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ABSTRACT. We present a docking study for Herbal, a high-level behavioral 
representation language based on the problem space computational model. This 
study docks an ACT-R model created with Herbal to one created by hand. This 
comparison accomplishes several things. First, we believe such studies are 
necessary for achieving and demonstrating the theoretical rigor and repeatability 
promised by high-level representation languages. Second, it is necessary to 
evaluate the effectiveness and efficiency of high-level cognitive modeling 
languages if they are to make a significant impact in either the cognitive or social 
sciences. Third, this kind of study provides an opportunity to test Herbal's ability to 
produce ACT-R models from a GOMS-like representation that contains 
hierarchical methods, memory capacity, and control constructs. Finally, this study 
provides an example model for future validation work in this area. Our study 
addresses each of these points by docking Pirolli's [1] price finding model in ACT-
R with the same model written in Herbal. We extended Herbal to support more 
memory types, and in the process may have extended the PSCM. 

 

Keywords. Model validation, Docking, Herbal, and ACT-R 

Introduction 

This paper addresses the challenges associated with comparing and validating 
cognitive models across cognitive architectures. Cognitive models implemented in 
cognitive architectures have successfully modeled the effects of bounded 
rationality[2] on cognition[3-6] and to some extent on social interactions[7] Achieving 
a domain of validity for cognitive models has, however, proven more difficult for 
several reasons.  These reasons include the following:  the inability to hold high-level 
abstractions constant across architectures while testing a specific model; ambiguity 
regarding the relationship between a model and unique aspects of its host architecture; 
and confounding variables introduced by architectural differences in generating 
models[8]. 

High-level cognitive languages such as Herbal (High-level Behavioral 
Representation Language)[9], HLSR (High-Level Symbolic Representation)[8], and 
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Icarus[10] offer an approach for addressing these issues.   Each has a representation 
structure that can serve as a baseline abstraction from which to compare models.  These 
abstractions share a core set of commonalities found in most cognitive architectures 
including:  declarative and procedural memory, memory retrieval mechanisms, goals, 
methods for responding to external events, and iterative decision-making[8]. Using 
high-level cognitive languages for model validation, however, requires first testing the 
ability of these languages to replicate the results of models developed in their supported 
architectures (Soar, ACT-R, and Jess in the case of Herbal).         

This study is an initial docking study of Herbal’s ACT-R compiler[11, 21]. 
Herbal is an open source cognitive modeling language based on Newell et al.’s[6] 
Problem Space Computational Model (PSCM). It uses a modified version of the PSCM 
to represent a set of common cognitive modeling knowledge structures to create 
models in three cognitive architectures (Soar, ACT-R, and Jess).  Users can either 
develop models using a GUI editor or by editing Herbal’s XML code directly[12].  

    To test Herbal, we extend validation approaches developed for social 
modeling[13, 14] to the validation of cognitive models.  Specifically, we test the 
equivalence of two versions of Pirolli’s[1] price finding model (one developed in ACT-
R, the other in Herbal) using an alignment, or “docking”, study methodology.   

1. Docking cognitive models 

Cognitive Science has historically compared simulation results to human data to assess 
validity.  While this method remains vital, it provides no clear criteria for establishing 
either model equivalence or subsumption within or across cognitive architectures.  In 
addition, this method provides no means of isolating implementation effects from the 
premises of the theory; the theory and the implementation in essence are 
indistinguishable[8]. Docking studies conducted within a high-level cognitive 
architecture provide both criteria for establishing equivalence for models testing the 
same phenomena and a way of disambiguating implementation effects from the 
theory’s premises. Cooper, Fox, Farringdon, and Shallice[15] have suggested a similar 
direction for cognitive modeling.   

Docking studies are commonly used in social modeling[16], systems 
engineering[17], and bioinformatics[18] to test model equivalence[13]. Model 
equivalence is evaluated by comparing the tested models’ output or results after 
processing identical inputs.  Equivalence, in this approach, is further defined in one of 
three ways:  numerical, statistical, or relational equivalence.  These notions of 
equivalence differ in their strictness and are appropriate in different settings. The most 
rigorous of these tests, numerical equivalence refers to comparing the models’ output to 
see if the numeric results are identical.  Numerical equivalence is seldom used because 
it inapplicable when testing stochastic models.  When validating stochastic models, 
researchers generally test for statistical equivalence by comparing the models’ 
distributions over multiple runs.  When, however, the models’ inputs or outputs differ, 
relational equivalence is assessed, for example to what degree the same internal 
relationships exist across levels of aggregation.  

