engineers to remote in to fix
the issue. Therefore, the overview screen will remain in a degraded (fault-shown) state.
The problem arises when something else goes wrong on the system. For example, while
at low power, a piece of equipment might become over temperature and be in danger of
catching fire. The operators need to be alerted to this new degraded status and respond
quickly.

A1.6 Stakeholder analysis
When designing a system, it is worthwhile keeping the stakeholders, the audience for the

system, in mind (Boehm & Hansen, 2001; Pew & Mavor, 2007). Stakeholders for the Water
Detection System (WDS), and other complex systems, will follow a similar structure as the one
shown in Table A1.2. Direct users (i.e., operators), funders, and other stakeholders will each
have their own requirements for the project. The stakeholders identified for the WDS are
described in the rest of this section.

 59

Table A1.2. List of stakeholders and a brief overview of their role in the project.

Stakeholder Role
NASA 24/7 Operators Lower-skilled workers that handle routine tasks on

various systems within the op center.
Operation/Command Center
Supervisors

Experienced managers that handle complex tasks and
monitor op center performance.

System Developers and Engineers Experienced engineers that build and maintain the system.
NASA Program Office Scientists Highly experienced project managers that direct the WDS

actions and use the data that is collected.
Project Funders and other High-
Level Stakeholders

Outside managers responsible for ensuring project
success and making high-level project decisions.

On-Site Astronaut Install Team Extremely skilled operators that will deploy and
troubleshoot the system (if necessary).

NASA 24/7 Operators
Primary operators (or users) of the system are those that that perform routine activity

monitoring, respond to low-level alarms and events, and identify issues that require outside
performance. They want a task that is within their knowledge, skills, and abilities and provides
them with job satisfaction.

The primary objectives of the 24/7 Operators is to monitor the WDS for anomalies or issues
and maintain communication with the WDS. It is the role of the operators to plan sets of
transmit commands for the WDS system (which requires coordination with third party
communication systems) and send those commands to the WDS. Additionally, they must
monitor the WDS interface to verify the WDS has transmitted data to Earth when it is scheduled
to. Upon receipt of this data, the operators perform a cursory review of the data to determine if
there are any system issues that need to be addressed. In most cases, upon discovering a system
issue the operators will contact the Program Office or Engineering Development Team to
troubleshoot the issue. Lastly, the operators are expected to respond to requests for information
regarding the WDS. At any time, if the Program Office or Engineering Development Team
needs some data points from the system, the operators should be able to retrieve that data for
them.

The risk of overall project failure due to operator abilities and needs is relatively more difficult
to specify due to the delay between operator feedback and interaction with a system. The most
common sources of major failure will likely be due to unforeseen issues that are preventable by
experienced (or lucky) operators that can react to the system beyond the pre-determined alarm
and event conditions. For example, a system overheat event can lead to a positive feedback loop
of further heating of other components that destroys key components. This could plausibly have
been detected by a perceptive operator, but system alert priorities might not directly reveal this as
a critical issue until it was too late.

A source of “minor” project failure could be through overall issues with design that lead to
high error rates that increase project cost and reduce the perceived reliability of the system.
While an operator taking the wrong action (e.g., a command scheduling issue is first reported to
the system’s development team before calling Program Office Scientists) is a relatively minor
issue at first, high error rates from operators increase costs of the project and reduce the overall
effectiveness of the operation center.

 60

The environment the operators work in is a command center that is staffed 24/7 with
approximately 15 workstations and an average staff of 10 operators. The primary environment is
a “dim” room with desks in the center (i.e., not along the walls). The front wall, which all the
desks face, is a wall of screens. The back wall, which no one faces, is a secondary wall of
screens. Both walls of screens consist of multiplexed, disparate displays of 40-100 systems.

There are approximately 12-15 operators with 1-2 task leads during the day and 10 operators
with one task lead at night. Operators alternate in twelve-hour shifts, with a day shift from 7am
to 7pm, and a night shift from 7 pm to 7 am.

The night shift operators are typically former enlisted personnel, hence generally not college
educated, and mostly in their early twenties. The day shift workers typically have a more
advanced skill set than the night shift operators. The average age is greater compared to the
night shift. The day shift operators tend to have more system knowledge and can handle slightly
more advanced troubleshooting or analysis than the night shift.

Operation/Command Center Supervisors
Supervisors within the command center that ensure operator performance and respond to high-

level alarms and events upon notification by the primary operators. Like operators, the
supervisors want job satisfaction and a task that is within their abilities.

The supervisor’s use of the system will share mostly the same set of risks as operators; risks to
project failure will likely be the result of unforeseen issues that could be successfully caught with
experienced or skilled workers. Supervisors act as the interface between the high-level
management from NASA research scientists and the ground-level operators that directly interact
with the op center systems.

System Developers and Engineers
The Engineering Development team is a cross-discipline team that has developed the WDS

over a 4-5-year period. While during the development phase, the WDS program consisted of
hundreds of engineers, now nearing deployment the program has reduced to essential personnel.
Most of the remaining personnel are Software Engineers, Systems Engineers, and
Integration/Test Engineers. This team’s primary responsibility is to work off bug tickets
regarding the WDS software. This team is continually integrating and testing the latest software.
Once a software release is ready, it will be loaded to the WDS, whether the WDS is still being
used for training at NASA or if it has been deployed on Mars. In addition, any issues or
anomalies with the system are investigated by the Engineering Development team in their
development lab.

The developers want mission success (as measured by other stakeholders), an easily
programmed system, clear instructions, and to generally avoid “hard mental operations” leading
to difficult to program constructs when possible.

Developers will need to able to create the system within the constraints of the other
stakeholders while also meeting their funding and time constraints. Besides these “common”
risks that engineers should be familiar with, the other major risk of project failure facing
developers is ensuring that all the needs of the system and users are met. The example of a major
failure described under “operators” would partially be the fault of the developers (for not
identifying the tasks and needs), the Program Office Scientists (for not providing an adequate list
of tasks and needs), and possibly the Op Center Supervisors depending on the circumstances.

 61

However, the developers should make strides to gather this information or risk having their
reputation be negatively affected (whether or not the failure is directly related to their decisions).

The Engineering Development team works primarily in a large lab with the same equipment
that will be or has been deployed on Mars. This enables the team to test the software releases and
procedures before releasing updates. The team is available to address any issues that arise after
deployment. The Program Office Scientists relay the issues that are presented by the NASA
operators. Occasionally the Engineering team can interface directly with NASA to get their
feedback on the WDS software, but this is usually limited. Therefore, the team must prioritize
tasks based on Program Scientists feedback. The Engineering team tests software updates with
their mock hardware.

NASA Program Office Scientists
The Program Office Scientists are highly educated individuals whose charter is to find water on

Mars. This team is formally the customer for the Engineering Development team, and while
colleagues of the operators, receive customer-like status when in the operations center. This
team owns the decision making on everything from design details to live mission judgment calls.
They are the consumers of the water analysis data received from the WDS. They will use this
data to generate reports for upper management at NASA and politicians. Their work heavily
influences the direction of our country’s Space Program. This team decides where the WDS
should navigate on Mars, and when the WDS should attempt to gather more water analysis data.

They need to be able to complete all necessary technical tasks (which are assumed to be known
to the developers and engineers for the system). They also need to be able to interpret the data
from the WDS, input and alter commands, and interact with the WDS via the same GUI as the
operators that work within the operation center.

Program Office Scientists should be able to provide an adequate set of requirements for the
system or risk finding out that their needs are unable to be met once the WDS arrives on Mars.

The Program Office Scientists interface with the WDS via the same command and control GUI
as the 24/7 operators. They frequent the operations center during business hours and especially
around the time when transmit commands are scheduled with the WDS. While their primary
expertise is in the science behind the water analysis data, they are fairly well versed with the
WDS, as most of them have been a part of this program during the development of the WDS.
Furthermore, most of them have experience working on similar systems deployed to other parts
of the galaxy.

Project funders and other high-level stakeholders
The various individuals and organizations that oversee the project and provide funding for the

work. They will be responsive to the assessments from the Program Office Scientists,
explanations from the Developers, and requirements from the Supervisors within the operation
center. However, they also have their needs and desires for the project. They may require design
features based on a naïve understanding of the project’s technical and scientific needs. For
example, they may refer too great a consistency across projects (e.g., a common event log button
across all systems), the use of incompatible software or hardware, or to prioritize a task (and
interface elements) that does not correspond to other stakeholder needs. They also may provide
necessary restrictions on work due to classification or other regulations that limit otherwise
valuable sources of collaboration and feedback. They often want to have mission success with
reduced resource costs.

 62

As the funders of the program, high-level personnel will have their own expectations for
project success. These expectations may differ from the assessments made by the Program Office
Scientists, System Developers, and other stakeholders. Many of the risks to system failure will
come from lack of communication or miscommunication between the stakeholders.

NASA Astronaut Install Team
The astronaut install team is the last primary stakeholder for this project. They are responsible

for assembling the WDS, conducting pre-deployment tests on the system, and launching it (thus
releasing it from their responsibilities). This primarily provides technological requirements (e.g.,
the device must be able to be assembled with the resources available to the astronauts). Besides
the technological requirements, they will need to be able to interact with the ground team to
troubleshoot any issues or pass off the machine for remote troubleshooting via the operation
center.

The installation environment for the installers is obviously Mars. Therefore, their time is very
limited as their mission is bounded by the resources (i.e., air, water, food, fuel) they have with
them. Their energy levels are expected to be perpetually compromised after the extended time in
space required to travel to Mars. Due to the annual meteor storm on the sector of Mars where the
Program Office desires the WDS to be deployed, the install team will not have communication
with Earth during the installation.

Summary and Lessons
Each project will have multiple stakeholders. The list of relevant stakeholders is not simply

limited to users that directly interact with the completed system or the implementers of the
system. System success requires integration of the needs of the various stakeholders into a
cohesive project plan that addresses their needs, capabilities, and abilities. This example system
also has a wide range of stakeholders. Like other systems, there can be conflicts and tradeoffs
between their goals.

A1.7 Task analysis for 24/7 operators
The hierarchical task analysis developed for the NASA 24/7 Operators provides a clear set of

the most important tasks performed by the operators. The interface of a system should be
designed to match the needs and capabilities of the stakeholders that are impacted by the
interface. We focus on the 24/7 operators to provide a blueprint for the tasks that need to be
accomplished using any interface designed for the WDS system.

Table A1.3 gives an overview of the tasks described by the task analysis. Following the table is
the detailed view of the tasks showing subtasks and other components. This turns into an
operation manual for the study and task list for performing a cognitive walkthrough of the
interfaces (Polson et al., 1992).

 63

Table A1.3. Overview of the tasks for the NASA 24/7 Operator for managing the WDS.

Task 1: Periodic comprehensive review of WDS system.
Task 2: Repair or respond to any alarms following a WDS data update.
Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot any delays.
Task 4: Send commands to WDS.
Task 5: Responding to information requests regarding the WDS.
Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems.

The six tasks shown in Table A1.3 are an overview of the responsibilities for the operator of

the WDS within an Op Center. Each task is decomposed into subtasks to identify the key steps
and decisions taken by an operator while completing the task.

Task 1: Periodic comprehensive review of WDS system

Assumptions: WDS Periodic update takes 300 30 seconds
1) Identify	 if	 a	 comprehensive	 review	 of	 the	 WDS	 is	 necessary	

a) Find	 and	 check	 the	 WDS	 review	 schedule	
b) Compare	 time	 for	 the	 scheduled	 review	 and	 the	 current	 time	

i) If	 review	 is	 not	 necessary,	 END	 TASK	
ii) If	 review	 is	 necessary,	 proceed	 to	 1b	

2) Check	 the	 WDS	 update	 time	 and	 ensure	 that	 there	 is	 at	 least	 3	 minutes	 before	 next	 update	
a) If	 time	 before	 next	 update	 is	 insufficient,	 POSTPONE	 until	 after	 next	 update	 END	 TASK	
b) If	 time	 before	 next	 update	 is	 greater	 than	 180	 seconds,	 proceed	 to	 1c	

3) Perform	 the	 WDS	 periodic	 review	
a) Complete	 the	 WDS	 periodic	 review	 checklist	
b) Record	 the	 findings	 of	 the	 checklist	 in	 the	 <appropriate	 location>	 and	 END	 TASK	

Task 2: Repair or respond to any alarms following a WDS data update
1) Identify	 the	 cause	 of	 the	 alarm	
2) Fix	 high	 priority	 alarms	 first	 	

a) If	 alarm	 origin	 is	 Power	 Generation	 Element,	 proceed	 to	 2bi1	
i) Check	 expected	 charge	 and	 determine	 if	 expected	 charge	 will	 bring	 battery	 above	 the	

acceptable	 threshold	
ii) If	 charge	 will	 resolve	 alert,	 contact	 NASA	 Program	 Office	 Scientists	 and	 report	 overtasking	 of	

battery	 then	 return	 to	 step	 2b	
iii) If	 charging	 is	 low	 or	 nonexistent,	 contact	 WDS	 Development	 Team	 and	 report	 battery	

charging	 failure	 then	 return	 to	 step	 2b	 	
iv) If	 issue	 is	 unknown,	 contact	 Op	 Center	 Supervisor	 and	 report	 unknown	 issue	 with	 PGE	 then	

return	 to	 step	 2b	
b) If	 WDS	 requires	 manual	 navigation	 control,	 proceed	 to	 2bii1	

i) Contact	 Op	 Center	 Supervisor	 and	 report	 WDS	 request	 for	 manual	 control	
ii) Return	 to	 step	 2b	 	

3) Fix	 low	 priority	 alarms	 and	 latching	 alerts	
a) Determine	 cause	 of	 latching	 alert	

i) If	 latching	 alert	 originated	 from	 WDS,	 proceed	 to	 2ci1a	
(1) Find	 WDS	 element	 that	 sent	 the	 latching	 alert	 	
(2) Identify	 the	 command	 schedule	 file	 used	 during	 the	 alarm	 	 	

