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Abstract

The ability to process and use spatial knowledge is a basic cognitive ability. Two human
navigation strategy types (map-based and route-based) relying on two different
knowledge representations have been frequently observed. These studies suggest that
the first strategy uses a sequential representation and the second uses a hierarchical
cluster-based representation. These studies also suggest that humans also routinely use
hybrid strategies, and that the ratio between cognitive load and relative utility mediated
by situational factors influences, and when modeled, could successfully predict strategy
choice. We created an ACT-R model to test these hypotheses by simulating navigation
strategies, strategy choices, and strategy switches. This model deepens the empirical
findings by defining more clearly the memory mechanisms involved in generating the
basic representation types, and by positing a theory of interaction between these types
based on ACT-R’s associative declarative memory. We believe that such a work
provides a concrete example on principles of these biological theories can be
implemented and used in cognitive architectures.
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Introduction

How do spatial navigation and cognitive load interact? We start to explore this topic
with a model. Researchers studying navigation behaviors have been particularly
interested in two related aspects of spatial cognition: spatial knowledge, and navigation
strategies that use these representations. Spatial knowledge refers to a basic
understanding of spatial geometry, relations between objects, spatial cues, and event
sequences relating to the passage through space. Whereas, spatial navigation strategies
refer to the decision patterns based on evolving representations of this knowledge
[Warren, & Tarr, 2005). It is widely accepted that spatial knowledge plays a key role in
human navigation, and the representations of this knowledge can influence strategy
choices and strategy switching.

Historically, Tolman conducted one of the first studies on this topic and
he coined the term “cognitive maps” and was among the first to study how humans and
animals organize spatial knowledge. Tolman studied the navigation behaviors of rats;
he argued that cognitive maps correspond to sets of associations in the long-term
memory of both humans and other mammals. Tolman also illustrated that these
associations exist in long-term memory for both humans and rats because both species
are capable of exhibiting novel shortcutting behavior. O’Keefe and Nadel (1978)
grounded Tolman’s cognitive maps in a functional analysis of the brain, arguing that
cognitive maps are in essence sets of position vectors stored in the hippocampus.
Further, they elaborated on the notion of cognitive maps by linking the formation of
spatial representations to situational factors, arguing that cognitive maps most likely
arise during “unrewarded situations”. Recent neuroscience studies (Hafting, Fyhn, |
|M01den, Moser, & Mose, 2005} have found that the entorhinal cortex contains a
neuron map of the environment , which provides further support for the theory of
cognitive maps.

In contrast to Tolman’s cognitive map consisting of a single representation type,
Montello (2001) and Siegel and White @ suggest a layered representation
consisting of three levels and associated landmarks. The ordered trees algorithm was
developed to represent regularities of verbal organizations. Hirtle and Jonides
then applied this algorithm to the study of cognitive maps. Using 32 landmarks in a
sample space, their subjects’ responses indicated a hierarchical structure anchored by
landmark clusters. These results also suggested that humans might ascribe shorter
distances to within-cluster landmark pairs than across-cluster pairs, even when this is
not necessarily true.

In contrast to topological or map-based representations, researchers have also
observed route-based representations. These representation types rely on sequential
memory and consist of landmarks, egocentric orientations, distances, and locations.
Bennet (1996) and O’Keefe and Nadel (1978) argue that route-based representations
are a weaker form of spatial memory, chiefly because these strategies rely on order and
are vulnerable to shifts in the environment (e.g., the loss of an important landmark like
a house, sign, or tree). Foo et al. , however, dispute this claim, observing that
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humans primarily use route-based navigation along established paths. They argue that
this indicates that route-based representations are not a secondary form, but rather a
strong and sufficient representation. Further, Hart and Moore observed that
route-based learning often takes place first upon encountering an unfamiliar place. As
humans consolidate route-based representations, they argue that they also gradually
begin constructing map-based representations of the environment by recognizing
landmarks, connecting positions, and changing egocentric coordinates.

Both representation types are abstractions that rely on visual cues to create, but
are in themselves to at least some extent tied to declarative memory. We can infer this
from both O’Keefe and Nadel’s and Hirtle and Jonides’s (1985) work—the
ability to verbalize spatial relationships indicates declarative memory retrievals.
Consequently, it is widely accepted that these two types of high-level spatial
representations, in contrast to visual cues, are an aspect of long-term memory that we
can represent using declarative memory elements.

In this work, we propose a model that uses ACT-R’s declarative memory to
represent two types of spatial knowledge. We also begin to model how strategy
selection depends on the spatial memory retention and cognitive load of the
decision-maker.