Docking studies entail a process of translation that isolates the core premises of a 
model from the implementation effects associated with its host environment.  
Achieving behavioral equivalence between models is, however, nontrivial.  In addition 
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to aligning the two models’ parameters, this process requires isolating the models’ core 
processes and ensuring those processes are consistent across both models.  This 
procedure is commonly referred to as establishing component equivalence.  
Establishing component equivalence across cognitive models is complicated by the 
layered nature of cognitive modeling.   

A cognitive model generally operates within a cognitive architecture to perform a 
specific task in a given environment.  Each layer (the model, the architecture, the task, 
and the environment) complicates the validation process; however, the embedded 
nature of cognitive models poses a unique validation problem.  Cognitive models 
implemented in cognitive architectures often represent more than a single theory but a 
theory of theories, a layered representation specifying different but interrelated aspects 
of cognition across multiple levels of abstraction.  A cognitive architecture is, in itself, 
a theory of cognition while versions of that architecture can be viewed as elaborations 
to or revisions of that theory.  Furthermore, cognitive models developed in a given 
architecture can vary with respect to what architectural components they utilize 
depending upon model’s specified task.  

In addition, a cognitive model’s output can be complex, making assessing 
equivalence difficult. Cognitive models frequently produce traces of activity that list 
the number, types, timing, and information content of the steps performed by the model 
in a given task.   These steps generally rely on stochastic processes whose parameters 
are specified by the architecture but can be adjusted.  For models capable of learning, 
these processes can vary retention rates, obscure instances where learning has occurred, 
and produce differences in the models’ learned behaviors despite performing the same 
steps in the same way. These factors make general predictions about other task 
sequences or other tasks challenging, but not impossible.  We expect these factors will 
also complicate validating complex cognitive models; however, these confounding 
variables are known[15] and can be controlled[19]. Also, in many cases, the 
comparisons and docking procedures do not lead to simple summative measures but 
formative measures giving rise to insights about the task, the cognitive architecture, 
and the human behavior.   

2. Comparative study of ACT-R and Herbal Models 

 
For this validation study of Herbal’s ACT-R compiler, we compare three versions of 
Pirolli’s[1] Price Finding Model (PFM), the original in ACT-R 5: one in ACT-R 6, and 
the third in Herbal 3.0.5.  

The PFM has two distinct advantages that made it suitable for this initial study.  
First, while the PFM is a simple model, we expected its sophisticated manipulation of 
declarative memory elements would test both Herbal’s ACT-R compiler and the ability 
of its ontology to represent a broader array of cognitive models.  Second, while the 
PFM’s use of ACT-R’s declarative, procedural, and goal retrieval systems is consistent 
with more complex ACT-R models, the PFM does not utilize either ACT-R’s 
perceptual-motor or its subsymbolic computations, simplifying the validation process.  
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2.1. Methodology 

We tested for numerical equivalence between the three versions of the PFM by 
comparing three major outputs:  the models’ total number of cycles, the number of sub-
cycles, and the models’ best price.  While there were no changes to the memory 
systems used by the PFM between ACT-R 5 and 6, we compared the PFM 
implemented in ACT-R 6 to a version implemented in Herbal because the original 
model was lost.  After collaborating with the author, we were able to re-implement the 
PFM in ACT-R 6 in approximately 6 hours, and confirmed numerical equivalence 
between the original and our re-implemented version (noted in Table 1) for model 
cycles and best price found.  We expected numerical equivalence between the three 
models for two reasons:  first, the inputs and means of interaction for all three models 
were identical; second, the PFM does not utilize the stochastic processes in ACT-R, 
namely its perceptual-motor or subsymbolic computations.  We confirmed the PFM’s 
results were constant across both ACT-R versions by running the new model multiple 
times (n=10).   