 64

(3) Report	 the	 command	 schedule	 file,	 WDS	 element,	 and	 status	 data	 associated	 with	 the	
element	 to	 the	 NASA	 Program	 Office	 Scientists	 	

ii) If	 latching	 alert	 did	 not	 originate	 from	 the	 WDS,	 proceed	 to	 2ci2a	
(1) Report	 the	 latching	 alarm	 origin	 and	 any	 other	 associated	 information	 to	 the	 Op	 Center	

Supervisor	
4) Resolve	 any	 event	 notifications	

a) Identify	 special	 event	 priorities,	 if	 any,	 that	 have	 been	 requested	 by	 the	 NASA	 Program	 Office	
Scientists	 or	 Op	 Center	 Supervisors	 	

b) If	 new	 event	 notifications	 match	 special	 event	 priorities,	 proceed	 to	 2dii1	
i) If	 special	 event	 priorities	 include	 action	 plan	 for	 event	 occurrence,	 follow	 instructions	 from	

the	 action	 plan	 	
ii) If	 no	 action	 plan	 is	 present,	 report	 event	 occurrence	 and	 associated	 data	 to	 the	 program	

that	 placed	 the	 special	 event	 priority	 	
c) If	 no	 special	 priority	 events	 are	 found,	 dismiss	 all	 new	 events	 	

5) If	 all	 events,	 alerts,	 and	 alarms	 are	 processed,	 END	 TASK	 	
Else,	 return	 to	 step	 2a	 	

Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot any delays

Assumptions: The scheduled update timeframe includes a margin of error. Experiment will use
a five-minute update schedule with a 30-second margin of error. The timeframe and margin of
error reduces unnecessary alarms for missing updates during normal operation.
1) Find	 the	 WDS	 interface	 and	 expected	 time	 of	 next	 update	

a) If	 the	 update	 has	 not	 loaded	 AND	 the	 update	 is	 not	 due	 	
i) END	 TASK,	 Resume	 other	 duties	 	

b) If	 update	 has	 loaded,	 check	 ensure	 the	 next	 update	 time	 is	 shown	 and	 END	 TASK	
c) If	 the	 update	 is	 not	 here	 AND	 the	 update	 is	 due,	 check	 the	 margin	 of	 error	 for	 the	 update	

schedule	 	 	
i) If	 within	 the	 margin	 of	 error,	 perform	 other	 duties	 until	 margin	 of	 error	 passes	 	
ii) If	 update	 has	 not	 appeared	 after	 margin	 of	 error,	 continue	 to	 the	 next	 step	 (b)	 	

2) Follow	 the	 troubleshooting	 protocol	 for	 a	 missing	 update	 	
a) Check	 if	 the	 file	 was	 received	

i) Go	 to	 operation	 center	 event	 log	
ii) Determine	 if	 a	 file	 update	 event	 is	 found	 within	 update	 time	 frame	 within	 the	 op	 center	

event	 log	 	
(1) If	 file	 not	 received,	 check	 for	 connectivity	 issues	 between	 satellite	 and	 operation	 center	 	

(a) If	 connectivity	 issues,	 call	 Comms	 team,	 inform	 of	 missing	 file,	 and	 END	 TASK	
(b) If	 no	 connectivity	 issues,	 call	 WDS	 Development	 Team,	 inform	 of	 unknown	 cause	 of	

failed	 data	 upload,	 and	 END	 TASK	
(2) If	 file	 was	 received,	 determine	 cause	 of	 failed	 update	 via	 event	 logs	 	

(a) Check	 operation	 center	 event	 logs	 and	 look	 for	 an	 application	 error	
(b) Check	 operation	 center	 event	 logs	 and	 look	 for	 an	 error	 processing	 file	
(c) If	 either	 is	 found,	 call	 EIT,	 report	 the	 error,	 and	 END	 TASK	 	

	
Task 4: Ensure that WDS maintains a regular, constant supply of commands throughout use

Assumptions: A single schedule for WDS commands may cover a variable amount of time.
The experiment will use command files that cover approximately 15 minutes.
1) Determine	 if	 WDS	 needs	 new	 commands	 within	 the	 next	 10	 minutes	 	

 65

a) Find	 the	 WDS	 commands	 details	 module	
b) Check	 the	 latest	 WDS	 command	 file’s	 end	 time	 	
c) If	 the	 end	 time	 is	 more	 than	 10	 minutes	 away,	 END	 TASK	
d) If	 end	 time	 is	 within	 10	 minutes,	 move	 on	 to	 4ab	 	 	

2) Receive	 (or	 acquire)	 the	 new	 command	 file	 from	 NASA	 Program	 Office	 Scientists	
a) In	 the	 command	 details	 module,	 find	 the	 section	 showing	 commands	 waiting	 to	 be	 uploaded	
b) If	 no	 commands	 are	 present,	 Call	 NASA	 Program	 Office	 Scientists,	 report	 lack	 of	 commands,	 and	

END	 TASK	 	
c) If	 new	 commands	 are	 present,	 proceed	 to	 4c	

3) Set	 the	 new	 command	 file	 to	 be	 uploaded	 to	 the	 WDS	
a) Verify	 that	 new	 command	 file	 is	 ready	 for	 update	
b) Schedule	 command	 file	 update	 	

4) Verify	 command	 file	 is	 sent	 and	 received	 by	 WDS	
a) Wait	 until	 next	 update	 from	 WDS	
b) Check	 Comms	 event	 log	 for	 a	 successful	 command	 file	 download	 during	 last	 update	 cycle	 	
c) If	 event	 is	 found	 within	 correct	 time	 window,	 END	 TASK	
d) If	 no	 event	 is	 found,	 call	 Op	 Center	 Supervisor,	 report	 findings,	 and	 END	 TASK	 	 	

Task 5: Responding to information requests regarding the WDS
1) Identify	 the	 element	 or	 module	 associated	 with	 the	 information	 request	
2) If	 event	 related,	 go	 to	 the	 location	 of	 the	 event	 history	 for	 the	 element	 or	 module	

a) Isolate	 the	 requested	 event	 history	
b) Transmit	 the	 requested	 event	 history	 to	 the	 NASA	 Program	 Office	 Scientists	 	

3) If	 related	 to	 current	 status	 for	 the	 element	 or	 module,	 find	 the	 element	 or	 module	 widget	
a) Isolate	 the	 requested	 information	 for	 the	 NASA	 Program	 Office	 Scientists	
b) Transmit	 the	 requested	 current	 status	 information	 to	 the	 NASA	 Program	 Office	 Scientists	 	

	
Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems.
1. Recognize	 an	 alert	 from	 a	 non-‐WDS	 console.	 	
2. If	 currently	 working	 on	 a	 WDS	 task,	 appropriately	 determine	 prioritization	

a) Request	 supervisor	 support	 if	 unsure	 of	 appropriate	 priority.	 	
3. If	 currently	 working	 on	 WDS	 task,	 note	 the	 stopping	 point	 in	 the	 activity.	 	
4. Resolve	 the	 non-‐WDS	 events,	 alarms,	 and	 alerts	 according	 to	 their	 system’s	 protocol.	 	
5. Return	 to	 WDS	 and	 complete	 task.	

a) Check	 for	 system	 changes	
b) Identify	 stopping	 point	 for	 interrupted	 task.	
c) Complete	 interrupted	 WDS	 task.	

 66

Appendix 2: Ways to learn More
Designers of control rooms will need to know more about design and operators than is in this

short document. They will need to know more theory about design and human users, and they
will need more details about the situations and operators and tasks that they are designing for.
This appendix notes a few ways to learn more. These ways include reading, discussion, and
formal and informal education. An hour a week of learning is not much in a week, but in a year,
it can change how you think.

A2.1 Readings to learn more
Designers wanting to learn more about design and operators can most easily read more. There

are numerous books on how operators (as people) think and learn. A good book of this type is
Anderson’s Cognitive psychology and its implications (2004). There are similar books for
learning about perception (Sekuler & Blake, 2001). Norman’s (2004) book helped start the area
of human-computer interaction but does not provide a unified theory of how to support design.
It makes the case for paying attention to users and provides food for thought. As design moves
in different directions, related books and textbooks can be found. For example, to include how
emotions influence use (Norman, 2006).

There are also books describing operators in terms that support design. Our favorite is
Foundations for designing user-centered systems (Ritter, Baxter, & Churchill, 2014), but
textbooks by Wickens (e.g., Wickens & Hollands, 2000) and Lewis and Rieman (1994) are also
useful. If detailed knowledge about users is required, one can try to find the information in Boff
and Lincoln’s (1968) large compendium, but often the designer will be driven to asking experts,
running a study, or making an educated guess based on similar circumstances. Finally, Endsley’s
book Designing for situation awareness (Endsley, Bolte, et al., 2003) provides further useful
advice. It will be familiar because we use it extensively in this report.

A2.2 Reading groups
A way to solidify knowledge from reading and to learn information not completely codified

yet, is to be part of a reading group. Sometimes these groups appear as graduate courses, and
they can be organized around a work group or better, across work groups. They take time, but a
group can help digest a book, and even the social loafers who do not read the material can learn
something. It is also a way to build a shared theory of design in a workplace.

A2.3 Continuing education
Finally, the most solid but expensive way to learn more is to take courses. Some will be

available at local universities, and some are available online. Coursera and Lynda offer various
courses that are related to these topics.

A2.4 Readings referenced in Appendix 2
Anderson, J. R. (2004). Cognitive psychology and its implications (5th ed.). New York, NY: Worth Publishers.
Boff, K. R., & Lincoln, J. E. (Eds.). (1988). Engineering data compendium (User's guide). Wright-Patterson Air

Force Base, OH: Harry G. Armstrong Aerospace Medical Research Laboratory.
Endsley, M. R., Bolte, B., & Jones, D. G. (2003). Designing for situation awareness: An approach to user-centered

design. (M. R. Endsley, Ed.) (1st ed.). New York, New York, USA: CRC Press.
Norman, D. A. (2006). Emotional design: Why we love (or hate) everyday things. New York, NY: Basic Books.

 67

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered systems: What
system designers need to know about people. London, UK: Springer.

Sekuler, R., & Blake, R. (2001). Perception. New York, NY: McGraw-Hill.
Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance (3rd ed.). Prentice-

Hall: Upper Saddle River, NJ.

 68

Appendix 3: Design Guidelines for asynchronous autonomous
systems

This appendix provides guidelines for desktop implementations of operation center interfaces.
The guidelines draw heavily on Apple’s Human Interface Guidelines7 for desktop applications
but are modified to apply to the WDS system, its users and technology, and the users’ tasks.

These guidelines are annotated, modified, and abridged to assist designers and engineers during
the development of the applications and systems within operation centers. They are numbered
and where appropriate sub-numbered. They are annotated according to four criteria: evidence
level, testability, value added, and assessment for testing by the authors.

Table A3.1: Criteria definitions for the design guidelines.

1) Evidence Level (Ranging from a case study within op center to some consensus from experts)
a) Level 5 is highly supported by research directly on the design feature.
b) Level 4 is highly supported by research but without a direct case study on the design feature.
c) Level 3 is likely supported based on integrating literature and expert opinions.
d) Level 2 is plausibly supported by research and supported by multiple expert opinions
e) Level 1 is broadly accepted as valuable by the field of HCI, but may be [‘untestable’], or untested

to our knowledge
2) Testability

a) T- (Difficult to test overall or difficult to test without major work)
b) T (Middle)
c) T+ (Easily or close to easily testable)

3) Value added by experiment (e.g., Avoiding attentional tunneling vs perfect shade of blue)
a) V1 (Low value), V2 (Moderate value), V3 (Most valuable)

4) Should we test this?
a) Yes, No, Maybe, No need

The criteria are represented after the guidelines in the following format:

Example guideline [Level 1], [T+], [V1], No

For this example, the format means that his guideline has some support from UCD and HCI
experts (level 1), could be easily tested for a given interface (T+), would not be much value to
test (V1) for a given interface, and is not recommended to test by the authors (No)

In the case of complex guidelines, like the first guideline, we apply a general level without
breaking it down to every sub-statement, which might not be a guideline but an example, or
might not have the same level of support. If only the high-level heading is rated on the criteria,
please assume that the guidelines below that heading are a “set” that should be considered as a
whole (e.g., heading D: Help and Tooltips under General User Interaction Guidelines).
Otherwise, the high-level heading rating should be considered an overall assessment that is
somewhat like an average of the ratings for individual guidelines.

Finally, the support and evidence for the guidelines is provided in comments appended to the
guidelines. A list of useful acronyms is described below in Table A3.2. These will cover the
majority of the evidence support, but some guidelines are also supported by links to full
references to the research articles.

7 https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/

 69

Table A3.2: Common Acronyms used throughout the guidelines and comments.

Acronym Meaning Source
GOMS Goals, Operators, Methods, and

Selection Rules (task analysis
variant)

(Card et al., 1983)

CPM-
GOMS

Critical Path Method-GOMS
(task analysis variant)

(Gray, John, & Atwood, 1992)

FDUCS Foundations for Designing
User-Centered Systems (user-
centered design textbook)

(Ritter et al., 2014)

CWT Cognitive Walkthroughs
(A usability method and its
rationale)

(Lewis & Rieman, 1994; Polson et al., 1992)

ADG Apple Design Guidelines
(Expert opinions)

https://developer.apple.com/design/

FOK Feeling of Knowing effect (Ritter & Reder, 1992)

TA Task Analysis literature (Ritter et al., 2014)

WMTIH Writing mistakes that I hate
(essay by Frank E. Ritter)

(Ritter, 2016)
http://acs.ist.psu.edu/ist597/writing%20tips3.pdf

LR Literature Review
(HCD review for Harris)

(Oury & Ritter, 2018)

ISO/CD International Standards
Organization Committee Draft
9241-151

(Bevan & Spinhof, 2007),
ISO 9241-151:2008

PM Human-System Integration: A
new look

Pew & Mavor’s (2007) National Research
Council Report

NN/g Nielson Norman Group
(Expert opinions/blog)

https://www.nngroup.com/

Introduction/Design Themes [Level 5], [T-], [V3], No
CWT,	 FDUCS,	 GOMS,	 others.	

