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ABSTRACT: This paper examines the relationships between environmental and cognitive factors as they influenced 
the formation of social networks through modeling how these factors affect tie formation between pairs of agents in a 
simulated world. We modeled worlds consisting of 20, 40, and 60 ACT-R agents and examined the influence of 
population size, run time, map configuration, and navigation strategies, comparing the density and clustering of the 
resulting networks. We found that all these factors affect tie formation for agents with perfect memories, with popula-
tion size having the greatest effect.  We also examined the effect of these exogenous factors on the ties’ strength in the 
agents’ memories by combining and analyzing egonets.  We found that changes to each of these exogenous factors 
affected the network’s average memory activation value of each tie, with population size having a negative effect and 
run time having a positive effect.  Map configuration and navigation strategy both influenced network structure.  
Further, we found that using the agents’ activation values as a threshold for network inclusion was a useful way for 
identifying core groups and subgroups within the network.  These findings provide further insights into the cognitive 
dimensions underlying networks and their structures, as reflected by Dunbar’s (1998) number and Simmelian 
numbers. These results also show that these factors need to be reported when describing network simulations.  
 
1. Introduction 

We examine here two socio-cognitive processes that 
influence the formation of social networks:  spatial 
reasoning and memory retrieval threshold.  This work is 
motivated by a desire to better understand how socio-
cognitive processes influence the development of 
persistent patterns of relations, represented in this paper 
as network topologies.  By socio-cognitive processes, we 
refer to both those cognitive resources and mechanisms 
necessary to create and sustain social ties, as well as those 
group-level factors known to moderate human decision-
making (Morgan, Morgan, & Ritter, 2010; Morgan & 
Carley, 2011).  We focus on spatial reasoning and 
retention in this paper because these two processes seem 
foundational to understanding the emergence of social 
networks in a variety of contexts. We hope to deepen our 
understanding of network formation by modeling the 
relationship between cognitive and environmental factors, 
as it pertains to tie formation between agent dyads.  

To explore this relationship, we introduce a set of agent-
based models and experiments that test the influence of:  
(a) population size, (b) run time, (c) map configuration, 
and (d) agent navigation strategies.  The outputs of this 
model are interaction networks (whole networks repre-
senting the total number of agent interactions that occur-
red within a single run) and ego-nets (declarative 
representations of the agent’s friends network). For any 

one run, there is 1 interaction network and as many ego-
nets (networks from the agent’s egocentric point of view) 
as there are agents in the experiment.  We compare the 
number of ties and total degree of 54 interaction networks 
in 11 different conditions. We also merged the individual 
ego-nets to examine how the structure of the socio-
cognitive network changed as the semantics of the tie 
were tuned. 

Our model is unusual in that we model social processes 
using a cognitive architecture (ACT-R) that is primarily 
associated with cognitive science.  To our knowledge, 
Carley (1991, 1992) and Newell (1994) were the first to 
implement a model based on a cognitive architecture 
(Plural-Soar) to study organizations.  More recently, 
Gonzalez, Lerch, and Lebiere (2003), Lebiere, Gonzalez, 
Dutt, and Warwick (2009), Reitter and Lebiere (2010b), 
and Juvina, Lebiere, Martin, and Gonzalez (2011) have 
used cognitive architectures to model human decision 
making in collaborative tasks.  Barrett, Eubank, and 
Marathe (2006) have developed a large simulation with 
millions of non-cognitive light agents. While our work 
builds upon these efforts, our interest in network 
formation poses some unique challenges.  We review 
these challenge in light of the current literature and our 
solutions to them in the next two sections. 
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2. Computational Social Models 

Researchers have developed agent-based models to 
explore a variety of questions.  We briefly examine two 
major modeling approaches: cognitive and social 
modeling. These approaches are not necessarily mutually 
exclusive; however, combined socio-cognitive models are 
relatively rare because they are generally expensive to 
create and run.   

Social simulation models frequently, but not always, use 
bounded rational agents. Bounded agents are bounded 
both cognitively and socially (Simon, 1991).  These 
agents generally engage in some kind of goal-driven time-
constrained decision cycle dependent on local 
information. In addition, agents are usually adaptive, 
though options are generally conditioned upon previous 
action. Often, these simulations demonstrate aggregate 
behaviors that are emergent.  These complex system-level 
behaviors arise out of the agents’ discrete interactions, but 
cannot be explained entirely in reference to them. Further, 
at different levels of observation, different kinds of 
emergent behavior can be seen.  It is often these kinds of 
traits that simulations are uniquely able to capture.  