2.2. Models’ Description:  Establishing component equivalence 

Establishing component equivalence between the ACT-R versions of the PFM and its 
Herbal counterpart required changes to Herbal’s ACT-R compiler. Though Herbal’s 
ACT-R compiler has supported hierarchical task analyses[20, 21], supporting the PFM 
required developing a new retrieval function and changing the interface to enable users 
to designate chunks as either goal or retrieval chunks.  We describe these changes and 
the steps taken to establish component equivalence below.  We first describe the 
processes used by the PFM in ACT-R 6, and then compare it to those developed for 
Herbal’s ACT-R complier. 

2.2.1. Pirolli’s Price Finding Model:  ACT-R 5 and ACT-R 6 

Pirolli’s PFM consists of six productions—four productions for the general goal (start, 
first-link, next-link, and done) and two productions for the subgoal (minimum-price-
stays-the-same and new-minimum-price).  The model uses the general goal for finding 
and storing the best price and the subgoal for comparing new prices with the current 
best or minimum price.  Out of the two prices, the PFM selects the lower price one. 

The production start initializes the goal and retrieval buffers; the production first-
link uses the first price accessed from declarative memory as the initial best price; the 
production next-link activates a subgoal to compare a new price with the best price; and 
the productions new-minimum-price and minimum-price-stays-the-same determine 
whether a new best price is selected.  If the price selected is less than the best price, the 
subgoal cycle returns the new price as the new minimum price.  Otherwise, it returns 
the current best price as the minimum price. Then, production next-link sets the 
returned minimum price as the best price in the general goal cycle. The model uses a 
competitive iterative loop consisting of the productions next-link and done to drive the 
information foraging process.  The PFM determines whether to fire the next-link 
production by evaluating two external functions1:  an expected savings rate and labor 

                                                             
1 These are external in the sense that they are not intrinsic to ACT-R. 

In Biologically Inspired Cognitive Architectures, Proceedings of the First Annual Meeting of the BICA Society.  IOS Press.

184



 

value.   Calculating the price, expected savings rate, and the labor value, the model 
fires the next-link production when there is an expected savings associated with 
searching for a new price; and fires the done production when the expected saving is 
less than the labor cost.   

2.2.2. Pirolli’s Price Finding Model:  Herbal 3.0.5 

As noted previously, we achieved component equivalence in two ways:  by modifying 
Herbal’s interface to enable users to specify whether a component will be used as a 
chunk-type in the retrieval buffer, and by adding a “retrieve” function as an action 
element, allowing the model to retrieve a particular value in the retrieval buffer. We 
created two Herbal types: a link type and a find type.  The link type corresponds to the 
chunk-type link in the ACT-R versions of the PFM while the find type is a goal that 
replicates the chunk-types find and minimum.  
 

 
Figure 1.  Herbal's ontological representation of the PFM 

 
Figure 1 shows Herbal’s ontological representation of the PFM.  This 

representation contains five levels:  agent, problem space, operators, conditions, and 
actions. The highest level is the user agent, which includes two problem spaces, the 
find-best-price and the find-minimum.   The find-best-price problem space searches a 
list of prices and stores the best price.  The find-minimum problem space compares the 
best price to a new price and returns the lower price.  The two problem spaces consist 
of six operators that are created to match the six productions found in the ACT-R 
versions of the PFM.  The start, first-link, next-ink, and done operators are associated 
with the find-best-price problem space while the price-stays-the-same and new-as-
minimum operators are associated with the find-minimum problem space.  Each 
operator contains one condition and one action to replicate the buffer testing process 
and the buffer managing process found in ACT-R.  
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2.3. Results 

The ACT-R 6 version of the PFM used the 30 declarative memory elements a 
particular expected saving rate. Our ACT-R model examined 27 declarative elements 
before firing the production done.  By the 27th memory element, the best price was $66, 
with an expected saving rate of $8 per hour.  At this price, the expected saving rate was 
less than the assumed labor cost $10 per hour, resulting in the model firing the done 
production and terminating the whole process. 

The Herbal version of the PFM used 30 declarative memory elements, examining 
27 before firing the done production.  By the 27th memory element, the best price was 
$66, with an expected savings rate of $8 per hour. Table 1 shows the details of result.  