It is helpful for users to be able to anticipate design elements in an interface. It is useful, thus, for
the elements to appear to be drawn using the same overall design framework with the same color
palette, style and use of verbiage, style of tone, and word choice (e.g., word length, concreteness
of words, use of articles, verb tense, and representational mapping). The same things should
always appear as the same things, so differentiation can be reserved for useful, functional
differences.

Thus, conducting a design review after a multi-person team finishes building an interface can
be a useful method for improving the coherence of the design. A thorough design review will
help pull the interface elements together and meld them into a coherent, intuitive whole that
allows users to draw from a unified set of task and context knowledge applicable across all
Harris systems. Design reviews can be made even more effective by implementing methods like

 70

heuristic evaluation by HCI experts on system design and cognitive walkthroughs to evaluate the
system interactions.

	

General user interaction guidelines

Loading and Delays [Level 5], [T-], [V2], No/Maybe
Operators want an application that acts on their commands and communicates how long

processing will take. If your application presents blank or static content and does not provide
feedback, people might think your app is frozen.
1) Provide	 instant	 acknowledgement	 of	 user	 interactions.	 Users	 expect	 to	 receive	 feedback	 for	 their	

actions	 throughout	 the	 interface.	 For	 example,	 buttons	 should	 visually	 respond	 to	 clicks	 and	 the	
pointer	 should	 change	 depending	 on	 its	 location	 (when	 appropriate).	 [Level	 5],	 [T],	 [V2],	 Maybe	

FDUCS	 §6.2.3:	 Feeling	 of	 Knowing	 and	 Confidence	 Judgements.	 Swift	 feedback	 helps	 users	 develop	 their	 knowledge	 for	 working	 with	
the	 sytem	 and	 avoid	 confusion.	

LR	 §2.2.2	 Stage	 2	 –	 Comprehension.	 Support	 comprehension	 by	 providing	 users	 with	 awareness	 of	 the	 system	 state.	 	

2) Help	 people	 gauge	 how	 long	 a	 process	 will	 take	 to	 complete	 by	 providing	 time	 estimates,	 activity	
spinners	 indicating	 action,	 and	 preferably	 an	 explicit	 progress	 indicator	 and	 supplementary	
descriptive	 text.	 [Level	 4],	 [T],	 [V2],	 Maybe	

LR	 §2.2.2	 Stage	 2	 –	 Comprehension.	 Support	 comprehension	 by	 providing	 users	 with	 awareness	 of	 the	 system	 state.	

3) Show	 content	 as	 soon	 as	 possible	 by	 showing	 placeholder	 text,	 gradually	 improving	 image	 quality,	
and	 preloading	 content	 when	 possible.	 [Level	 3],	 [T-‐],	 [V1],	 No	

	 LR	 §2.2.2	 Stage	 2	 –	 Comprehension.	 Support	 comprehension	 by	 providing	 users	 with	 awareness	 of	 the	 system	 state.	

Supporting Novice and Expert users [Level ≈4], [T+], [V2], Yes
Installation of op center systems may include up to 6 weeks of training to support new users,

however replacement workers may not receive that same support. These systems should
accommodate experienced and novice users by providing in-system tools that enable learning of
new tasks and reviewing procedures for uncommon or obscure tasks.
1) Establish	 a	 default	 configuration	 that’s	 applicable	 to	 most	 or	 all	 operators.	 [Level	 3]	 [T],	 [V3],	 Yes	

	 	 LR	 §2:	 Know	 your	 users,	 tasks.	 LR	 §3.1.5:	 Design	 to	 accommodate	 colorblindness.	 	 	

2) Avoid	 unnecessary	 splash	 screens	 and	 instructions.	 Typically	 splash	 screens	 are	 fine	 for	 showing	
progress,	 but	 they	 are	 often	 just	 for	 show.	 If	 tutorials	 or	 intro	 sequences	 are	 necessary,	 provide	 a	
way	 to	 skip	 them.	 [Level	 3],	 [T-‐],	 [V1],	 No	 	

FDUCS	 §11	 &	 §12	 on	 Task	 analysis;	 ADG.	 Splash	 screens	 can	 waste	 time,	 but	 also	 can	 be	 a	 source	 of	 feedback	 as	 the	 system	 loads.	
Splash	 screens	 can	 provide	 information	 at	 the	 expense	 of	 task	 efficiency.	

3) Anticipate	 the	 need	 for	 help	 and	 provide	 integrated	 help	 features.	 [Level	 4],	 [T+],	 [V3],	 Yes	

a) Proactively	 look	 for	 times	 when	 people	 might	 be	 stuck.	 For	 obscure	 work	 and	 uncommon	 tasks,	
provide	 additional	 help	 in	 menus.	

b) Add	 help	 tags	 to	 system-‐specific	 controls	 	

c) Provide	 task-‐oriented	 documentation	 through	 a	 form	 of	 supplementary	 help	 documentation	
(either	 digitally	 or	 as	 a	 physical	 copy	 of	 a	 help	 document).	

 71

LR	 §2.2.2	 Stage	 2	 Comprehension;	 LR	 §3.3	 Working	 Memory	 and	 Cognition.	 Providing	 integrated	 help	 reduces	 cognitive	 load	 by	
reducing	 the	 amount	 of	 time	 spent	 searching	 for	 help	 and	 reducing	 the	 time	 and	 space	 between	 the	 issue	 and	 task	 completion.	
Including	 a	 help	 button	 would	 allow	 users	 to	 find	 help	 when	 needed,	 and	 also	 provide	 a	 metric	 for	 which	 screens	 or	 tasks	 needed	 the	
most	 help.	 Testing	 could	 be	 done	 by	 comparing	 how	 users	 respond	 to	 in-‐system	 help,	 providing	 a	 physical	 help	 guide,	 and	 another	
option.	 	 	

4) Use	 keystroke	 accelerators	 (KSAs)	 to	 improve	 performance	 of	 expert	 users.	 [Level	 5],	 [T+],	 [V3],	
Yes/maybe	

a) Provide	 KSAs	 in	 menus	 to	 support	 learning.	

b) Base	 KSAs	 on	 typical	 Windows	 KSAs	 like	 ctrl-‐s	 for	 Save	 and	 ctrl-‐p	 for	 Print.	

c) Provide	 a	 full	 list	 of	 KSAs	 that	 can	 be	 viewed	 and/or	 printed	 out.	 	 	

GOMS,	 ADG,	 FDUCS.	 Clearly	 using	 KSAs	 would	 improve	 performance,	 however	 outstanding	 questions	 include	 the	 value	 of	 KSAs	 for	
each	 task,	 time	 required	 to	 learn	 KSAs,	 and	 maybe	 others.	 	 	

Data entry [Level 3.5], [T+], [V3], Yes
Whether using a keyboard, mouse, or any other input mode, inputting information can be a

tedious and sometimes error-prone process. When an app asks for lots of input before doing
anything useful, people can get discouraged quickly.
1) When	 entering	 data,	 prompt	 operators	 to	 choose	 an	 input	 rather	 than	 enter	 free	 text	 whenever	

possible.	 Selecting	 from	 a	 table,	 pop-‐up	 button,	 or	 set	 of	 radio	 buttons	 improves	 accuracy	 and	
reduces	 error	 rates,	 especially	 when	 the	 input	 needs	 to	 be	 exactly	 correct.	 	 	 [Level	 4],	 [T-‐],	 [V3],	 No	
need	

LR	 §3.3.	 Working	 Memory	 and	 Cognition;	 FDUCS	 §10	 Errors.	 Recall	 memory	 is	 slower,	 harder,	 and	 more	 error-‐prone	 than	 recognition	
memory.	 Even	 expert	 users	 are	 going	 to	 make	 errors	 at	 some	 point,	 so	 using	 recognition	 memory	 will	 reduce	 the	 number	 of	 errors	
and	 constrain	 errors	 to	 be	 within	 the	 known	 selection	 list.	

2) Simplify	 navigation	 of	 value	 lists	 unless	 there	 are	 times	 when	 none	 will	 apply.	 Long	 lists	 should	 be	
sortable	 and	 filterable,	 and	 all	 lists	 should	 be	 arranged	 logically	 like	 alphabetical	 order	 or	 grouped	 by	
type.	 	 [Level	 3],	 [T],	 [V2],	 Yes	

FDUCS	 §7.3.4	 Scanning	 Displays	 and	 Menus;	 People	 tend	 to	 scan	 displays	 rather	 than	 deeply	 read	 them	 and	 the	 information	 should	
be	 presented	 in	 a	 scannable	 way	 that	 is	 sorted	 according	 to	 the	 operator's	 mental	 model.	 	

3) Use	 introductory	 labels	 to	 describe	 text	 entry	 fields.	 Support	 the	 labels	 with	 clear,	 visible	 hints	
placed	 closely	 outside	 the	 text	 field.	 [Level	 3],	 [T-‐],	 [V1],	 No	 need.	

LR	 §2.2.1	 Stage	 1	 Perception;	 FDUCS	 §5.2.4.4	 Priming;	 FDUCS	 §4.4.6	 Pop-‐Out	 Effects;	 FDUCS	 §7.3	 Reading	 ;NN/g;	 Labels	 help	 users	
understand	 what	 they	 are	 looking	 at	 and	 prompt	 them	 to	 begin	 thinking	 about	 the	 relevant	 information	 needed	 for	 the	 task.	 Also,	
words	 are	 automatically	 processed	 for	 experienced	 readers	 so	 they	 will	 pop-‐out	 upon	 being	 viewed	 by	 the	 user.	 Also,	 users	 read	 a	
word	 faster	 than	 naming	 an	 icon.	 	 	

4) Support	 effective	 reading	 and	 comprehension	 for	 text	 within	 a	 text	 field	 and	 long	 strings	 of	 texts	 like	
event	 logs.	 	 	 [Level	 4],	 [T+],	 [V2],	 No	 need	

FDUCS	 §7.3	 Reading	

a) Adjust	 text	 field	 line	 breaks	 accordingly.	 By	 default,	 any	 text	 extending	 beyond	 the	 bounds	 of	 a	
text	 field	 is	 clipped.	 A	 text	 field,	 however,	 can	 be	 set	 to	 wrap	 text	 to	 a	 new	 line	 at	 the	 character	
or	 word	 level,	 or	 to	 be	 truncated	 (indicated	 by	 an	 ellipsis)	 at	 the	 beginning,	 middle,	 or	 end.	 	

b) Consider	 using	 an	 expansion	 tooltip	 to	 show	 the	 full	 version	 of	 clipped	 or	 truncated	 text.	 An	
expansion	 tooltip	 behaves	 like	 a	 help	 tag	 and	 appears	 when	 the	 user	 places	 the	 pointer	 over	 the	
field.	

 72

5) Let	 the	 user	 adjust	 text	 attributes	 if	 it	 makes	 sense.	 If	 your	 text	 field	 contains	 styled	 text,	 it	 may	 add	
value	 if	 the	 user	 can	 adjust	 the	 font,	 size,	 and	 color	 of	 the	 text.	 System	 controlled	 text	 attribute	
changes	 could	 be	 used	 to	 instantiate	 the	 pop-‐out	 effect	 in	 event	 logs.	 [Level	 2],	 [T],	 [V1],	 No	
need	

ADG	

6) Get	 information	 from	 the	 system	 whenever	 possible.	 Don’t	 force	 users	 to	 provide	 information	 that	
can	 be	 gathered	 automatically	 or	 with	 the	 user’s	 permission.	 [Level	 4],	 [T],	 [V1],	 No	 need	

GOMS;	 CPMGOMS	 ;FDUCS	 §10	 Errors:	 An	 Inherent	 part	 of	 human-‐system	 performance	 	

7) Provide	 reasonable	 default	 values	 and	 prefill	 fields	 with	 most	 likely	 values	 when	 appropriate.	 	 [Level	
3],	 [T+],	 [V2],	 Maybe	 	

GOMS;	 CPMGOMS;	 ADG	

8) Dynamically	 validate	 field	 values	 rather	 than	 waiting	 until	 submission.	 This	 reduces	 the	 need	 to	
backtrack	 when	 data	 entry	 fails	 validation.	 	 [Level	 3],	 [T+],	 [V3],	 Yes	

ADG;	 NN/g	

9) Use	 proper	 formatting	 that	 connects	 the	 input	 format	 with	 user	 expectations.	 [Level	 3],	 [T+],	
[V2],	 Yes	

a) Displaying	 the	 input	 for	 percentages	 as	 a	 percentage,	 or	 automatically	 presenting	 phone	
numbers	 in	 their	 standard	 format.	

b) Entries	 expecting	 long	 text	 should	 allow	 users	 to	 view	 the	 input	 with	 minimal	 scrolling	 (and	 thus	
less	 short-‐term	 memory	 usage).	

10) Use	 numeric	 data	 entry,	 especially	 for	 critical	 features,	 should	 follow	 these	 guides.	 [Level	 4],	 [T+],	
[V3],	 Yes	

Thimbleby,	 H.,	 &	 Cairns,	 P.	 (2010).	 Reducing	 number	 entry	 errors:	 solving	 a	 widespread,	 serious	 problem.	 Journal	 of	 The	 Royal	 Society	
Interface,	 7(51),	 1429–1439.	 https://doi.org/10.1098/rsif.2010.0112;	 Test	 case	 from	 study	 was	 for	 medication	 dosages	 entry	 to	
reduce	 risk	 of	 killing	 patient	 due	 to	 operator	 error.	

a) Always	 show	 commas	 for	 values	 above	 1,000.	 	

b) Don’t	 use	 ‘naked’	 decimal	 points:	 0.5	 is	 better	 than	 .5	 	

c) Avoid	 showing	 trailing	 zeros	 for	 values	 with	 whole	 numbers:	 	 1	 is	 better	 than	 1.0	

d) When	 possible,	 build	 in	 automatic	 blocking	 of	 invalid	 numbers.	

e) Maximum	 stakes	 data	 entry	 fields	 can	 reduce	 risk	 of	 failure	 by	 using	 slightly	 larger	 decimal	
points	 and	 smaller	 font	 for	 numerals	 after	 the	 decimal.	 	

f) Batching	 values	 in	 groups	 of	 3	

Help & Tooltips [Level 4], [T], [V2], No/Maybe.
Ideally, people can figure out how to use your system without a guide. However, even in a

highly intuitive interface, users sometimes need help learning advanced and secondary features.
When called for, your program can offer assistance in the form of help tags and other forms of
help documentation. Help tags allow you to provide temporary, context-sensitive help, whereas
documentation allows you to provide a more thorough discussion of the topic.

