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ABSTRACT: Cognitive maps have been used to explain the cognitive processes underlying human spatial memory 
for several decades. Numerous theories have offered explanations regarding the structure of cognitive maps from the 
perspectives of spatial cognition, visual perception, and neuroscience.  Within this literature, two representations of 
cognitive maps (map-like representations and route-based representations) have generally been used to model the 
learning of spatial information. Map-like representations involve spatial geometries, with landmarks acting as strong 
references. Alternatively, route-based representations consist of sequences of positions, orientations, and landmarks.  
Studies suggest that humans use both of these representations, and that the representation (and thus the strategy) used 
is often a function of the agent’s familiarity with the environment. In this paper, we propose an ACT-R model that 
integrates both these representations and their associated strategies, using a route-based representation when 
learning new environments and a map-based representation to refine the agent’s understanding. The results show that 
the map-based representation could improve an agent’s route-following abilities in at least two cases: (1) searching 
the route when the agent is in an off-route position, and (2) for taking novel shortcuts in the route. Our model’s 
behavioral output is consistent with the literature (Foo, Duchon, Warren, & Tarr, 2005; Foo, Warren, Duchon, & 
Tarr, 2007), in that our agents like human beings rely primarily on route-based memory when navigating while using 
map-based memory as a secondary reference. 
 
 
1. Introduction 
 
Spatial memory refers to that aspect of human 
cognition responsible for the storing and processing of 
environmental clues and spatial orientations. This type 
of memory is necessary for humans to navigate their 
surroundings, and is essential for related tasks like 
returning home or locating food.   
 
In attempting to understand the formation of spatial 
memory, Tolman (1948) studied the food finding and 
navigating behavior of rats in a series of maze studies.  
To explain the novel shortcutting behavior he 
observed, he concluded that rats and creatures more 
generally, including humans, generate what he termed 
cognitive maps.  The notion of cognitive maps has 
since gained general acceptance, as has the role of 
hippocampus in storing these representations (O’Keefe 
& Nadel, 1978).  
 
Subsequent work regarding cognitive maps has, 
however, varied in several important ways including:  
the representation structures necessary to construct 
them, the kinds of data contained by them, and the 
strategies used to generate them.   After providing a 
general overview of spatial memory, we will briefly 
address each of these topics before introducing our 
model. 

 
1.1 Types of spatial memory 
 
With the development of cognitive map theory, two 
general representations of cognitive maps have become 
widely accepted by researchers in this area, that is, the 
cartographic (or map-like) representations and route-
based representations.  
 
Cartographic representations involve a Euclidean map 
of the space in question, including landmarks, 
exocentric orientations, and relative directions. 
Gallistel (1990) states that a cognitive map can 
constitute a position vector with the positions and 
attributes of the key points, as well as geometric 
relations between these points encoded in memory. 
Position vectors provide a promising representation of 
spatial knowledge for two reasons: first, they can 
theoretically represent all types of spatial knowledge as 
vectors by accurately encoding the geometric relations 
between a given set of points; second, they can help 
humans to make novel shortcuts or detours efficiently 
by retrieving and processing position vectors.  Some 
researchers (Poucet, 1993; Tversky, 2003) have argued 
that cartographic representations are also scalable and 
hierarchically organized, similar to a roadmap that 
displays the boundaries of various political units (i.e., 
states, counties, and townships). 
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Alternatively, route-based representations are 
sequences that consist of landmarks, egocentric 
orientations, distances, and locations. Compared with 
map-based representations, route-based representations 
are a weaker form of spatial memory because they are 
easily disturbed by changes to the environment such as 
the loss of key landmarks or other spatial clues 
(Bennett, 1996). Although route-based spatial memory 
is more contextually dependent and thus not sufficient 
for guiding navigation, it is, nevertheless, an essential 
form of spatial memory because it is the primary 
method used by humans when encountering new 
environments (Foo, Duchon, Warren, & Tarr, 2007; 
Foo, Warren, Duchon, & Tarr, 2005). With several 
route-based memories, humans can gradually establish 
a cartographic memory of the environment by 
recognizing landmarks, connecting positions, and 
changing egocentric coordinates (Hart & Moore, 
1973).  
 
1.2 Navigation strategy 
 
Based on numerous studies of human navigation 
behavior (Wehner & Menzel, 1990; Cartwright & 
Collett, 1982; Gallistel, 1990), researchers have 
proposed three basic navigation mechanisms: path 
integration, route-based navigation, and map-based 
navigation. 
 
Path integration can be found in insect navigation, as 
well as in other creatures.  Path integration is mostly 
associated with a “home vector”, or a representation in 
working memory that stores egocentric orientations 
and distances from home. When they leave home, 
insects keep updating their “home vector”, enabling 
them to find the right path home (Wehner & Menzel, 
1990). As the home vector is a working memory 
element, it is believed that path-integration does not 
involve any type of spatial memory.  
 