 
Table 1.  Experimental results for three tested variables.   
Model Total Cycles Sub-Cycles Best Price 
Price Finding Model (ACT-R 5) 53 25 66 
Price Finding Model (ACT-R 6) 53 25 66 
Price Finding Model (Herbal 3.05) 53 25 66 

3. Discussion and conclusion 

Our docking study began with recreating Pirolli’s[1] price finding model.  The 
recreated model performed identically across two versions of ACT-R for the 
dimensions we tested.  After reconstructing the PFM in ACT-R 6, we created a version 
of the PFM in Herbal.  To do this, we had to extend Herbal’s ACT-R compiler to 
include a retrieval function.  The resulting Herbal model was numerically equivalent in 
the following ways:  the number of total cycles, sub-cycles, and the best price.  

We also compared the hand-coded ACT-R source code with Herbal’s auto-
generated source code to determine to what degree Herbal can replicate the ACT-R 
models. We found that the two versions of the source code are structurally equivalent 
because they have the same number of productions and chunk types, and the elements 
of “IF” (conditions) and “THEN” (actions) in every production are nearly the same. 
They differ, however, in that the Herbal code checks the goal buffer before operating 
each goal type slot, whereas the hand-coded model only checks the buffer at the 
beginning of each production’s condition and action.  Nevertheless, the Herbal model 
passed the syntax test, running with no errors. 

Reimplementing the PFM in ACT-R 6 took 6 hours after corresponding with the 
author, while implementing the PFM in Herbal took approximately an hour. In this 
case, using Herbal decreased the time required to build the model. Extending Herbal’s 
interface and the Herbal’s ACT-R compiler, however, took a couple of days to fully 
develop and test. The features necessary to better support ACT-R’s declarative memory 
retrieval functions constitute an extension of not only Herbal’s technical abilities but 
also its ontology.   

Nevertheless, this study provides a model for testing high-level cognitive 
architectures, as well several lessons for future docking studies.  For the later 
comparison and development of models, researchers should publish or archive their 
models.  While rewriting the PFM was not onerous, reconstructing a larger model 
would be.  The use of unstructured model archives, such as act.psy.cmu.edu, is clearly 
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helpful while more structured archives[22, 23,26], is better yet.  Herbal may be able to 
provide such an archive, at least for the models created in it. Our study suggests that 
ACT-R 5 and 6 were functionally equivalent for this model.  While the PFM was 
simple, it used core aspects of the architecture.  Testing the effects of changes to 
complex architectures will, however, require docking multiple models of greater 
complexity than the PFM.   Finally, developing and validating models in Herbal or 
other high-level cognitive modeling languages facilitates both documentation and 
reuse.   Having the model in a formal representation with more explicit entry and exit 
points (operators in this case) encourages reuse by putting the model in a more 
comprehensible format.  

Furthermore, using docking studies incrementally to compare increasingly more 
complex models affords us the opportunity to identify core processes through testing, 
helping us retain some degree of parsimony in our theories.  This study, thus, provides 
an incremental testing and development strategy for high-level cognitive architectures.  
More specifically, operationalizing a concept of component equivalence allows us to 
identify a set of core processes.  Over time, this approach may allow us to more fully 
realize a unified theory of cognition by establishing more concrete methods of model 
subsumption. 

Newell[5] noted that there is more in cognitive architectures than we have 
dreamed.  Examining hand-written models though docking is one way to better 
understand the capabilities in and salient differences between cognitive architectures.  
The way we make models has implications for developing more unified theories of 
cognition.  While many models fully utilize the core attributes of their host 
architectures, others do not.  For instance, when we reversed compiled a Soar 
models[24] we found that not all published Soar models follow the PSCM.  In some 
instances, this may be appropriate and extends their use. These extensions and uses can 
be supported by a high level language. On the other hand, non-canonical use makes 
replicating previous work more difficult, and frustrates efforts to build a more coherent 
body of knowledge in the Cognitive Sciences.  

4. Future work 

In the future, we will explore three directions regarding Herbal. First, we will continue 
to extend the Herbal ACT-R compiler because it cannot fully support ACT-R currently. 
Second, we will choose a more complex model with subsymbolic computation such as 
the Diag Model[25.] Third, we will extend Herbal’s Soar compiler to compile our PFM 
model into Soar source code. In this case, we can validate the effectiveness of cross-
architecture modeling in Herbal and compare the behavioral differences between Soar 
and ACT-R.  
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