 73

Isaksen,	 H.,	 Iversen,	 M.,	 Kaasbøll,	 J.,	 &	 Kanjo,	 C.	 (2017).	 Methods	 for	 Evaluation	 of	 Tooltips.	 In	 M.	 Kurosu	 (Ed.),	 HCI	 2017:	 Human-‐
Computer	 Interaction,	 User	 Interface	 Design,	 Development	 and	 Multimodality	 (Vol.	 10271,	 pp.	 297–312).	
https://doi.org/10.1007/978-‐3-‐319-‐58071-‐5_23;	 Mildly	 testable	 but	 expensive.	 Instead,	 help	 and	 tooltips	 simply	 provide	 a	 useful.	 A	
study	 on	 tooltips	 found	 that	 explicit	 evaluation	 was	 costly.	 Instead,	 making	 tooltips	 should	 just	 be	 assumed.	

1) Describe	 only	 the	 control	 that’s	 directly	 beneath	 the	 pointer.	 	

2) Add	 help	 tags	 to	 app-‐specific	 or	 system-‐specific	 controls.	 Skip	 tags	 on	 common	 features	 like	 resize	
controls,	 scrollers,	 or	 others.	 	

3) Focus	 on	 the	 action	 that	 a	 control	 initiates.	 A	 good	 rule-‐of-‐thumb	 is	 to	 start	 tool	 tips	 with	 a	 verb.	 	

4) Use	 the	 fewest	 number	 of	 words	 possible.	 	

a) Try	 to	 limit	 tags	 to	 a	 maximum	 of	 60	 or	 75	 characters	 depending	 on	 your	 system	 needs.	 [Level	 2]	

b) Requiring	 more	 text	 to	 explain	 a	 feature	 may	 indicate	 that	 the	 interface	 is	 overly	 complicated.	
[Level	 1]	

5) In	 general,	 don’t	 reference	 a	 tag’s	 corresponding	 control.	 Typically,	 the	 help	 tag’s	 location	 (directly	
adjacent	 to	 the	 control)	 will	 provide	 sufficient	 context	 for	 the	 user.	 	

6) Use	 sentence	 fragments	 with	 sentence-‐style	 capitalization.	 This	 emphasizes	 brevity	 without	 overly	
sacrificing	 readability	 for	 users.	 	

7) Consider	 offering	 context-‐sensitive	 help	 tags.	 	

Keyboard Interactions [Level 4.5], [T+], [V3], Yes
The keyboard is an essential input device for entering text, navigating, and initiating actions.

Some users will prefer to almost exclusively use the keyboard for performing some or all tasks.
	 GOMS,	 general	 wide	 support	

1) Respect	 standard	 keyboard	 shortcuts	 and	 create	 program-‐specific	 shortcuts	 for	 frequently	 used	
commands.	 	

2) Add	 full	 keyboard	 access	 mode	 support	 for	 all	 custom	 interface	 elements.	 	

a) Full	 keyboard	 access	 mode	 lets	 users	 navigate	 and	 activate	 windows,	 menus,	 interface	
elements,	 and	 system	 features	 using	 the	 keyboard	 alone.	 	

b) Tab	 is	 an	 important	 command	 to	 switching	 between	 areas	 and	 fields.	 	

3) Enable	 expected	 shortcuts	 for	 standard	 menu	 items.	 Strive	 for	 consistency	 across	 all	 applications	
and	 systems	 for	 common	 actions.	 	

4) Define	 new	 keyboard	 shortcuts	 only	 for	 things	 people	 do	 regularly.	 	

a) Unexpected	 shortcut	 design	 can	 easily	 confuse	 users,	 and	 tt	 rarely	 makes	 sense	 to	 redefine	 a	
common	 shortcut.	 	

b) The	 WDS	 and	 similar	 systems	 could	 log	 commands	 to	 know	 which	 keyboard	 shortcuts	 and	
commands	 are	 most	 common.	 This	 would	 help	 improve	 keystroke	 accelerator	 generation.	 	

5) Use	 a	 standardized	 hierarchy	 for	 assigning	 modifier	 keys	 (i.e.,	 ctrl,	 alt,	 shift)	 when	 creating	 a	 new	
shortcut.	 	

a) Maintain	 a	 consistent	 order	 using	 modifiers	 and	 writing	 out	 commands	 with	 modifiers.	 	

 74

6) Provide	 keystroke	 accelerators	 for	 nearly	 all	 commands	

7) Keystroke	 accelerators	 are	 displayed	 in	 a	 help	 screen	 as	 a	 set	 and	 on	 menus	 and	 perhaps	 tool	 tips.	

8) At	 a	 convenient	 time,	 like	 starting	 or	 stopping	 or	 loading	 or	 paused,	 note	 a	 keystroke	 accelerator	 of	
the	 day.	

9) Prefer	 to	 create	 “sets”	 of	 commands	 centered	 around	 a	 single	 action	 key	 with	 multiple	 modifier	
keys.	 For	 example,	 Control-‐P	 may	 activate	 the	 “print”	 command,	 and	 Shift-‐Control-‐P	 may	 activate	
the	 “page	 layout”	 menu	 which	 complements	 the	 “print”	 command.	 	

10) Determine	 which	 keyboard	 shortcuts	 are	 common	 and/or	 reserved	 with	 your	 system	 to	 ensure	 that	
your	 application	 does	 not	 interfere	 with	 prior	 knowledge	 from	 the	 users	 regarding	 how	 to	 interact	
with	 systems	 of	 this	 type.	 	

Providing User Feedback [Level 4], [T-], [V2]	
Feedback tells people what an app is doing and helps them understand the results of actions and

what they can do next.
FOK;	 CWT	

1) Unobtrusively	 integrate	 status	 and	 other	 types	 of	 feedback	 into	 your	 interface.	 If	 a	 notification	 does	
not	 provide	 immediately	 actionable	 information,	 the	 operator	 should	 be	 able	 to	 continue	 their	
current	 task	 uninterrupted.	 	 [Level	 4]	 [T],	 [V3],	 Yes	

LR	 §3.2.2	 Interruptions	

2) Avoid	 unnecessary	 alerts	 by	 carefully	 assessing	 whether	 new	 information	 is	 worth	 disrupting	 the	
operator’s	 current	 task,	 so	 they	 can	 address	 the	 situation.	 If	 deemed	 important,	 ensure	 that	 the	
alert	 is	 disruptive	 so	 ensure	 the	 user	 responds.	 [Level	 4]	 [T],	 [V3],	 Yes	

LR	 §3.2.2	 Interruptions	

3) Warn	 people	 when	 they	 initiate	 a	 task	 that	 can	 cause	 an	 unexpected	 and	 irreversible	 loss	 of	 data.	
Avoid	 being	 overzealous	 (i.e.,	 notifications	 for	 clearing	 the	 recycle	 bin	 on	 desktop),	 but	 try	 to	 strike	 a	
balance	 between	 user	 expectations	 and	 task	 requirements.	 	 [Level	 3],	 [T-‐],	 [V1],	 No	

4) Inform	 the	 user	 when	 a	 command	 can’t	 be	 carried	 out.	 	 [Level	 3],	 [T-‐],	 [V1],	 No	

5) Clearly	 note	 time	 constraints	 for	 alert	 triggers,	 postponing	 an	 alert	 response,	 and	 other	 important	
tasks.	 [Level	 4],	 [T],	 [V2],	 Maybe	

6) If	 it	 makes	 sense,	 allow	 users	 to	 adjust	 time	 constraints	 for	 how	 alerts	 are	 provided.	 For	 example,	 a	
user	 (or	 supervisor)	 may	 wish	 to	 make	 a	 certain	 alert	 type	 occur	 more	 or	 less	 often.	 [Level	 2],	 [T-‐],	
[V1],	 No	

7) Allow	 users	 to	 set	 up	 new	 alerts	 when	 it	 makes	 sense.	 [Level	 3],	 [T-‐],	 [V2],	 Maybe	 	

Badging or Icons as Updates [Level 3], [T], [V3], Yes
Icons and other programs can display small, meaningful icons to indicate new, noncritical

information like events or minor alerts.
Unstudied	 other	 than	 to	 note	 that	 even	 common	 icons	 only	 have	 a	 70%	 recognition	 rate	 on	 average.	 See	 Ghayas,	 S.,	 Sulaiman,	 S.,	
Khan,	 M.,	 &	 Jaafar,	 J.	 (2013).	 The	 effects	 of	 icon	 characteristics	 on	 users’	 perception.	 In	 International	 Visual	 Informatics	 Conference	
(pp.	 652–663).	 	

 75

1) Use	 badging	 for	 notification	 purposes	 only	 for	 focused,	 simple	 information.	 Avoid	 using	 icons	 as	
updates	 for	 complex,	 quickly	 changing	 information	 (e.g.,	 air	 quality	 or	 wind	 speed).	 [Level	 3],	 [T+],	
[V3],	 Yes	

2) Badging	 should	 supplement	 direct	 presentation	 of	 information	 within	 the	 application.	 If	 a	 badge	
indicates	 some	 alert,	 that	 same	 alert	 should	 be	 presented	 within	 the	 application	 in	 text	 form.	 [Level	
3],	 [T-‐],	 [V2],	 Maybe	

3) Ensure	 badges	 update	 quickly	 in	 response	 to	 user	 activity	 such	 as	 dismissal	 or	 acknowledgement	 of	
some	 alert.	 [Level	 2],	 [T-‐],	 [V1],	 No	 need	

4) Prefer	 short	 and/or	 concrete	 words	 (vs.	 long	 and/or	 abstract	 where	 these	 will	 do,	 they	 are	 faster	 to	
read	 and	 easier	 to	 interpret.	 The	 button	 that	 says	 “word”	 is	 clearer	 to	 ask	 about	 than	 the	 button	
“that	 some	 squiggly	 lines	 that	 seem	 to	 form	 a	 point….”	 [Level	 4],	 [T],	 [V2],	 Maybe	

FDUCS	 §7.3	 How	 Users	 Read;	 Stroop	 on	 Automatic	 Processing	 of	 Words	

Notifications [Level 3], [T+], [V3], Yes
System notifications provide timely and important information anytime. Notifications may

occur when a message arrives, an event occurs, new data is available, or the status of something
has changed.
1) Use	 distinct	 notification	 styles	 to	 differentiate	 between	 minor	 notifications	 and	 alerts.	 Alerts	 should	

remain	 visible	 until	 dismissed	 by	 the	 user	 while	 notifications	 can	 disappear	 after	 a	 few	 seconds.	 	
[Level	 2],	 [T+],	 [V3],	 Yes	 	

2) Notifications	 should	 be	 useful	 and	 informative:	 use	 complete	 sentences	 and	 standard	 grammatical	
style,	 avoid	 repetitive	 notifications	 that	 clutter	 the	 view,	 and	 ensure	 key	 information	 (like	 origin)	 is	
clearly	 displayed.	 	 	 [Level	 4],	 [T],	 [V2],	 Maybe	

FDUCS	 §7.3	 How	 Users	 Read	 	

3) If	 possible,	 ensure	 that	 responses	 prompted	 by	 the	 notification	 are	 not	 overly	 specific	 or	 difficult	 to	
accomplish	 once	 the	 notification	 is	 dismissed.	 	 [Level	 3],	 [T-‐],	 [V2],	 Maybe	

LR	 §3.3	 Working	 Memory	 and	 Cognition	 	

4) Adapt	 notification	 behavior	 for	 different	 contexts.	 Consider	 using	 cognitive	 counter-‐measures	 to	
correct	 behavior	 in	 risky	 situations.	 [Level	 3],	 [T+],	 [V3],	 Yes	

a) If	 the	 user	 is	 on	 the	 home	 page,	 then	 a	 notification	 about	 new	 events	 may	 be	 useful;	 if	 the	 user	
is	 already	 on	 the	 event	 log	 page	 then	 displaying	 a	 popup	 will	 likely	 be	 annoying	 compared	 to	
other	 methods	 of	 informing	 the	 user	 of	 new	 information.	

b) Critical	 events	 can	 implement	 cognitive	 counter-‐measures	 to	 capture	 the	 attention	 of	 the	
operator.	 Cognitive	 counter-‐measures	 are	 temporary,	 major	 changes	 to	 the	 interface	 intended	
to	 temporarily	 break	 their	 focus,	 so	 they	 will	 reorient	 onto	 the	 important	 task.	 For	 example,	 a	
low	 battery	 alert	 that	 occurs	 during	 manual	 control	 of	 an	 unmanned	 vehicle	 could	 clear	 the	
screen	 of	 all	 features,	 prominently	 display	 the	 low	 battery	 alert	 until	 cleared	 before	 resuming	
normal	 operation.	 This	 eliminates	 the	 risk	 of	 “tunnel-‐vision”	 causing	 the	 signal	 to	 be	 missed.	

Directly	 tested	 for	 the	 exact	 scenario	 described.	 Extremely	 relevant	 to	 WDS	 interface	 design.	 Dehais,	 F.,	 Causse,	 M.,	 &	 Tremblay,	 S.	
(2011).	 Mitigation	 of	 conflicts	 with	 automation:	 Use	 of	 cognitive	 countermeasures.	 Human	 Factors,	 53(5),	 448–460.	
https://doi.org/10.1177/0018720811418635	

 76

c) Critical	 events	 should	 use	 dual-‐coded	 alerts	 such	 as	 a	 visual	 and	 audio	 indicator,	 or	 multiple	
visual	 indicators.	 	