We treat the topology of interaction networks and their 
associated characteristics as an emergent property of the 
social system, defined in terms of interaction 
opportunities and memory constraints.  Kraut et al. (2002) 
found that actor proximity fundamentally influences the 
evolution of network topologies by determining the 
interaction frequencies of actors across the network, while 
Allen (1977) demonstrated that the probability of two 
people communicating in an environment could be 
represented with a decreasing hyperbolic function of their 
distance.  After a certain distance, the probability that two 
people will communicate decreases rapidly, making tie 
formation unlikely. We, thus, chose to focus on factors 
that are known to directly affect agent proximity or inter-
agent distance: population size, run duration, and map 
configuration.  

Cognitive models have historically focused on modeling 
human cognition at the symbolic and sub-symbolic level 
(Newell, 1990; Anderson, 2007). Providing models of 
perception and memory, we can use cognitive 
architectures like ACT-R to simulate the formation of 
social ties in declarative memory.  We believe that over 
time memory constraints fundamentally influence a social 
network’s topology and capabilities by constraining the 
network’s ability to process information, identify 
important changes in state, and respond to those changes. 

Here, we look at the processing of social information by 
exploring the concept of nodal carrying capacity, the 
number of agents an agent can retain in memory. To that 
end, we examine how environmental factors contribute to 

the consolidation and retention of social ties in memory.   

This concept is similar Dunbar’s (1998), where 
limitations associated with the neocortex limit the number 
bi-directional ties any one person can retain in memory. 
Dunbar argues that maintaining stable relationships 
requires repeated memory activations to identify not only 
one-on-one relationships but also third party relationships 
(i.e., the knowledge that my friend is also friends with 
other actors who I monitor).  Further, he claims that the 
cognitive load associated with maintaining this set of 
relationships in memory rises exponentially as group size 
increases (Dunbar, 1998, p. 63). Based on retrospective 
empirical studies, Dunbar (1998, pp. 65-78) argues that 
this ratio between cognitive load and group size underlies 
the small-world effect observed by Milgram, Simmel, and 
others.   

Therefore, we expect that larger populations acting over 
longer time periods in fully connected environments will 
result in the most connected declarative network 
structures.  We also expect that less connected layouts 
will result in interaction networks that consist of more 
fragmented networks, leading to smaller ego-nets.  We 
also expect that map configurations characterized by 
nexus points will exhibit behaviors similar to the water-
cooler effect (DiFonzo, 2008).  We, however, are less 
certain where we might see thresholds in network 
formation, where for instance population growth no 
longer has an effect or run time is no longer relevant.   

3. Nodal Carrying Capacity: The Effect of 
Agents’ Memory and Space 

Having summarized our model’s exogenous and cognitive 
factors, we provide both a definition and a prediction as to 
how that factor will influence network formation.  

3.1 Interaction Frequency  

We model three factors that influence interaction fre-
quency: population size, run time, and map configuration.   

Population density: We predict population density 
will have the greatest impact on social interaction 
frequency. Here, we model such shifts by changing the 
population size, holding the environment size constant. 

Length of simulation (run time): We predict 
longer run times will lead to more ties and denser 
networks.  Consequently, determining the run time 
lengths necessary for a network to reach a stable state 
under a given set of conditions (e.g., memory decay of 
ties) is important for accurately representing the 
formation of a group of interest. 

Environment configuration: We predict the 
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configuration of the environment will influence the 
structure of the simulated social network. We measure the 
relative connectivity of our three map configurations by 
defining its grid ratio. The grid ratio is the ratio of the 
number of edges over the total number of edges possible 
for a rectangular grid containing the same number of 
rooms.  

We tested three map configurations (Figure 1). The first 
configuration (1a) is a full 5x5 grid with grid ratio 1.0. 
We expect this environment will result in relatively high 
connectivity. The second configuration (1b) has a central 
area with grid ratio 0.75. We believe this central meeting 
point will lead to network densities and clustering that are 
less pronounced than those associated with the 5x5 map 
but more than those associated with the hallway map. The 
third configuration (1c) is a two-hallway configuration 
with grid ratio 0.6. This configuration should lead to low 
connectivity due to the large distances between agents. 