Model implementation in ACT-R

Our model is different from previous navigation models (Gunzelmann & Anderson,

2004} Lathrop, 2008;|Reitter & Lebiere, 2010]|Zha0, Hiam, Morgan, & Ritter, 201 1}. It
implements spatial knowledge with multi-level structures and proposes three
navigation strategies with different cognitive costs that are dynamically selected.

Implementing spatial knowledge

To implement spatial knowledge in declarative memory, we first define the basic
location chunk that represents an individual waypoint in the environment with
identification information such as objects, landmarks, and topological connections.
Out model uses this chunk to construct both route knowledge and map knowledge.

Sequential knowledge

We use route chunks to represent sequential transitions between the start location and
the end location. Different from the conventional route, the route chunk of this model
only consists of 4 locations, and we implement a longer path as a linked list of several
route chunks. This approach is developed to match the limitations of human attention.
When navigating along a long path, humans can only focus on a subset of the route
because of the limitations of their working memory. According to Luck and Vogel’s
study , the average number of visual items that a human can hold in visual
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short-term memory ranges from 3 to 5. Consequently, we take the mid-number 4 as the
size of a route chunk. We expect we will examine and adjust this number in the future.
Finally, implementing a route with a list of subset route chunks enables the model to
integrate two long routes and also to discover shortcuts in the routes.

Figure 1 explains how to implement a long route with the route chunks. In this figure,
we use 3 route chunks to implement a route consisting of 10-locations. The first route
chunk contains the first 4 locations and an associative slot that points to the next route
chunk.

L1-->L2-->13-->L4-->1 5-->L6-->L7-->L8-->L9-->L10-->End

\
L1-->L2-->13-->L4 L5-->L6-->L7-->L8
-->chunk2 -->chunk3

L9-->L10-->End

Figure 1. An example of route chunk

Configurational knowledge

We use a map chunk to represent the configuration of the whole environment in a
hierarchical structure. In this model, we create two chunk types to implement
topological knowledge: (a) the map chunk to represent topological relations between
locations; and (b) the zone chunk to implement hierarchical relations between locations.
We create the zone chunk because humans use clustering to organize large amounts of
map knowledge again because of working memory limitations. Thus, humans cannot
without some external aid process all the spatial information of a large environment
such as a skyscraper or town. The node chunks of a zone chunk could be either location
chunks or zone chunks, and we use an ordered tree algorithm {Hirtle & Jonides, 1985}
to build up a hierarchical structure of the environment. Figure 2 shows an example of
map chunk within a hierarchical structure. In this example, the highest chunk is the
Zonel chunk that contains 5 sub zone chunks with topological relations between them.
In the secondary level, the Zone6 consists of 4 locations chunks, and these locations
chunks could also be contained by other zone chunks such as Zone2 and Zone4.




Figure 2. An example of map chunk

Navigation strategies on based on spatial knowledge

Humans use multiple navigation strategies based on different types of spatial
knowledge (Bennet, 1996)|0'Keefe & Nadel, 1978). In our model, we implement three
navigation strategies:

(a) The route following strategy (or route-based strategy) is the most basic strategy.
Based on sequential knowledge, humans will conduct sequential actions to follow

landmarks in order. This strategy is considered weaker in the sense that referents
depend on sequence, which if broken leaves no other cues. Humans even when
primarily using this strategy, generally supplement this learned order with other
knowledge.

(b) The goal-directed strategy (or map-based strategy) is usually applied when the
goal is visible or they are quite familiar with nearby environments. We implement the
goal-directed strategy based on the configuration knowledge of the environment
because map knowledge could provide sufficient information for orientation and
finding a direct path to the goal. As we implement map knowledge in a hierarchical
structure, the goal-directed strategy also plans a path hierarchically from the highest
level to the lowest level. For example, if a person tries to navigate from NY to LA with
the goal-directed strategy, we expect the traveler would plan starting from the state
level and ending at the street level.

(c) The hybrid strategy implies some proceduralized skills that allow agents to
identify regularities that then allow them to make predictions about the environment.
Further, the prediction should be built based on a strong understanding of the
environment configuration. More specifically, this strategy allows humans to achieve
two high-level spatial behaviors: 1) route integration and 2) taking shortcuts. For route
integration, it enables finding a path between the end point of one route and the
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beginning point of another route; for shortcuts, it enables finding shortcuts.