5) Provide	 intuitive,	 beneficial	 action	 buttons	 on	 pop-‐up	 notifications	 and	 alerts.	 Limit	 buttons	 for	 user	
response	 to	 2	 buttons	 if	 possible.	 [Level	 3],	 [T],	 [V2],	 Maybe	

a) Use	 the	 buttons	 to	 perform	 common,	 time-‐saving	 tasks.	 This	 will	 help	 reduce	 how	 often	 the	
operator	 needs	 to	 change	 views	 for	 simple	 tasks.	 	

Color [Level 4] [T+], [V2], No/Maybe
Color is a great way to provide status information, give feedback in response to user actions,

and help people visualize data.
1) Use	 color	 judiciously	 for	 communication.	 Limit	 the	 number	 of	 colors	 used	 for	 communication	 to	 less	

than	 five.	 [Level	 3],	 [T],	 [V2],	 Maybe	

ADG;	 LR	 §3.1.5	 Principle	 7	

2) Provide	 adequate	 support	 for	 colorblind	 users.	 Colorblindness	 is	 common	 enough	 that,	 when	
possible,	 designers	 and	 engineers	 should	 ensure	 that	 the	 standard	 design	 supports	 colorblind	 users.	
[Level	 4],	 [T+],	 [V2],	 Maybe	

LR	 §3.1	 Perception	

3) Color	 contrast	 should	 be	 between	 foreground	 and	 background	 colors	 should	 be	 at	 least	 4.5:1	 if	 not	 a	
higher	 contrast	 of	 7:1.	 [Level	 3],	 [T],	 [V1],	 No	

ADG.	

4) Test	 the	 application’s	 color	 scheme	 under	 appropriate	 lighting	 conditions.	 A	 system	 used	 in	 a	
brightly-‐lit	 room	 will	 have	 different	 requirements	 than	 one	 used	 in	 a	 dark	 room.	 [Level	 4],	 [T+],	 [V2],	
No	

LR	 §1.4	 	

Visual feature index
Most applications should be built using components from your preferred graphic design kit like

Java Swing or others. This will provide a programming framework that defines common
interface elements. This framework lets applications achieve a consistent appearance across the
system, while at the same time offering a high level of customization. The following interface
elements are a common set of flexible and familiar features that can provide a design framework
for building nearly any system.

Windows and Views

Alerts
An alert appears when the system or program needs to warn the user about an error condition,

or a potentially hazardous situation or consequence. A major alert should be modal within an
application; once the alert is received, the program is locked into an “alert response” mode that
requires user input regarding the alert before enabling any other actions. Minor alerts should be
displayed differently than major alerts.
1) Minimize	 alerts.	 	 	 Alerts	 disrupt	 the	 operator	 and	 should	 be	 reserved	 for	 important	 situations.	

The	 infrequency	 of	 alerts	 helps	 ensure	 that	 operators	 take	 them	 seriously.	 [Level	 3],	 [T+],	 [V3],	 Yes	

 77

2) Ensure	 that	 each	 alert	 offers	 critical	 information	 and	 useful	 choices.	 	 [Level	 3],	 [T],	 [V2],	 Yes	

a) Avoid	 using	 alerts	 to	 merely	 provide	 information.	 	

b) Users	 become	 annoyed	 at	 alerts	 and	 interruptions	 that	 don’t	 provide	 actionable	 information.	 	

c) Avoid	 displaying	 alerts	 for	 common,	 undoable	 actions.	

3) Use	 a	 standardized	 alert	 display.	 Consistency	 will	 help	 users	 understand	 the	 meaning	 of	 the	 alerts	 by	
supporting	 learned	 responses	 to	 different	 alert	 displays.	 [Level	 4],	 [T],	 [V3],	 Maybe	

Rieman,	 J.,	 Young,	 R.	 M.,	 &	 Howes,	 A.	 (1996).	 A	 dual-‐space	 model	 of	 iteratively	 deepening	 exploratory	 learning.	 International	 Journal	
of	 Human	 Computer	 Studies,	 44(6),	 743–775.	 https://doi.org/10.1006/ijhc.1996.0032	

4) Provide	 a	 clear,	 succinct	 alert	 message	 that	 gives	 the	 user	 what,	 why,	 and	 where	 for	 a	 given	 alert.	
[Level	 2],	 [T],	 [V2],	 Maybe	

ADG	

a) Consider	 phrasing	 a	 message	 as	 a	 question	 when	 the	 default	 action	 has	 negative	 consequences.	 	

b) Supplement	 alert	 messages	 with	 informative	 text.	 Use	 this	 space	 to	 elaborate	 on	 consequences,	
suggest	 solutions,	 and	 explain	 why	 the	 user	 should	 care.	

5) Avoid	 using	 alert	 buttons	 that	 require	 explanation.	 [Level	 3],	 [T-‐],	 V1],	 No	

ADG;	 LR	 §2.2.2	 ;CWT	 	

a) If	 the	 text	 and	 button	 titles	 are	 clear,	 there	 should	 be	 no	 need	 to	 explain	 the	 buttons.	

b) If	 guidance	 is	 needed,	 preserve	 capitalization	 when	 referencing	 buttons	 and	 don’t	 enclose	
button	 titles	 in	 quotes.	 	

c) Give	 alert	 buttons	 succinct,	 logical	 titles.	 Best	 titles	 will	 use	 one-‐	 or	 two-‐word	 verb	 phrases	 that	
describe	 the	 result	 of	 clicking	 the	 button.	 Avoid	 using	 “yes	 and	 no”	 as	 the	 options.	 	

d) Label	 cancellation	 buttons	 appropriately.	 	

e) Include	 a	 Cancel	 button	 when	 there’s	 a	 destructive	 button	 (i.e.,	 delete	 file)	

6) Generally,	 prefer	 two-‐button	 alerts.	 Single	 button	 alerts	 inform	 but	 give	 no	 control;	 alerts	 with	 three	
or	 more	 buttons	 create	 complexity.	 [Level	 2],	 [T],	 [V2],	 Maybe	

ADG	

7) Ensure	 that	 the	 default	 button	 title	 reflects	 the	 action	 the	 button	 performs.	 Avoid	 using	 OK	 unless	
the	 alert	 is	 purely	 informational.	 Specific	 button	 titles	 like	 Erase,	 Convert,	 Clear,	 or	 Delete	 help	 users	
understand	 the	 action.	 [Level	 3],	 [T-‐],	 [V1],	 Maybe	

CWT;	 ADG	 	

8) Place	 buttons	 where	 people	 expect	 them.	 In	 general,	 the	 default	 (or	 most	 likely)	 button	 should	 be	
on	 the	 right.	 Cancel	 is	 usually	 on	 the	 left.	 [Level	 2],	 [T],	 [V1],	 No	

ADG;	 Others	

9) Consider	 offering	 time-‐saving	 keyboard	 shortcuts	 for	 all	 buttons.	 For	 example,	 Enter	 (or	 return)	 can	
a	 default	 “Accept”	 button	 for	 situations	 are	 not	 high	 stakes.	 Clearly	 indicate	 defaults	 by	 using	 bold,	
underlined	 text	 on	 the	 default	 choice.	 [Level	 2],	 [T],	 [V2],	 Maybe	

 78

Boxes [Level 2], [T-], [V1], No
A box is a type of view that creates distinct, logical groupings of controls, text fields, and other

interface elements. For example, a preferences window may include boxes that visually group
related settings together. By default, a box has a border and a title, either of which can be
disabled if it makes sense for your sub-display. The title, if displayed, can be positioned above
(the default) or below the box.
1) Avoid	 nesting	 boxes.	 Nested	 boxes	 waste	 space	 and	 reduce	 the	 effectiveness	 of	 boxes	 overall	 for	

grouping	 information.	 	

ADG	

2) Use	 sentence-‐style	 capitalization	 in	 box	 titles.	 Don’t	 end	 box	 titles	 with	 a	 colon.	 	

APA	 guidelines;	 FDUCS	 §7.3	 How	 Users	 Read	

Dialogs
A dialog is a type of window that elicits a response from the user. Many dialogs—like the Print

dialog, for example—let people provide several responses at once. Dialogs are presented in three
ways: document-modal, app-modal, and modeless.

A document-modal dialog is attached to a document as a sheet and prevents the user from
doing anything in the document until the dialog is dismissed. The user can still switch to other
documents and apps. A Save dialog is an example of a document-modal dialog.

An app-modal dialog prevents the user from doing anything in the app until the dialog is
dismissed. The user can still switch to other apps. An Open dialog is an example of an app-
modal dialog.

A modeless dialog is usually referred to as a panel. The user can continue interacting with
documents and apps uninterrupted. The standard Find dialog is an example of a modeless
dialog.

Data Entry for Dialogs
Dialogs are intended to be small, transient windows that don’t require in-depth user interaction,

so it’s important to ensure that data entry is efficient.
1) Provide	 default	 values	 for	 controls	 and	 fields	 whenever	 possible.	 [Level	 5]	

2) Set	 the	 initial	 focus	 to	 the	 first	 location	 that	 accepts	 user	 input.	 	 	 [Level	 5]	

3) Make	 static	 text	 selectable.	 For	 example,	 users	 may	 want	 to	 copy	 an	 error	 message	 or	 IP	 address.	

4) Check	 for	 errors	 during	 data	 entry.	 The	 best	 time	 to	 check	 is	 immediately	 after	 the	 user	 moves	 onto	
the	 next	 field.	 Waiting	 until	 they	 hit	 the	 submit	 button	 can	 annoy	 the	 user.	 	

5) Whenever	 possible,	 minimize	 the	 potential	 for	 invalid	 input.	 	

Layout
6) Use	 disclosure	 control	 to	 provide	 information	 or	 functionality	 that’s	 only	 occasionally	 needed.	 	

7) Position	 buttons	 as	 expected.	 [Level	 1]	

a) Buttons	 in	 the	 bottom	 right	 of	 a	 dialog	 should	 dismiss	 the	 dialog	

b) An	 action	 button,	 which	 initiates	 the	 dialog’s	 primary	 action,	 should	 be	 farthest	 to	 the	 right.	 	

 79

c) A	 cancel	 button	 should	 be	 to	 the	 immediate	 left	 of	 the	 action	 button.	 	

d) If	 a	 third	 button	 is	 needed,	 it	 should	 be	 to	 the	 left	 of	 the	 cancel	 button.	 	

e) If	 a	 help	 button	 is	 shown,	 it	 should	 be	 the	 furthest	 left	 button.	 	

8) Separate	 destructive	 buttons	 from	 nondestructive	 buttons.	 	

a) For	 example,	 Don’t	 Save	 should	 be	 far	 enough	 away	 from	 Save	 to	 ensure	 accidents	 are	 rare.	 	

b) Destructive	 buttons	 should	 require	 intentional	 effort.	 	

c) Ideally,	 24	 points	 of	 separation	 is	 best.	 	

Dialog Dismissal
9) Provide	 a	 default	 button	 only	 when	 the	 user’s	 most	 likely	 action	 is	 harmless.	 Users	 may	 simply	 hit	

Return	 (or	 Enter)	 to	 dismiss	 an	 alert	 or	 dialog.	 This	 should	 never	 trigger	 an	 important	 event.	 If	 it’s	
important	 enough,	 they	 should	 have	 to	 select	 a	 response.	 	 	

10) Provide	 a	 default	 button	 only	 when	 the	 Return	 key	 isn’t	 already	 used	 by	 text	 fields	 on	 the	 dialog.	

11) Include	 a	 Cancel	 button	 that	 responds	 to	 the	 standard	 cancellation	 keyboard	 shortcuts.	 A	 Cancel	
button	 provides	 a	 clear,	 safe	 way	 out	 of	 the	 dialog	 and	 returns	 the	 computer	 to	 its	 previous	 state.	 	

12) Ensure	 the	 Cancel	 button	 undoes	 all	 applied	 changes.	 	

Outline View [Level 3], [T+], [V3], Yes/Maybe
An	 outline	 view	 presents	 hierarchical	 data—like	 folders	 and	 the	 items	 they	 contain—cleanly	 and	 efficiently	 in	 a	
scrolling	 list	 of	 cells	 that	 are	 organized	 into	 columns	 and	 rows.	 At	 minimum,	 an	 outline	 view	 includes	 one	 column	
that	 contains	 the	 primary	 hierarchical	 data:	 parent	 containers	 and	 their	 children.	 Subsequent	 columns	 may	 be	
added,	 as	 needed,	 to	 display	 additional	 attributes	 that	 supplement	 the	 primary	 data.	 Event	 logs	 could	 be	
presented	 in	 outline	 view	 as	 an	 alternative	 to	 the	 typical	 table	 view.	 	

1) Outline	 View	 should	 be	 used	 for	 hierarchical	 data	 whereas	 Table	 View	 should	 be	 used	 for	 non-‐
hierarchical	 data.	 Event	 logs	 have	 some	 underlying	 hierarchical	 traits,	 but	 presentation	 style	 should	
depend	 on	 the	 task	 being	 performed.	 [Level	 3],	 [T],	 [V3],	 Maybe	

Bakke,	 E.,	 Karger,	 D.	 R.,	 &	 Miller,	 R.	 C.	 (2013).	 Automatic	 layout	 of	 structured	 hierarchical	 reports.	 IEEE	 Transactions	 on	 Visualization	
and	 Computer	 Graphics,	 19(12),	 2586–2595.	 https://doi.org/10.1109/TVCG.2013.137;	 The	 outline	 view	 is	 just	 one	 way	 to	 present	
data.	 There	 could	 be	 valuable	 testing	 done	 on	 how	 best	 to	 present	 complex	 sets	 of	 events	 from	 the	 WDS	 and	 other	 systems	 based	 on	
the	 mental	 model	 of	 the	 user.	 	