Route-based strategy is closely related to route-based 
spatial memory; both involve sequences of landmarks, 
turns, and locations. Based on this form of sequential 
memory, agents can navigate a given environment by 
approaching a recognized position or landmark 
(Cartwright & Collett, 1982). This behavioral sequence 
corresponds to recognizing a position or landmark, 
approaching it, recalling the next position, recognizing 
that position, and repeating this process. Route-based 
navigation, however, is considered an elementary 
strategy because it is context dependent (i.e., changes 
to or removal of landmarks can compromise the 
strategy).  
 
Finally, map-like representations are similar to a 
Euclidean map, with landmarks acting as strong 
references. As introduced above, map-like 

representations provide a set of accurate references 
(positions, directions, and distances) that enable an 
agent to perceive a goal position within the 
environment. Gallistel (1990) states that a cognitive 
map can constitute a position vector that stores 
geometric relations. Consequently, any navigation path 
can be predicted by computing a position vector. Foo, 
Warren, Duchon, and Tarr (2005, 2007) theorize that 
landmarks or remarkable references also play an 
important role in map-based navigation because they 
help human to localize themselves in an environment, 
and to be aware of relative locations to the goal 
position. 
 
1.3 Modeling Navigation behavior in ACT-R 
 
Although many theories have been developed to 
understand human spatial memory and reasoning, we 
are still far from fully explaining all of these behaviors. 
One interesting approach for better understanding 
spatial reasoning and navigation is to develop cognitive 
models that seek to replicate the navigation behaviors 
observed in humans and animals (Harrison, & Schunn, 
2002; Johnson, Wang, & Zhang, 2003; Lathrop,2008; 
Kurup, & Chandrasekaran, 2009). ACT-R provides a 
way to explore these theories.  
  
ACT-R is a cognitive architecture as well as a unified 
theory of cognition.  It uses a production system to 
implement rule-based rationality, and numerous buffers 
to simulate human perception. Specifically, ACT-R 
relies on a set of mechanisms (e.g., the utility 
mechanism and activation mechanisms) to simulate 
human memory, information processing, and 
reasoning. Gunzelmann and Lyon (2007) discuss the 
applicability of integrating a module for human spatial 
memory into ACT-R from both a theoretical and 
empirical perspective. They conclude that ACT-R can 
support modeling spatial cognition by providing 
mechanisms for learning and information processing. 
Gunzelman and Anderson (2002, 2004) proposed a 
series of ACT-R models to execute a self-orientation 
task with multiple strategies.  These models matched 
human data for this task. Based on these models, they 
then extended the perception module of ACT-R in 
multiple directions including object buffer, location 
buffer, and imagery buffer. 
 
Researchers using ACT-R have not only modeled fairly 
localized tasks but also larger tasks such as navigating 
a maze, a community, or even a country. Fu (2003) 
developed a navigation model based on a 2D map 
representation implemented in ACT-R.  By using a 
simple grid map as a testing environment and coding 
the map representation into declarative memory, the 
model supported two basic navigation strategies:  hill-
climbing and a simple planning strategy.  More 
recently, Reitter and Lebiere (2010) presented a path-
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planning model that emulates the navigation strategies 
observed in humans using two components: a visual 
attention component and a spatial experience (memory) 
component.  The visual attention component simulates 
the heuristics applied by human beings when 
performing a visual search in an unfamiliar 
environment. These heuristics include three basic tasks: 
straight-line extraction, visual search, and goal 
recognition. The spatial experience component encodes 
into declarative memory the spatial information gained 
by the agent’s perceptual-motor module, generating a 
path or route representation.  The agent then follows 
the path by activating declarative memory chunks 
sequentially. When there are existing paths available in 
declarative memory, the model will tend to navigate 
using the experience component. Otherwise, the agent 
tends to use the visual attention component.  
 
In this paper, we discuss an ACT-R model using two 
representations of a cognitive map to implement both a 
route-based and a map-based strategy in MEDAS: a 
text-based multi-agent environment. Comparing to 
Reitter and Lebiere’s (2010) work, there are three 
innovations to their basic approach: (1) theoretically, 
we propose a more complete approach for modeling 
spatial memory that draws upon previous literature 
(O’Keefe & Nadel, 1978; Bennett, 1996; Gallistel, 
1990) by adding a map-based memory; (2) our model 
enhances the agent’s performance by applying 
navigational shortcuts and route-searching strategies 
from a map-based memory; (3) this model can be 
easily extended to model social and network behaviors 
as it is implemented in a multi-agent environment.  
 