 
Figure 1. (a) 5x5 grid, (b) Central Area map, (c) and Hallway map 

 
3.2 Cognitive factors 

To better simulate the construction of social networks, it 
is necessary to consider the behavior patterns of agents at 
the cognitive level. In this paper, we particularly focus on 
memory decay and navigation strategies.  

Memory: We examine memory effects on tie formation 
by using Anderson's activation theory (2004) to model the 
construction of social knowledge in declarative memory.  
In our model, the number of friends depends on the 
number and size of active long-term memory chunks 
representing the agent’s social relationships. The number 
of active memory chunks is influenced by several factors, 
including initial memory activation, retrieval threshold, 
memory decay rate, time of retrievals, and practice time. 

Navigation strategies: In a social network, the agents’ 
movement patterns will influence the social network’s 
topology by influencing any one agent’s interaction 
opportunities. For example, a policeman walking a beat 
will have more acquaintances than a person who spends 
most of their time at home, if only because the policeman 
has more opportunities to meet people. 

To replicate human navigation behavior, we implemented 
two navigation strategies: random-walk and fixed-path. 

1) The Random-walk strategy replicates navigation 
patterns without a specific goal. It randomly selects 
an available direction to move.  

2) The Fixed-path strategy follows a set path in a 
small area. This strategy simulates routine naviga-
tion behavior, such as going to work or shopping.  

4. Experiment Environment  

To model multi-agent social behavior using cognitive 
architectures, we constructed a simulation environment, 
VIPER. All of our experiments were conducted on a 
2GHz eight-core server with 8GB of RAM. The server 
runs Linux 2.6.31 under Ubuntu 11.04, with SBCL 1.0.52 
Lisp, and ACT-R 6 (Anderson et al., 2004). 

4.1 The VIPER Server 

VIPER models the constraints associated with 
embodiment on social networks. It supports multi-agent 
simulations to study network science.  It is lightweight in 
that it is text-based, but is extendable and records agent 
behaviors. VIPER is designed to be a part of a distributed 
model that resolves events in either real or accelerated 
time. The network’s speed and frequency of communica-
tion are determined by its component agents, with no 
queue of events being enforced. VIPER is designed so 
variations in performance originate from the agents 
participating in the environment, versus being a function 
of the environment.  The VIPER server is based on 
NakedMUD, an open-source environment.  It 
communicates with client programs using the Telnet 
Protocol.    

Within the environment provided by the server, agents or 
human subjects are situated on maps of interconnected 
rooms. The agents can see and communicate within each 
room. Agents can walk between the rooms, and can 
interact with objects in the rooms.  

To connect ACT-R to VIPER, we implemented the Telnet 
Agent Wrapper for ACT-R (TAWA) in Common Lisp.  It 
supports logging in, waiting for synchronization, logging, 
halting, and writing results to CSV files. It also exports a 
number of functions that provide ways to examine the 
environment, speak, listen, move, and otherwise control a 
virtual body in VIPER.   

When an ACT-R model is wrapped by TAWA, 
executions of model code are delayed until a privileged 
administrator agent signals for synchronization.  Error 
conditions are also caught by TAWA and standard UNIX 
error codes are returned instead of dropping into the more 
standard debugger. For example, a successful run returns 
0 to the parent process, while any error (e.g., network 
errors like the server being unreachable) returns a non-0 
value. Returning error codes like this allows automated 
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error checking in large-scale experiments. 

4.2 Synchronization 

Because memory decay and networks are strongly 
temporal, we paid special attention to time. To 
synchronize the agents, the administrator agent (which 
does not take part in the experiment) waits for all of the 
TAWA wrapped agents to finish loading and logging in. 
It then signals to TAWA to begin the simulation.  
Because TAWA delays the evaluation of the model code 
until synchronization, no agent experiences time before 
the synchronization signal. Further, all ACT-R models are 
set to run in real-time and for the same amount of “real 
time”, so they all halt after the same perceived period. 
Thus, the total time experienced is the same for all agents. 

4.3 Scalability 

Early benchmarks showed that ACT-R processes took up 
about 80MB per process. We would only have been able 
to run about 100 processes on a single 8GB machine 
before swapping would occur. To reduce the per-process 
footprint, a number of optimizations were implemented. 
Basic space reductions were achieved by using the 
DECLARE Lisp construct, as well as by pre-compiling 
the components, removing the debugger, and saving the 
whole system (sans the ACT-R agent model) as a system 
image. This reduced our per-process memory footprint 
somewhat, but they were not the biggest contributions 
towards memory usage reduction. 