2) The	 data	 hierarchy	 structure	 should	 be	 viewable	 within	 the	 first	 column	 only.	 [Level	 1]	 [T],	 [V1],	 No	

ADG	

3) If	 deemed	 appropriate,	 operators	 should	 be	 able	 to	 click	 column	 headings	 to	 sort	 an	 outline	 view.	
Clicking	 again	 should	 sort	 the	 column	 in	 the	 reverse-‐order	 of	 the	 initial	 click.	 [Level	 2],	 [T],	 [V1],	 No	

ADG	

4) Support	 ease-‐of-‐use	 by	 providing	 clear,	 noun-‐based	 column	 headings,	 allowing	 operators	 to	 resize	
columns,	 and	 ensuring	 that	 rows	 are	 easily	 distinguished.	 [Level	 2],	 [T],	 [V1],	 No	

5) Long	 text	 strings	 within	 a	 cell	 should	 be	 truncated	 in	 some	 way.	 This	 can	 be	 done	 with	 an	 ellipsis	 in	
the	 middle,	 with	 the	 ends	 unaffected,	 or	 with	 a	 trailing	 ellipsis	 that	 prioritizes	 early	 text.	 	 [Level	 3],	
[T+],	 [V2],	 Yes	

 80

6) Search	 fields	 should	 be	 provided	 to	 allow	 operators	 to	 quickly	 find	 specific	 items.	 [Level	 3],	 [T+],	
[V3],	 Yes	

Panels
A panel is an auxiliary window containing controls, options, or information related to the active

document or selection. A panel appears less prominent than a main window and can behave like
a normal window or be configured to float above other open windows—even modal windows.
Panels can also adopt a darker, translucent (HUD-style) appearance when the user experience
calls for it.
1) Use	 a	 panel	 to	 provide	 quick	 access	 to	 important	 controls	 or	 information	 related	 to	 content.	 	

2) As	 an	 alternative	 to	 panels,	 you	 could	 also	 implement	 Popovers,	 Sidebars,	 Split	 Views,	 or	 a	 Toolbar	

3) Title	 panels	 with	 appropriate	 text	 that	 describes	 the	 purpose	 with	 nouns	 or	 noun	 phrases.	 	

4) Link	 the	 visibility	 of	 a	 panel	 to	 whether	 the	 associated	 application	 is	 currently	 active.	 Inactive	
applications	 should	 shouldn’t	 have	 visible	 panels.	 	

5) Consider	 using	 HUD-‐Style	 panels	 for	 highly	 visual	 content.	

a) HUD	 Panels	 are	 translucent	 and	 typically	 have	 a	 darkened	 background.	

b) Use	 simple	 controls	 and	 interactions	 for	 HUD	 panels.	 Avoid	 making	 the	 user	 type,	 for	 example.	

c) Keep	 HUD	 Panels	 fairly	 plain	 with	 minimal	 color	 and	 other	 distracting	 features.	 	

Popover [Level 2], [T-], [V1], No
A popover is a view that appears above other content onscreen when you click a control or

view. Popovers typically integrate an arrow pointing to its origin. Popovers can close in response
to a user interaction (transient behavior), in response to a user’s interaction with the view or
element from which the popover emerged (semi-transient behavior). A popover can also be made
detachable. A detachable popover becomes a separate window when dragged by the user,
allowing it to remain visible onscreen while the user interacts with other content.

ADG	

1) Popovers	 are	 for	 limited	 information	 or	 functionality	 and	 typically	 disappear	 following	 user	
interaction.	 Avoid	 using	 popovers	 for	 complex	 tasks	 and	 functions.	 	

2) Use	 popovers	 to	 streamline	 interfaces	 by	 moving	 simple	 interactions	 from	 static	 regions	 into	 context	
dependent	 popover	 views.	 	

3) Popover	 behavior	 should	 be	 intuitive	 based	 on	 the	 popover’s	 function.	 	

NN/g	

a) Typically,	 this	 means	 exiting	 automatically	 after	 completing	 a	 task	 or	 clicking	 outside	 the	
popover	 rather	 than	 requiring	 a	 Close	 button.	 	

b) Ensure	 Popovers	 don’t	 obscure	 the	 screen	 element	 that	 caused	 it	 to	 appear.	

c) Only	 display	 a	 single	 Popover	 on	 the	 screen	 at	 one	 time.	 	

Scroll view [Level 3], [T+], [V2], Yes/Maybe

 81

A scroll view lets people browse content (i.e., a large event log) that’s larger than the view’s
visible area. A scroll view itself has no appearance, but can display horizontal and vertical scroll
bars, each of which consists of a track containing a draggable control known as a knob. The
height of a knob reflects the quantity of scrollable content.
1) Don’t	 have	 nested	 scrolling	 views.	 [Level	 2],	 [T],	 [V1],	 No	

2) Ensure	 scroll	 bars	 and	 sliders	 have	 distinct	 appearances.	 [Level	 2],	 [T],	 [V1],	 No	

3) Avoid	 requiring	 horizontal	 and	 vertical	 scrolling	 on	 the	 same	 interface	 and	 prefer	 vertical	 scrolling	
over	 horizontal.	 [Level	 4],	 [T+],	 [V3],	 Yes	

GOMS;	 Bakke,	 E.,	 Karger,	 D.	 R.,	 &	 Miller,	 R.	 C.	 (2013).	 Automatic	 layout	 of	 structured	 hierarchical	 reports.	 IEEE	 Transactions	 on	
Visualization	 and	 Computer	 Graphics,	 19(12),	 2586–2595.	 https://doi.org/10.1109/TVCG.2013.137;	 Event	 logs	 are	 complex	 sets	 of	
data	 that	 need	 searched	 by	 users	 and	 determining	 the	 best	 way	 to	 present	 them	 could	 be	 valuable.	

4) If	 possible,	 avoid	 requiring	 the	 use	 of	 scrolling	 to	 view	 all	 content.	 This	 must	 be	 balanced	 against	
over	 crowding	 an	 interface.	 [Level	 4],	 [T+],	 [V3],	 Yes	

GOMS;	 LR	 §3.3	 Working	 Memory	 and	 Cognition;	 Scrolling	 requires	 the	 user	 to	 store	 more	 information	 in	 working	 memory	 rather	 than	
“maintaining”	 that	 information	 on	 the	 screen.	

Split view
A split view manages the presentation of two or more panes of content. Each pane can contain

any variety of elements, including buttons, tables, column views, text fields, and even other split
views. The panes of a split view can be arranged horizontally or vertically and are separated by a
divider that can typically be dragged to resize the panes. Each pane can have a minimum and
maximum size, which affects how much it can be resized. Many apps let the user hide specific
panes on request.

ADG	

1) Allow	 panes	 to	 be	 hidden	 when	 it	 makes	 sense.	 For	 example,	 hiding	 a	 pane	 may	 help	 reduce	
distractions	 during	 focused	 work.	 	 	

2) Provide	 multiple	 ways	 to	 access	 hidden	 panes.	 Provide	 toolbar	 buttons	 or	 menu	 items	 with	
keyboard	 shortcuts.	 	 	

3) Ensure	 minimum	 and	 maximum	 pane	 sizes	 set	 based	 on	 the	 system’s	 requirements	 and	 functions.	 	

4) Use	 Thin	 dividers	 (1pt	 width)	 for	 most	 dividers.	 If	 the	 designer	 wants	 to	 indicate	 a	 stronger	 visual	
distinction	 between	 panes	 then	 use	 a	 Thick	 divider	 (9pt	 width).	

Tab Views [Level 3], [T], [V2], No/Maybe
A tab view presents multiple mutually exclusive panes of content in the same area. A tab view

includes a tabbed control (which is similar in appearance to a segmented control) and a content
area. Each segment of a tabbed control is known as a tab, and clicking a tab displays its
corresponding pane in the content area. Although the amount of content can vary from pane to
pane, switching tabs doesn’t change the overall size of the tab view or its parent window.
1) Use	 a	 tab	 view	 to	 present	 closely	 related,	 equally	 important	 content	 areas.	 [Level	 2],	 [T-‐],	 [V1],	 No	

need	

2) Provide	 between	 two	 and	 six	 tabs	 in	 tab	 view.	 If	 more	 tabs	 are	 necessary,	 consider	 alternative	 views.	
[Level	 2],	 [T],	 [V2],	 Maybe	

ADG	

 82

3) Controls	 within	 a	 pane	 using	 tab	 view	 should	 only	 affect	 content	 within	 that	 tab.	 [Level	 2],	 [T],	 [V1],	
No	 need	

ADG;	 CWT	

4) Provide	 a	 label	 for	 each	 tab	 that	 describes	 the	 content	 of	 its	 pane.	 [Level	 2],	 [T-‐],	 [V1],	 No	 need	

5) Ensure	 switching	 between	 tabs	 requires	 only	 a	 single	 action	 like	 pressing	 a	 button,	 using	 a	 keystroke	
(e.g.,	 tab),	 or	 clicking.	 [Level	 3],	 [T+],	 [V1],	 No	 need	

ADG;	 GOMS	

Menus [Level 3], [T+], [V2], Yes/Maybe
A menu presents a list of items—commands, attributes, or states—from which a user can

choose. An item within a menu is known as a menu item, and may be configured to initiate an
action, toggle a state on or off, or display a submenu of additional menu items when selected or
in response to an associated keyboard shortcut. Menus can also include separators, and menu
items can contain icons and symbols, like checkmarks.

CWT;	 GOMS;	 ADG	

1) Use	 title-‐style	 capitalization	 for	 all	 text.	 [Level	 2],	 [T],	 [V1],	 No	 need	

APA	 Guidelines;	 ADG	

2) Ensure	 menu	 titles	 are	 intuitive	 so	 users	 will	 anticipate	 the	 types	 of	 items	 the	 menu	 contains.	 [Level	
4],	 [T],	 [V2],	 Maybe	

ADG;	 NN/g;	 CWT;	 Information	 scent	 research	

3) Keep	 menus	 enabled,	 even	 when	 menu	 items	 are	 unavailable.	 [Level	 3],	 [T],	 [V2],	 Maybe	

ADG;	 CWT;	 Mendel,	 J.,	 &	 Pak,	 R.	 (2009).	 The	 Effect	 of	 Interface	 Consistency	 and	 Cognitive	 Load	 on	 User	 Performance	 in	 an	
Information	 Search	 Task.	 Proceedings	 of	 the	 Human	 Factors	 and	 Ergonomics	 Society	 Annual	 Meeting,	 53(22),	 1684–1688.	
https://doi.org/10.1177/154193120905302206	

a) This	 tells	 users	 that	 a	 particular	 function	 is	 unavailable	 at	 the	 moment.	 	

b) Unavailable	 menu	 items	 also	 allow	 users	 to	 learn	 about	 other	 functions	 in	 the	 system,	 even	 if	
the	 actions	 aren’t	 possible.	 	

4) Make	 menu	 titles	 as	 short	 as	 possible	 without	 sacrificing	 clarity.	 [Level	 3],	 [T],	 [V1],	 No	 need	

FDUCS	 §7.3	 How	 Users	 Read;	 ADG	

5) Only	 use	 text	 for	 menu	 items.	 Icons	 are	 confusing	 and	 unnecessary.	 [Level	 3],	 [T],	 [V1],	 Maybe	

FDUCS	 §7.3	 How	 Users	 Read;	 Ghayas,	 S.,	 Sulaiman,	 S.,	 Khan,	 M.,	 &	 Jaafar,	 J.	 (2013).	 The	 effects	 of	 icon	 characteristics	 on	 users’	
perception.	 In	 International	 Visual	 Informatics	 Conference	 (pp.	 652–663).	

6) Ensure	 the	 menu	 titles	 and	 text	 make	 sense	 according	 to	 their	 function.	 [Level	 2],	 [T],	 [V2],	 No	

ADG;	 NN/g	

a) Use	 verbs	 and	 verb	 phrases	 for	 menu	 items	 that	 initiate	 actions.	

b) Use	 adjectives	 and	 adjective	 phrases	 for	 menu	 items	 that	 toggle	 attribute	 states.	 	

c) Avoid	 articles	 in	 menu	 item	 titles.	 	

7) Use	 keyboard	 shortcuts	 for	 frequently	 used	 items	 in	 the	 menu	 bar.	 Make	 sure	 keyboard	 shortcuts	
are	 shown	 next	 to	 the	 functions.	 [Level	 4.5],	 [T+],	 [V3],	 Yes	

 83

8) Avoid	 using	 submenus	 when	 possible.	 [Level	 4],	 [T+],	 [V2],	 Maybe	

FDUCS	 §7.3.4	

a) If	 necessary	 to	 include	 a	 submenu,	 only	 have	 a	 single	 additional	 level	 to	 the	 menu.	

b) Avoid	 having	 more	 than	 five	 items	 in	 a	 submenu.	 	

c) Only	 consolidate	 related	 menu	 items	 into	 submenus.	 For	 example,	 Sort	 By	 Name,	 Sort	 By	 Date,	
and	 Sort	 By	 Length	 could	 be	 merged	 into	 a	 single	 command	 Sort	 By	 with	 a	 submenu	 for	 Date,	
Name,	 and	 Length.	 	

9) Group	 items	 within	 a	 menu	 in	 a	 logical	 manner.	 [Level	 4],	 [T+],	 [V2],	 No	

FDUCS	 §7.3.4;	 GOMS;	 St.	 Amant,	 R.,	 Horton,	 T.	 E.,	 &	 Ritter,	 F.	 E.	 (2004).	 Model-‐based	 evaluation	 of	 cell	 phone	 menu	 interaction.	
Proceedings	 of	 the	 SIGCHI	 Conference	 on	 Human	 Factors	 in	 Computing	 Systems,	 6(1),	 343–350.	
https://doi.org/10.1145/985692.985736	

a) Group	 closely	 related	 items	 together	 (Find	 and	 Find	 Next)	

b) Arrange	 sets	 of	 closely	 related	 items	 by	 frequency	 of	 use.	 Put	 frequently	 used	 items	 at	 the	 top	 of	
the	 list.	 	

c) Separate	 items	 that	 initiate	 actions	 from	 items	 that	 set	 attributes.	 	