As we noted earlier, humans show a general preference to select the cognitively
least expensive strategies (Foo et al., 2005). More specifically, we interpret this strategy
preferences in the following order: route-based strategy, the hybrid strategy, and
map-based strategy. This preference, however, could be altered by individual difference
and previous experience with successful shortcuts. Our navigation model implements
this preference as proceduralized skills, and it could be changed by ACT-R’s
reinforcement learning with each navigation strategy.

Result and discussion

We use a text-based environment named VIPER (Kaulakis et al., 2012) to conduct our
preliminary experiment, because our model currently focuses on spatial behavior based
on memory representation, and it has not used ACT-R’s visual buffer. In VIPER, we
create a 5-by-5 map configuration with 3 routes from a start location to the goal location.
We ran each strategy 20 times to navigate from the start to the goal, and our initial
results suggest that these strategies could navigate the agent successfully when there
was no noise added to the process. We also applied mental noise by adjusting the
activation noise parameters from 0.0 to 1.4 in ACT-R. Adding noise allows us to
explore the effects of mental workload and other moderators, because a process with
higher workload is more likely to be disturbed by mental noise.

Figure 3 shows an illustration of the 5-by-5 map configuration. For the map-based
memory, we encoded 25 locations with 4 basic zones. For the route-bsed memory, we
encoded 3 routes into the declarative memory.

11 12 13 14 15

31 32 33 34 35

41 42 13 44 45

al D2 53 o

]
]

START

Figure 3. The 5-by-5 grid map for the task.

Figure 4 shows the effect of adding noise to the process. Consequently, we can find
that all the curves increase as noise increases, meaning that activation noise disturbs the
navigation process. The times for the hybrid strategy and map-based strategy are higher
than the route-based strategy, suggesting that they are more cognitively expensive.
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Figure 4. The influence of activation noise on the strategy running time (the route line
ends at 0.8 because all runs above that point fail).

Comparing map-based strategy and the hybrid strategy, we notice that the
map-based strategy curve is higher than the hybrid strategy initially, but the difference
disappears as noise increases. This is because the hybrid strategy uses route knowledge
initially, and it gradually relies on map knowledge when the route-based strategy is not
reliable under high cognitive noise. From this, we can conclude that, in terms of the
retrieval cognitive load (equivalent to the complexity of the cognitive process) each
strategy imposes:

map-based strategy > the hybrid strategy > route-based strategy

Figure 5 shows the influence of activation noise on the strategy’s success rate.
Increasing the activation noise decreases the success rate of the route following strategy
most rapidly because some waypionts on the route could not be retrieved, and the route
following strategy fails. This result matches empircal data (Bennet, 1996||O'Keefe & |
, i.e., that the route knowledge is a weaker representation and the
navigation strategy based on the route knowledge is easily disturbed.

Figure 5 also shows that map-based strategy and hybrid strategy can be disturbed
by acitivation noise, but their failure rate is less sensative. Finally, we could draw a

conclusion that, in term of rubustness of the strategy to noise in cognition:

The hybrid strategy > map-based strategy > route-based strategy
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Figure 5. The influence of the activation noise on the running success rate of three
strategies.

Conclusion and future work

In this work, we are trying to show how principles of these biological theories can be
implemented and used in cognitive architecture rather than testing the model itself by
data fitting. To achieve this, we introduced a multi-strategy navigation model in ACT-R
by building two spatial representations in ACT-R’s declarative memory. We used a
linked list of sub-routes to represent route knowledge, and a hierarchical structure of
individual locations to represent map knowledge. Based on the two representations and
empirical studies, we proposed and implemented three navigation strategies:
route-following, goal-directed, and the hybrid.

In our preliminary experiment, we compared the running time and navigation success
rate of three strategies, and we found that the order of cognitive complexity is
map-based >the hybrid > route-based strategy, and the order of their robustness is the
hybrid > map-based > route-based strategy. Our findings reflect the internal process of
human navigation, and they also match previous theories {Bennet, 1996”O'Keefe & |
and empirical studies {Foo, Warren, & Tarr, 2005}. We believe that such
work could not only implement biological theories with a cognitive architecture but
also provides a solid step for creating a computational equivalent of mind.

In the future, we plan to extend this model with a spatial learning module rather than
encoding spatial knowledge in declarative memory, because the learning sequence of
special objects is an important factor that may influence the initial activation values of
location chunks. In addition, we should test this model in a more realistic environment
by using ACT-R’s visual buffer. This may provides us some more accurate predictions
of human spatial behavior since vision is the primary spatial resource of human beings.
This work might also be very useful for social cognitive simulation as spatial behavior
can be a key factor of social network{Morgan, Morgan, & Ritter, 2010).
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