In SBCL Lisp 1.0.52, the “--merge-core-pages” flag was 
recently added. This flag enables Kernel SamePage 
Merging (Arcangeli, 2009) under recent versions of 
Linux. This optimization flags shared areas of memory as 
being able to be merged unless modified. Because a 
significant percentage of our agents were replicated, we 
found that we could reduce the per-process memory 
footprint as low as 8MB per process (with one shared 
copy of the merged pages excepted). Thus, the only 
activities that increase the size of this footprint are 
changes within individual agent models. This lets 
drastically larger number of agents to be run, whether on 
single processors or HPC.  

5. Experiment and Results   

We now discuss our experiment’s method and results. 

5.1 Experiment parameters 

We used 54 runs of our simulation to test three environ-
mental factors: population density, running time, and map 
configuration, which are shown in Table 1.  

 

Table 1.  Experiment parameters. 
Variable Values # 
Population 20, 40, 60 3 
Run time (s) 125, 250, 500 3 
Map Full-Grid, Central, 

Hall (100%, 75%, 
60%) 

3 

Navigation strategy Random, Fixed-Path 2 
Total possible combinations 18 

 
We tested the effect of memory retention by analyzing the 
activation values associated with each agent’s friend 
chunks, represented as an ego-net log file.  Each file 
contains the names and the last meeting locations of that 
agent’s friends. In ACT-R, the activation value represents 
the memory strength of an object or an event. With the 
activation value of each relation chunk, we can easily 
convert the friend weight into a meaningful idea of tie 
strength.  

5.2 Results 

Our simulation generates two types of network data:  
(a) log data extracted from Viper directly, and (b) 
egocentric data stored in each agent’s declarative 
memory. We examine them and some related network 
measures.  

Log network. Figure 2 shows a sample network. The 
nodes in the figure are the agents in the simulation 
(N=20); the ties in the figure are un-weighted and 
represent the co-occurrence of two agents in the same 
room at any point in the run.  Thus, the log network 
represents the ground truth of each agent’s opportunities 
to meet with other agents, and the memory of agents with 
perfect memory.  

 
Figure 2. An example ground-truth network from log data 
(20 agents, 125 s running time, Hallway configuration) 
 
Table 2 compares eight runs on the ground-truth 
networks. We found that each factor influences the co-
occurrence network, reflected in the network’s density 
and tendency towards clustering. Density is the 
percentage of all possible ties in the network that are 
found in that network. Population size tends to decrease 
the network’s density and has some effect on clustering.  
Run time tends to increase the network’s density and 
decreases clustering.  The grid ratio increases both density 
and clustering.  Navigation strategy increases density and 
decreases clustering.  
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Merged Ego networks.  The other type of data collected 
in the simulation is not ground-truth, but instead the 
individual ego-networks for each actor stored in that 
agent’s declarative memory.  Figure 3 shows an example.   

 
Figure 3.  An example ego network.  
 
Each agent represents actors it has met as a working 
memory element (WME) chunk.  The activation of each 
WME can be used to derive the amount of time a human 
would require to recall the actor.  The semantics of each 
dyadic tie is important in interpreting a network.  Thus, 
we consider the density of the merged ego-network across 
various activation levels.  An activation value of ‘-3’ 
indicates that the actor will need as much as 0.2 seconds 
to recall the chunk, whereas an activation of ‘3’ indicates 
that the actor will need less than 5 ms to recall the chunk 
(but perhaps longer to report it).   

Figure 4 offers an example of how a single merged ego-
network can show how structure changes as the criteria 
for tie formation increases.  Increasing the activation 
threshold provides a way for identifying core groups and 
subgroups within the network.   

 
Figure 4.  The same ego network at various memory 
thresholds, (a) -3.5, (b) 0.0, and (c) 1.0.  

We considered two rules for determining whether the tie 
should exist: bi-directional (where threshold, t, must be 
met by both Aij and Aji) and directional (where threshold, 
t, must be met by either Aij or Aji).  Figure 5 shows the 
density of the merged ego-networks as various activation 
levels are sampled—from this analysis it is clear that map 
topology influences the creation of the merged ego-
network.   

 
Figure 5.  Map configuration and selection criteria affect 
the generated ego network. 
 
5.3 The Effect of Nodal Capacity  

We also examine the relation between influential factors 
and activation values of each configuration. Table 2 lists 
the population sizes, run times, navigation strategies, and 
average activation values for agents across eight runs. 