10) Avoid	 scrolling	 menus.	 [Level	 4],	 [T+],	 [V3],	 Yes	

GOMS;	 LR	 §3.3	 Working	 Memory	 and	 Cognition;	 Scrolling	 requires	 the	 user	 to	 store	 more	 information	 in	 working	 memory	 rather	 than	
“maintaining”	 that	 information	 on	 the	 screen.	

11) If	 icons	 are	 necessary	 for	 your	 menus	 (like	 for	 a	 toggled	 setting),	 use	 a	 standard,	 limited	 set	 of	 clear	
symbols	 like	 a	 checkmark.	 [Level	 2],	 [T],	 [V2],	 Maybe	

ADG	 	

Contextual menus
A contextual menu, or shortcut menu, gives people access to frequently used commands related

to the current context. Contextual menus are typically brought up by using a right-click on the
item. Contextual menus often provide a limited set of useful actions that are frequently used in a
particular situation.
1) Follow	 the	 standards	 and	 best	 practices	 of	 typical	 menu	 design	

2) Include	 only	 the	 most	 commonly	 used	 commands	 that	 are	 appropriate	 in	 the	 current	 context.	 	

3) Always	 make	 contextual	 menu	 items	 available	 in	 the	 menu	 bar	 as	 well.	 	

Buttons

Checkbox [Level 3], [T], [V1], No
A checkbox is a type of button that lets the user choose between two opposite states, actions, or

values. A selected checkbox is considered on when it contains a checkmark and off when it's
empty. A checkbox is almost always followed by a title unless it appears in a checklist.

ADG;	 Tufte	

1) Ensure	 the	 label	 or	 title	 implies	 two	 opposite	 states.	 If	 the	 titled/labeled	 checkbox	 is	 difficult	 to	
make	 unambiguous,	 consider	 using	 two	 binary-‐titled	 radio	 buttons	 instead.	 	

 84

2) Checkboxes	 should	 be	 within	 a	 view,	 not	 a	 window	 frame	 (i.e.,	 toolbars	 and	 status	 bars).	 	

3) Consider	 using	 a	 label	 for	 describing	 a	 set	 of	 several	 checkboxes	 if	 their	 relationship	 isn’t	 evident.	 	

4) Checkboxes	 should	 usually	 be	 arranged	 vertically.	 	

5) Checkboxes	 can	 use	 a	 hierarchical	 arrangement	 with	 indentation	 to	 show	 relationships	 between	
parent	 and	 child	 checkboxes.	 	

6) Parent	 checkboxes	 should	 use	 a	 mixed	 state	 [-‐]	 if	 the	 child	 checkboxes	 have	 mixed	 settings.	 	

Gradient button
A gradient button initiates an immediate action related to a view, like adding or removing table

rows. Gradient buttons contain icons—not text—and can be configured to behave as push
buttons, toggles, or pop-up buttons. They usually reside in close proximity to (either within or
beneath) their associated view.

ADG	

1) Gradient	 buttons	 only	 below	 in	 views,	 not	 in	 window	 frames.	 	

2) Use	 standard	 system-‐provided	 icons	 for	 gradient	 buttons	 to	 ensure	 users	 are	 familiar	 with	 the	
symbols	 and	 meaning.	 	

3) Gradient	 buttons	 should	 be	 clearly	 linked	 to	 a	 particular	 view	 and	 shouldn’t	 need	 a	 label.	 	

Help button [Level 3], [T+], [V3], Yes
A help button appears within a view and opens application-specific help documentation when

clicked. All help buttons are circular, consistently sized buttons that contain a question mark
icon.
1) Use	 system-‐provided	 help	 buttons	 and	 ensure	 the	 help	 buttons	 have	 a	 consistent	 response.	 	

2) Only	 include	 one	 help	 button	 per	 window.	 	

3) Position	 help	 buttons	 as	 expected	

a) Dialog	 with	 dismissal	 buttons	 (e.g.,	 OK	 and	 Cancel):	 lower-‐left	 corner	 aligned	 with	 dismissal	
buttons.	

b) Dialog	 without	 dismissal	 buttons:	 Lower-‐left	 or	 lower-‐right	 corner.	 	

c) Preference	 window	 or	 pane:	 Lower-‐left	 or	 lower-‐right	 corner.Pop-‐up	 buttonA	 pop-‐up	 button	
(often	 referred	 to	 as	 a	 pop-‐up	 menu)	 is	 a	 type	 of	 button	 that,	 when	 clicked,	 displays	 a	 menu	
containing	 a	 list	 of	 mutually	 exclusive	 choices.	 A	 pop-‐up	 button	 includes	 a	 double-‐arrow	
indicator	 that	 alludes	 to	 the	 direction	 in	 which	 the	 menu	 will	 appear.	 The	 menu	 appears	 on	 top	
of	 the	 button.	 Like	 other	 types	 of	 menus,	 a	 pop-‐up	 button’s	 menu	 can	 include	 separators	 and	
symbols	 like	 checkmarks.	 After	 the	 menu	 is	 revealed,	 it	 remains	 open	 until	 the	 user	 chooses	 a	
menu	 item,	 clicks	 outside	 of	 the	 menu,	 switches	 to	 another	 app,	 or	 quits	 the	 app;	 or	 until	 the	
system	 displays	 an	 alert.	

 85

Push Buttons [Level 2.5], [T-], [V1], No
A push button appears within a view and initiates an instantaneous app-specific action, such as

printing a document or deleting a file. Push buttons contain text—not icons—and often open a
separate window, dialog, or app so the user can complete a task.

ADG;	 NN/g	

1) Design	 the	 options	 to	 ensure	 a	 likely	 default	 button	 is	 clear.	 	

2) Push	 buttons	 should	 only	 be	 in	 views,	 not	 window	 frames.	 	

3) Only	 use	 text	 for	 push	 buttons,	 not	 icons.	 	

4) Give	 push	 buttons	 clear	 labels	 with	 verbs	 to	 describe	 the	 effect	 of	 clicking	 the	 button.	 	

5) Be	 specific	 when	 possible.	 “Select	 Text	 File”	 is	 much	 clearer	 than	 “Import.”	 	

6) Include	 a	 trailing	 ellipsis	 in	 the	 title	 when	 a	 push	 button	 opens	 another	 window,	 dialog,	 or	
application.	 	

7) Push	 buttons	 should	 be	 similar	 in	 size	 (when	 appropriate)	 for	 aesthetics	 and	 clarity.	 	

Radio button [Level 2.5], [T-], [V1], No
A radio button is a small, circular button followed by a title. Typically presented in groups of

two to five, radio buttons provide the user a set of related but mutually exclusive choices. A
radio button’s state is either on (a filled circle) or off (an empty circle). A radio button can also
permit a mixed state (a circle containing a dash) that’s partially on and partially off. However,
it’s better to use checkboxes when your app requires a mixed state.

ADG;	 NN/g;	 GOMS;	 General	 support	 from	 work	 on	 visual	 scanning	

1) Ensure	 radio	 buttons	 have	 meaningful	 titles.	 	

2) Use	 a	 standard	 button	 instead	 of	 a	 radio	 button	 if	 initiating	 an	 action.	

3) Radio	 buttons	 should	 only	 be	 used	 in	 views,	 not	 window	 frames.	 	

4) Labels	 can	 help	 clarify	 the	 connection	 between	 a	 set	 of	 radio	 buttons.	 	

5) Avoid	 horizontally	 placed	 radio	 buttons,	 but	 if	 necessary	 then	 use	 consistent	 spacing.	

6) If	 more	 than	 five	 choices	 are	 necessary,	 consider	 using	 a	 pop-‐up	 button	 instead.	 	

7) In	 almost	 every	 case,	 select	 a	 radio	 button	 by	 default.	 Default	 buttons	 reduce	 confusion	 and	 can	
allow	 engineers	 to	 imply	 the	 best	 course	 of	 action	 to	 the	 user.	 	

Fields and Labels

Combo box
A combo box combines a text field with a pull-down button in a single control. The user can

enter a custom value into the field or click the button to choose from a list of predefined values.
When the user enters a custom value, it’s not added to the list of choices.

ADG;	 NN/g;	 CWT;	 LR	 §2.2.2;	 Rieman,	 J.,	 Young,	 R.	 M.,	 &	 Howes,	 A.	 (1996).	 A	 dual-‐space	 model	 of	 iteratively	 deepening	 exploratory	
learning.	 International	 Journal	 of	 Human	 Computer	 Studies,	 44(6),	 743–775.	 https://doi.org/10.1006/ijhc.1996.0032	

1) Populate	 the	 field	 with	 a	 meaningful	 default	 value	 from	 the	 list.	 	

 86

2) Use	 an	 introductory	 label	 to	 let	 the	 user	 know	 what	 types	 of	 items	 to	 expect.	 	

3) Provide	 useful,	 relevant	 choices	 for	 the	 user	 to	 select.	 Ensure	 that	 the	 options	 are	 all	 standalone	
selections	 because	 combo	 boxes	 shouldn’t	 allow	 multiple	 selection.	 	

Labels [Level 3.5], [T], [V2], Yes
A label is a static text field that describes an onscreen interface element or provides a short

message. Although people can’t edit labels, they can sometimes copy label contents.
1) Ensure	 labels	 are	 legible,	 clear,	 and	 consistent	 [Level	 3],	 [T],	 [V2],	 Maybe/No	

a) Typically	 labels	 for	 controls	 should	 end	 with	 a	 colon.	 An	 exception	 to	 this	 rule	 is	 when	 the	 label	
and	 control	 form	 a	 complete	 sentence.	 	

b) Use	 system-‐provided,	 standardized	 label	 colors	 to	 communicate	 relative	 importance.	 	 	

2) Make	 sure	 label	 text	 is	 selectable	 where	 possible,	 and	 make	 logs	 copiable	 so	 users	 can	 copy	 useful	
text	 onto	 other	 locations.	 [Level	 3.5],	 [T+],	 [V2],	 Yes/Maybe	

ADG;	 GOMS;	 CWT;	 LR	 §3.3	 Working	 Memory	 and	 Cognition	

3) Labels	 and	 other	 text	 must	 use	 a	 consistent	 vocabulary,	 syntax,	 and	 grammar.	 Even	 minor	 changes	
can	 have	 a	 negative	 impact	 on	 the	 mental	 model	 and	 understanding	 of	 the	 user.	 [Level	 4],	 [T+],	
[V3],	 Yes	

Mendel,	 J.,	 &	 Pak,	 R.	 (2009).	 The	 Effect	 of	 Interface	 Consistency	 and	 Cognitive	 Load	 on	 User	 Performance	 in	 an	 Information	 Search	
Task.	 Proceedings	 of	 the	 Human	 Factors	 and	 Ergonomics	 Society	 Annual	 Meeting,	 53(22),	 1684–1688.	
https://doi.org/10.1177/154193120905302206	

4) If	 users	 will	 be	 exposed	 to	 many	 labels	 at	 once,	 use	 colors	 and	 icons	 to	 help	 differentiate	 items	 for	
faster,	 more	 accurate	 search.	 [Level	 4.5],	 [T],	 [V3],	 No	 need/Maybe	

NN/g;	 https://www.nngroup.com/articles/visual-‐indicators-‐differentiators/	

Search field [Level 3], [T+], [V3], Yes
A search field is a style of text field optimized for performing text-based searches in a large

collection of values. Many windows include a search field in the toolbar, but a search field can
also be displayed in the body area of a window. A search field typically displays a magnifying
glass icon and can also include placeholder text and a cancellation button.

ADG;	 NN/G;	 CWT;	 Others	

1) Ensure	 search	 fields	 have	 a	 distinct	 look	 that	 users	 can	 instantly	 recognize	 and	 distinguish	 from	
other	 similar	 features	 like	 text	 fields.	 [Level	 3],	 [T],	 [V1],	 Maybe	

ADG;	 Consistency	 and	 Cognitive	 Load	 on	 User	 Performance	 in	 an	 Information	 Search	 Task.	 Proceedings	 of	 the	 Human	 Factors	 and	
Ergonomics	 Society	 Annual	 Meeting,	 53(22),	 1684–1688.	 https://doi.org/10.1177/154193120905302206	

a) Placeholder	 text	 can	 remind	 users	 of	 the	 types	 of	 information	 are	 searchable.	

2) Determine	 an	 appropriate	 time	 to	 begin	 searching.	 Consider	 whether	 to	 show	 search	 results	
dynamically	 or	 only	 after	 the	 user	 initiates	 the	 search.	 [Level	 3],	 [T+],	 [V2],	 Yes/Maybe	

ADG;	 NN/g;	 See:	 https://www.nngroup.com/articles/suggested-‐employee-‐search/	

3) Scope	 bars,	 a	 type	 of	 toolbar	 for	 filtering	 searches,	 will	 help	 users	 trim	 down	 unnecessary	
information	 during	 searches	 that	 may	 bring	 up	 large	 amounts	 of	 data.	 [Level	 2.5],	 [T],	 [V2],	 Maybe	

ADG;	 NN/g;	 CWT	

 87

a) Plan	 scope	 bar	 functions	 around	 the	 tasks.	 Searching	 documentation	 for	 a	 page	 might	 not	 need	
detailed	 search	 filters,	 however	 searching	 an	 event	 log	 with	 1000s	 of	 entries	 may	 require	 users	
to	 input	 multiple	 filters.	

b) Some	 general	 useful	 filters	 for	 event	 logs	 include	 date	 range,	 module	 origin,	 text,	 and	 severity.	 	

c) More	 advanced	 or	 specialized	 filters	 could	 include	 number	 of	 results	 shown,	 reverse	 filters,	 and	
options	 for	 pre-‐set	 filter	 categories	 (e.g.,	 alarms	 from	 past	 24	 hours	 from	 only	 core	 modules).	

d) Include	 a	 “not”	 function	 for	 searches	 to	 support	 more	 detailed	 searching	 behavior.	