2. MEDAS 
 
Kitchin (1994) suggests that cognitive maps are 
applicable to non-spatial environments if the task in 
question involves using spatial memory (e.g., a text-
based maze). For this experiment, we create such an 
environment, MEDAS or Multiple Environment 
Dynamic Agent Simulation.  MEDAS is a text-based 
simulation capable of supporting simulation 
experiments at various levels of abstraction. Developed 
in C with additional scripting features implemented in 
Python, the simulation runs as a telnet client listener, 
transmitting string information using the telnet socket 
protocol. We also create a socket connection in Lisp to 
enable ACT-R agent to communicate with MEDAS. 
 
3. Tasks 
 
In MEDAS, we create a 5*5 grid map with unique 
names for every room; the structure of grid map is 
shown in Fig. 1. The task includes two steps, a learning 
step followed by a navigating step.  The learning step 
corresponds to the agent’s exploration of the 

environment while the navigating step allows the agent 
to recall and apply spatial memories.  
 
In the learning task, agents randomly wander in the 
grid map. Each agent travels from a starting point to a 
goal point.  When agents encounter new rooms, the 
server displays the room name {room name=room1} 
and available travelling directions {directions: north, 
south, and east}. The agent then chooses the next 
travelling direction by typing “north”, ”south”, “east”, 
or “west” in the command line. In the navigation task, 
the agent seeks to reach a goal point that it has visited 
in the previous learning task. The goal point’s 
assignment is random, and the agent navigates to the 
goal point by retrieving memories generated during the 
learning task. 

 
Fig.1. The grid map for the task 

 
4. The ACT-R Model 
 
Based on our review of the spatial reasoning literature, 
we have implemented our model with three basic 
features. First, our model stores spatial memory chunks 
in declarative memory; and like other types of long-
term memory, these chunks decay with disuse. Second, 
our model uses basic navigation strategies 
(corresponding with those observed in humans) that 
can be elaborated upon, increasing the agent’s 
adaptability; but there is no visual attention component 
involved.  Third, we include a selection mechanism 
that can choose navigation strategies based on different 
environmental factors. In the following section, we will 
present the structure and details of our model.  
 
4.1 Spatial Memory in ACT-R 
 
As noted above, our ACT-R model stores spatial 
memories in declarative memory, more specifically in 
a pre-coded declarative memory array. In this section, 
we will discuss in more detail the agent’s declarative 
memory structure. Our agent generates spatial 
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representation using three chunk types: one general 
goal chunk and two spatial memory representation 
chunk types. 

1) Goal chunks include the goal room, current 
location, and the next location. These chunks 
are stored and manipulated in ACT-R’s goal 
buffer. 

2) Map-room chunks define the topological 
connections between rooms. They contain a 
current-room slot to store the current location 
and four direction slots to store the names of 
the connecting rooms. 

3) Route chunks define the transitions between 
one room and the next. They contain a 
current-room slot to record the current room’s 
name, as well as a next-room slot to point to 
the next location on the route.  

 
4.2 The Navigation-Agent Model  
 
 In this section, we describe our Navigation-Agent 
model. We then introduce three basic navigation 
strategies employed by our model: a route-following 
strategy, a shortcut strategy, and a route-searching 
strategy. 
 
 The Navigation-Agent selects between navigation 
strategies based on its assessment of the environment. 
Fig. 2 and bullets 1-3 provide an overview of the 
Navigation-Agent’s assessment and decision-making 
process, while Fig. 3 describes in more detail the 
shortcut strategy (the model’s most important strategy). 

 
Fig. 2 The Navigate-Agent model’s assessment and 

decision-making process.  
 

1) When confronted with a new room, the agent 
first verifies if the room is the goal room. If 

not, the agent attempts to retrieve the room 
from its route-memory.  If successful, the 
agent then checks if all the possible 
connecting rooms are also in route memory. If 
it finds in its memory one or more connecting 
rooms (with the exception of the rooms 
immediately adjoining its location), the agent 
proceeds to that room, thus executing a 
shortcut. If unable to identify a shortcut, the 
agent continues to follow the route to the next 
location. For example, if the route consists of 
the sequence 1->2->3->4->5->6->7 and the 
current location is 3, the agent will search for 
all the connecting rooms expect 2 and 4. If the 
searching result is 1 and 6, the agent will walk 
directly to room 6. If the model only retrieves 
room 1 from memory, the model will ignore it 
(as room 1 is before room 3) and proceed to 
room 4.  

2) If the model fails to retrieve the room from 
route-memory, it will try to retrieve the 
current room from its map-memory. If 
successful, the agent randomly picks one 
visited room as the next stop. The model will 
continue using this partial random walk 
strategy until the agent finds a room along its 
route. 

3) In the event that the agent fails to retrieve any 
chunks from map-based memory, the agent 
will be unable to use any memory-based 
navigation.  In other words, the agent has no 
memory of either this room or its adjacent 
rooms, so it stops.  