Table 2 shows that these factors influence the activation 
values between agents. The population size has a negative 
influence on the average activation because larger 
populations decrease the average activation value 
significantly (from 0.304 to -1.117).  Running time has a 
positive influence on the average activation value—it 
increases from 0.304 to 1.607 as we increase the running 
time from 125 s to 500 s. 	  

Table 2.  Results comparing eight networks to investigate trends in the ground-truth co-occurence networks, the 
cognitively limited merged ego-centric networks, and the average chunk activations for friends. 

	   Ground Truth	   Merged Ego-Centric	   Average	  
Pop	   Run Time	   Grid Ratio	   Navigation	   Density	   Clustering	   Density	   Clustering	   Activation	  
20	   125	   0.60	   Random	   0.905	   1.000	   0.810	   0.855	   0.304	  
40	   125	   0.60	   Random	   0.880	   0.924	   0.220	   0.467	   -0.678	  
60	   125	   0.60	   Random	   0.859	   0.961	   0.051	   0.086	   -1.117	  
20	   125	   0.60	   Random	   0.905	   1.000	   0.810	   0.855	   0.304	  
20	   250	   0.60	   Random	   0.947	   0.944	   0.805	   0.852	   0.931	  
20	   500	   0.60	   Random	   0.947	   0.944	   0.855	   0.897	   1.607	  
20	   125	   0.60	   Random	   0.905	   1.000	   0.810	   0.855	   0.304	  
20	   125	   0.75	   Random	   0.947	   0.944	   0.600	   0.696	   0.126	  
20	   125	   1.00	   Random	   0.950	   0.947	   0.660	   0.724	   0.440	  
20	   125	   0.60	   Random	   0.905	   1.000	   0.810	   0.855	   0.304	  
20	   125	   0.60	   Fixed Path	   0.947	   0.944	   0.855	   0.897	   1.992	  
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Table 2 shows that these factors influence the activation 
values between agents. The population size has a negative 
influence on the average activation because larger 
populations decrease the average activation value 
significantly (from 0.304 to -1.117).  Running time has a 
positive influence on the average activation value—it 
increases from 0.304 to 1.607 as we increase the running 
time from 125 s to 500 s.   

We also found that the map configuration influences the 
average activation values, but that this influence does not 
correspond to the grid ratio. It shows that the “Central” 
map with a grid ratio of 75%, has the lowest average 
activation values (0.126); the “Hallway” map with a 60% 
grid ratio has a higher value (0.304); and the 5-by-5 map 
with 100% grid ratio has the highest average activation 
value (0.440).  The map configuration’s effect on average 
activation values may be due to some chunks never being 
formed (and thus never being averaged) in the hall-way 
map configuration, as indicated in Figure 5.  

The results show that the fixed path strategy has a positive 
influence on the average activation values. Because 
agents using this strategy walk around a small area, the 
agents tend to have fewer ties but higher activation values 
per tie, simulating a neighborhood effect.  

5.4 Operationalizing Dunbar’s Number 

We also preliminarily examine the influence of these 
factors of Dunbar’s number by applying a fixed activation 
threshold to simulate limits of cognition. For this analysis, 
we consider networks with an activation threshold of 0.0, 
ACT-R’s RT parameter was set to -3.5, thus the time to 
recall a chunk is 0.011 seconds based on ACT-R’s 
memory equations.   

In Table 2, we use two measures to evaluate the thresh-
olded ego-networks, density and clustering. As the net-
work’s size increases, the network’s density decreases and 
clustering coefficient decreases.  As the simulation’s 
length increases, the density and clustering coefficient 
increases.  As the environment becomes more intercon-
nected, there is some evidence to suggest that the network 
density increases and the clustering coefficient increases, 
although this evidence is mixed.  The Fixed Path agent, 
which traverses the space differently, retains more of its 
edges and shows more clustering. 
 
In our results we highlight density because it illustrates 
the effect of nodal carrying capacity (defined in this case 
by an activation threshold) on a simulated social network. 
Table 2 suggests that population size has the highest 
influence on the merged ego-net, which is not surprising, 
because a network maintaining a constant density as new 
actors are added would require more and more ties from 
the marginal actor.  Also, the agent’s attention is limited, 

and attending to more agents may require more resources 
than the agent can bring to bear, which suggests one 
mechanism for how Dunbar’s number may moderate 
social activities.  The other three factors also have some 
influence on the found density and structuration of the 
network. In real social contexts, we suspect these three 
factors with smaller effects would interact, and perhaps 
magnify the effect of population size.   