4) Searches	 with	 no	 results	 found	 should	 be	 clearly	 communicated	 to	 the	 operator.	 [Level	 3],	 [T+],	
[V1],	 No	

ADG;	 LR:	 §2.2.1	 Stage	 1	 –	 Perception	

5) Filtering	 for	 date	 ranges	 should	 have	 multiple	 input	 methods	 like	 text-‐view	 and	 calendar-‐view.	
[Level	 2],	 [T+],	 [V2],	 Maybe	

ADG;	 NN/g	

6) Ensure	 that	 date	 formats	 are	 clear	 	

Text/Character field [Level 3], [T], [V2], Yes
A text field is a rectangular area in which the user enters or edits one or more lines of text. A

text field can contain plain or styled text. Text fields are the base category for search fields,
labels, and other related features.

ADG;	 NN/g	

1) When	 providing	 a	 user-‐provided	 data	 entry	 field,	 use	 a	 clear	 label	 with	 useful	 hints	 close	 by	 to	
communicate	 the	 purpose	 of	 the	 text	 field.	 [Level	 2],	 [T],	 [V1],	 No	

LR	 §3.3	 Working	 Memory	 and	 Cognition;	 Disappearing	 placeholder	 text	 can	 strain	 working	 memory,	 particularly	 when	 distracted.	

2) Perform	 field	 validation	 after	 the	 user	 finishes	 typing	 into	 the	 field.	 Don’t	 wait	 until	 the	 user	 tries	 to	
submit	 the	 data.	 [Level	 3],	 [T],	 [V2],	 Yes	

ADG;	 NN/g;	 Others;	 The	 value	 of	 this	 is	 dependent	 on	 what	 is	 being	 typed.	 For	 numerical	 entry,	 this	 is	 more	 important.	

3) Number	 formatters	 help	 users	 provide	 accurate	 numerical	 data	 by	 making	 the	 text	 easier	 to	 read	
and	 comprehend.	 See	 Data	 Entry	 above.	

4) Ensure	 that	 text	 fields	 allow	 users	 to	 easily	 view	 the	 full	 content	 in	 the	 field.	 Consider	 enabling	
resizing	 of	 text	 fields	 or	 providing	 another	 method	 to	 view	 the	 full	 text.	 [Level	 4],	 [T],	 [V1],	 Maybe	

LR	 §3.3	 Working	 Memory	 and	 Cognition;	 Being	 unable	 to	 view	 the	 full	 text	 field	 forces	 operators	 to	 store	 information	 within	 working	
memory	 rather	 than	 simply	 view	 it	 if	 they	 want	 the	 full	 picture.	

5) When	 possible,	 match	 the	 size	 of	 the	 text	 field	 to	 the	 expected	 size	 of	 the	 input.	 A	 text	 field	 for	 a	
five-‐digit	 zip	 code	 can	 be	 static	 and	 just	 slightly	 wider	 than	 the	 text.	 A	 text	 field	 for	 paragraph-‐length	
entries	 should	 show	 (at	 the	 very	 least)	 multiple	 lines	 and	 potentially	 include	 a	 method	 for	 resizing	
the	 text	 field.	 [Level	 3],	 [T],	 [V1],	 No	

6) A	 page	 with	 multiple	 text	 fields	 should	 ensure	 the	 layout	 is	 clean	 and	 clear.	 [Level	 4],	 [T],	 [V1],	
Maybe	

 88

Mendel,	 J.,	 &	 Pak,	 R.	 (2009).	 The	 Effect	 of	 Interface	 Consistency	 and	 Cognitive	 Load	 on	 User	 Performance	 in	 an	 Information	 Search	
Task.	 Proceedings	 of	 the	 Human	 Factors	 and	 Ergonomics	 Society	 Annual	 Meeting,	 53(22),	 1684–1688.	
https://doi.org/10.1177/154193120905302206	

a) Evenly	 space	 multiple	 text	 fields.	

b) Prefer	 a	 vertical	 layout	 over	 horizontal.	 	

c) Prefer	 consistent	 text	 field	 widths	 when	 appropriate.	 This	 can	 be	 used	 to	 signal	 relationships	
between	 text	 fields.	 For	 example,	 “first	 name”	 and	 “last	 name”	 can	 be	 one	 width	 while	 the	
“address”	 and	 “city”	 fields	 can	 be	 another	 width.	 	 	

7) Ensure	 that	 “tabbing”	 between	 fields	 follows	 a	 logical,	 intuitive	 path.	 [Level	 3],	 [T],	 [V1],	 Maybe	

FOK;	 Mendel,	 J.,	 &	 Pak,	 R.	 (2009).	 The	 Effect	 of	 Interface	 Consistency	 and	 Cognitive	 Load	 on	 User	 Performance	 in	 an	 Information	
Search	 Task.	 Proceedings	 of	 the	 Human	 Factors	 and	 Ergonomics	 Society	 Annual	 Meeting,	 53(22),	 1684–1688.	
https://doi.org/10.1177/154193120905302206	

8) Provide	 access	 to	 an	 “other”	 option	 when	 the	 task	 is	 complicated.	 This	 provides	 users	 a	 method	 for	
completing	 the	 task	 when	 the	 options	 don’t	 align	 exactly.	 [Level	 2],	 [T],	 [V1],	 Maybe	

ADG;	 Consistency	 and	 Cognitive	 Load	 on	 User	 Performance	 in	 an	 Information	 Search	 Task.	 Proceedings	 of	 the	 Human	 Factors	 and	
Ergonomics	 Society	 Annual	 Meeting,	 53(22),	 1684–1688.	 https://doi.org/10.1177/154193120905302206	

Date/Time picker [Level 3], [T], [V3], Yes
A date picker lets the user choose a date, a time, a date and time, or a range of dates. Date and

time can be presented in a textual format using text fields, as a graphical format using a calendar
view and/or clock view, or as a display showing both at once.

KLM;	 CWT	

1) Ensure	 that	 the	 formatting	 of	 time	 and	 date	 displays	 matches	 the	 needs	 of	 the	 user	 and	 system.	 	

2) The	 date	 and	 time	 format	 should	 be	 consistent	 across	 the	 system	 (or	 all	 systems).	

3) Ensure	 the	 detail	 shown	 by	 the	 display	 matches	 the	 needs	 of	 the	 task.	 Scheduling	 an	 in-‐person	
meeting	 requires	 less	 precision	 than	 scheduling	 access	 to	 a	 super	 computer.	 	

4) Present	 dates	 and	 times	 in	 a	 familiar	 format	 for	 the	 user.	 Ensure	 that	 cultural	 and	 international	
differences	 are	 considered	 during	 the	 design.	 	

Segmented control
A segmented control is a horizontal set of two or more segments, each of which functions as a

button—usually configured as a toggle. Segmented controls provide closely related choices that
affect an object, state, or view. Like buttons, segments can contain text or icons. A segmented
control can enable single choice or multiple choices.

ADG;	 LR	 §2.2.2	 Stage	 2	 –	 Comprehension	

1) In	 general,	 try	 to	 keep	 segment	 size	 consistent.	 	

2) Consider	 using	 labels	 to	 add	 clarity.	 Labels	 can	 introduce	 a	 segmented	 control,	 clarify	 its	 purpose,	
and	 help	 ensure	 that	 icons	 are	 understood	 by	 the	 user.	 	

3) Segmented	 controls	 should	 follow	 the	 toolbar	 design	 guidelines	 when	 possible.	 	

 89

4) Segmented	 controls	 should	 not	 be	 used	 as	 a	 replacement	 for	 tab	 view	 controls	 within	 a	 primary	
window.	 Segmented	 controls	 can	 be	 used	 for	 view	 switching	 within	 a	 toolbar	 or	 inspector	 pane,	
however.	 	

5) Segmented	 controls	 should	 not	 be	 used	 for	 Add	 or	 Remove	 actions.	 Instead,	 use	 gradient	 buttons.	 	

6) Segmented	 control	 labels	 should	 use	 nouns	 or	 noun	 phrases.	 	

7) Segmented	 controls	 that	 use	 text	 within	 the	 control	 don’t	 need	 an	 additional	 label,	 however	 icons	
should	 be	 accompanied	 by	 labels.	

8) Avoid	 including	 text	 and	 icons	 within	 a	 single	 segmented	 control.	 	 	

Level Indicators [Level 3.5], [T+], [V3], Yes
A level indicator graphically represents of a specific value within a range of numeric values.

It’s similar to a slider in purpose, but more visual and doesn’t contain a distinct control for
selecting a value—clicking and dragging across the level indicator itself to select a value is
supported, however. A level indicator can also include tick marks, making it easy for the user to
pinpoint a specific value in the range. A capacity indicator illustrates the current level in relation
to a finite capacity. Capacity indicators are often used when communicating factors like disk and
battery usage.
1) The	 fill	 color	 for	 capacity	 indicators	 should	 be	 used	 to	 alert	 users	 about	 significant	 values	 like	 low	

battery	 or	 low	 disk	 space.	 	

2) Large	 ranges	 of	 data	 should	 use	 continuous	 indicators	 and	 tick	 marks	 to	 provide	 additional	
information	 about	 the	 data	 value.	 	

3) Use	 the	 quantity	 and	 width	 of	 discrete	 indicators	 to	 convey	 additional	 context	 information	 to	 the	
user.	 Don’t	 use	 tick	 marks	 on	 discrete	 indicators	 since	 they	 already	 include	 that	 information	 in	 their	
display.	 	

4) Be	 sure	 to	 label	 at	 least	 the	 first	 and	 last	 tick	 marks	 if	 they	 are	 used	 on	 a	 continuous	 indicator.	 	

Progress Indicators [Level 4], [T], [V2], No
Don’t make people sit around staring at a static screen waiting for your app to load content or

perform lengthy data processing operations. Use progress indicators to let people know your app
hasn't stalled and to give them some idea of how long they’ll be waiting.

There are two general kinds of progress indicators: bar indicators and spinning indicators. Bar
indicators (or progress bars) use a horizontal bar that fills from left to right to show the progress
of some action. Spinning indicators use a circular form to show progress through filling the circle
as progress continues.

ADG;	 Ghafurian,	 M.	 (2017).	 Impatience	 in	 dynamic	 decision-‐making:	 Its	 moderation,	 and	 implications	 for	 user	 interface	 design.	 The	
Pennsylvania	 State	 University.	 	

1) Progress	 indicators	 should	 only	 be	 shown	 within	 a	 view,	 not	 in	 window	 frame	 areas	 like	 toolbars	 and	
status	 bars.	

2) Progress	 indicators	 should	 be	 in	 consistent	 locations	 across	 the	 system.	 	

3) If	 possible	 and	 useful,	 allow	 users	 to	 halt	 processing	 for	 an	 action	 without	 causing	 negative	 side	
effects.	 	

 90

4) Only	 use	 determinate	 progress	 indicators	 for	 tasks	 with	 well-‐defined	 durations.	 Be	 sure	 to	
differentiate	 between	 processes	 that	 have	 a	 determinate	 length	 and	 processes	 that	 have	 an	
indeterminate	 length.	 	

5) Always	 report	 progress	 accurately.	 Users	 will	 be	 frustrated	 by	 a	 progress	 bar	 that	 does	 not	 represent	
the	 progress	 in	 a	 useful,	 accurate	 manner.	 For	 example,	 avoid	 making	 a	 progress	 bar	 that	 jumps	 to	
90%	 completion	 within	 the	 first	 10	 seconds,	 but	 takes	 five	 minutes	 to	 complete	 the	 final	 10%	 of	 the	
task.	 	

6) Hide	 determine	 progress	 indicators	 once	 they	 are	 completely	 filled,	 however	 make	 sure	 the	 user	
realizes	 that	 the	 task	 is	 complete.	 If	 it	 disappears	 too	 quickly,	 they	 may	 wonder	 if	 that	 task	 was	
actually	 complete.	 	

7) Labels	 for	 progress	 bars	 can	 provide	 useful	 context	 about	 the	 current	 state	 of	 the	 system.	 Use	 a	
trailing	 ellipsis	 on	 labels	 to	 indicate	 that	 the	 task	 is	 an	 ongoing	 process.	 	

8) Spinning	 progress	 indicators	 should	 be	 used	 to	 communicate	 the	 status	 of	 a	 background	 operation	
or	 to	 save	 space	 on	 the	 screen.	 	

9) In	 general,	 determinate	 progress	 indicators	 are	 preferred	 over	 indeterminate	 indicators.	 	

10) Don’t	 switch	 between	 spinning	 indicators	 and	 progress	 bars	 for	 the	 same	 task.	 	

11) Try	 to	 keep	 indeterminate	 progress	 bars	 in	 motion	 to	 ensure	 that	 the	 user	 knows	 that	 something	 is	
happening.	 This	 prevents	 users	 determine	 whether	 the	 task	 is	 progressing	 or	 if	 the	 system	 has	
stalled.	 	

12) Spinning	 progress	 indicators	 typically	 won’t	 need	 labels.	 	

For designers

Guidelines will not cover all decisions
Guidelines cannot cover all instances. There may be edge cases or places where unexpectedly

questions arise about design. For example, another item to add, another task to add, a different
type of screen or user. The implementer will often be asked to make short-term, rapid design
decisions without the necessary time or resources to fully analyze the situation. For example, a
customer may determine that the power module requires a view showing power over time in
addition to the current power level. Should the power-over-time view be shown in addition to the
current power level or merged into a single view? Should the power-over-time view change the
line’s color to show low power alerts or use a horizontal threshold line instead? Providing
implementers, designers, and engineers with additional training will allow them to make good
design decisions throughout the design process.

Even design guidance and even designs will not always provide enough information to
implement a system. Better systems are built when the implementer is at least sympathetic to and
perhaps even has studied a bit about the domain they are implementing. In the same way that
architects that understand how buildings are built provide better and easier to build building, and
architectural engineers build betters buildings if they have studied architecture, engineers that
understand their users will build better interfaces.

 91

Study the user [Level 4, FDUCS, PM]
Thus, interface implementers should study the user slightly to be prepared for when explicitly

or implicitly, decisions have to be made while implementing the interface. This might be 10-25
hours a year.

Study design [Level 4, FDUCS, PM]
Interface design and implementation is a process and procedural skill like any engineering

discipline, similar to writing code or writing English or even medical practice. Professionals in
this area should get continuing education in the process of design. This might be 10-25 hours a
year.