5.5 Interaction Density on Locations 

Additionally, environment configurations can create loci 
of interaction or activity spaces (Brantingham & 
Brantingham, 1993). These locations are where the 
majority of all interactions occur.  Brantingham and 
Brantingham use this concept to study crime densities, but 
this idea can be expanded to other activities, such as co-
occurrence or socialization. When traveling to or between 
these spaces, people tend to take routine paths. Costanzo 
et al. (1986) demonstrated that people near one another 
tend to travel along the same paths to activity hotspots. 
Therefore, we expect that agents will also tend to take 
high frequency paths to common locations because they 
are constrained by the world’s geometry.   

These high activity spaces for one of our environments 
are shown in Figures 6a and 6b. Figure 6a shows the 
connectivity between all agents and the rooms in which 
they have interacted, while Figure 6b shows a heat map of 
room activity. Given the concentration and degree of 
these spaces, we show that agents who traveled between 
activity spaces tended to travel along the same path. This 
result is similar to the water-cooler effect, which suggests 
that interaction happens naturally in shared public 
locations.  

 

Figure 6. (a) Hallway map’s heatmap; (b) Agents-by-
location network.   

6. Discussions and Future Work 

In this study, we created a multi agent social network 
simulation that provides a flexible platform to examine 
several influential factors in social networks. Based on the 
existing literature, we hypothesized two basic types of 
influential factors, exogenous and cognitive factors.  Our 
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exogenous factors included population size, run time, and 
map configuration, while our cognitive factors included 
navigation strategies and memory activation parameters. 

Our results show how cognitive and environmental 
factors can influence network growth and shape.  From 
the simulation results, we find that all three factors 
influenced the ground-truth co-occurrence networks, as 
well as the merged ego-networks.  As expected, the co-
occurrence networks are less affected than the cognitively 
limited merged ego-networks.  The effect of running time 
is not as significant as we expected, and shows plateauing 
after 250s run for these configurations. The large running 
time also weakens the effect of map configuration in our 
ground-truth networks because it provides agents enough 
time to travel around the whole map.  By examining 
interaction density on locations, we also find that the 
shared public locations have higher interaction densities, 
in a manner similar to the water-cooler effect.  

Taking advantage of the ACT-R memory mechanism, we 
are able to create an egocentric view of the social network 
by looking into the chunks in the declarative memory for 
individuals and across a whole network. We found the 
structure and density of the merged egocentric network to 
depend heavily on the criteria for tie formation, with the 
most generous criteria producing a network very similar 
to that suggested by the ground-truth networks.  

By examining the activation values between agents, we 
also found that the four factors examined influence the 
activation values of ties between agents.  The result of 
agent activation logs show that the population size has a 
negative influence on the average activation (smaller 
groups have stronger ties); that running time has a 
positive influence on the average activation value; and 
that map configuration has some influence on the average 
activation but that the change of value does not 
correspond to changes in grid ratio. This suggests that 
grid ratio is not a sufficient measure of map configuration 
at least with these maps, and we need to find a more 
accurate measure in the future.  We also found that 
navigation strategies do influence activation values, with 
the Fixed Path strategy resulting in a neighborhood effect 
(strong localized ties).   

From this preliminary study we found that the exogenous 
influential factors have impact on both measures of the 
network with a threshold. The population size has the 
highest influence on the merged ego-network’s density, 
suggestive of the implications of the effect of Dunbar’s 
number on the real social activities. 

Finally, we conducted a preliminary study of the effect of 
these factors on Dunbar’s number and of applying a 
cognitive limit on each agent. We used an activation 
threshold to implement a cognitive limit on tie strength 

and to suggest some meaning for the ties.  We measured 
the cognitively limited network’s density and inherent 
structuration.   

Thus, reports about simulated networks need to report 
these factors and similar factors when describing their 
simulations.  Knowing the values of these factors will be 
necessary for duplicating results because these factors 
have strong and interacting effects.   

Future avenues of work will build upon some of the more 
interesting issues. First, we would look at analysis of 
normalized thresholds to see if there are regularities in 
their effects on network topology. Second, we would run 
more agents and more runs (Ritter, Schoelles, Quigley, & 
Klein, 2011), because the system to demonstrate these 
effects was kept deliberately small. Finally, we would 
extend our analysis on the effects of cognition on network 
measures analogous to Dunbar's Number. 
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