 
Fig. 3. The shortcut strategy. 

 
5. The Experiment 
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In our experiment, we tested a Navigation-Agent for 
which we hand-coded a declarative memory structure. 
In this section, we review the details of our experiment 
and its results for both the shortcut and combined 
strategies.  
 
5.1 Some features of the experiment 
 
For our experiment, we used a Navigation-Agent 
consisting of 45 productions and using three basic 
navigation strategies.  These strategies correspond to 
two major phases (learning and navigating), and two 
memory types (map-memory and route-memory). We 
used ACT-R’s default parameters throughout the 
experiment.  The experiment environment was a 5*5 
grid graph with a name for each room (e.g., 42). We 
hand-coded 11 route chunks; these chunks formed a 
route between designated start and goal points. In 
addition, we created 15 map-room chunks to represent 
the known spaces in the maze. These spaces enabled 
the agent to take shortcuts or to search for possible 
routes when the agent wandered to an off-route 
location. Fig. 4 shows the room names, as well as the 
agent’s initial map-memory and route-memory.  In the 
figure, each room has a designated identifier. The red 
(solid) line indicates the topological relations coded 
into the agent’s declarative memory; the green (dashed) 
line indicates the coded route.  
 

 
Fig. 4 The structure of testing environment and pre-

coded declarative memory 
 

5.2 Testing the Shortcuts Strategy 
 
To test the shortcut strategy’s effectiveness, we 
designated room 51 to be the start point and room 13 to 
be the goal point. The result trajectory is indicated by 
the blue (“x--x”) line. We can see from Fig. 5 that the 
agent used the route-following strategy to navigate to 
room 33 (moving through four rooms).  At room 33, 

the agent checked each connecting room (rooms 32, 
23, 34 and 43).  Because rooms 32 and 43 are adjacent 
to room 33, the agent only checked whether rooms 23 
and 34 were en route. In this instance, the agent 
successfully retrieved room 34, the 8th room on the 
route.  Successfully finding a shortcut, the agent 
proceeded directly to room 34.  The agent then 
resumed using the route-following strategy to navigate 
to its goal point.   
 
In this instance, the agent only used one shortcut 
(moving from room 33 to room 34), and it did not head 
north to move directly from room 33 through 23, to 13. 
This finding matches those of Foo, Warren, Duchon 
and Tarr (2005, 2007) that human prefer following 
route to navigate. Also, it echoes the human tendency 
to rely primarily on route/landmark-based strategies to 
find shortcuts (using map-based knowledge as 
supplement) as opposed to primarily using cartographic 
representations.  
 

 
Fig. 5 The sample trajectory of the shortcut strategy 

 
5.3 Testing the Combined Strategy 
 
As our agent uses multiple strategies to navigate its 
surroundings, we tested how effectively the agent was 
able to combine the three strategies to reach its goal 
location. For this experiment, we set the start point at 
room 23 and goal point at room 13. The result 
trajectory is shown as the purple (“o--o”) line in Fig 6.  
In Fig 6, we can see that the agent started at an off-
route location. Consequently, it first used a searching 
strategy to randomly pick a visited direction to walk.  
In this instance, the agent chose to travel to room 33.  
Discovering that room 33 was along its route, the agent 
next searched for a possible shortcut. Finding one, the 
agent jumped to room 34 directly. The agent then 
applied a route-following strategy to find its goal point.  
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The strategy sequence illustrated in Fig. 6 consists of a 
route-searching strategy, shortcut strategy, and route- 
following strategy. As noted above, Foo, Warren, 
Duchon and Tarr’s (2007) findings indicate that human 
beings generally rely on route-based strategies, but 
they will resort to map-based strategies when they find 
that key landmarks are missing. Our agent simulates 
this behavior by supplementing its route-based 
representation with map-based knowledge.  
 

 
Fig. 6 The sample trajectory of the combined strategy. 

 
5.4 Testing the Subsymbolic Parameters 
 
Because we implement human spatial memory as 
declarative memory chunks, we use ACT-R’s chunk 
activation mechanism in our model to reflect the 
stochastic nature of human memory. In our experiment, 
we tested how memory influences strategy selection 
and navigation performance by testing the model at 
various levels of activation noise. We set the activation 
noise from 0 to 1.2, with the base-level activation being 
set to -3.5. For every activation value, we run 10f 
replications of the agents’ route from room 51 to room 
13. We recorded the performance of the model using 
two different measures:  the success rate (or the 
successful completion rate) and the total time for each 
run. We only recorded the running times for successful 
trials. 
 
Fig. 7 shows that the average running time increases as 
we increasing the activation value. There is a sharp 
running time increase at the noise value of 1.0, 
meaning a noise of 1.0 could be a threshold for the 
model. Above this threshold, the robustness of the 
model will be heavily disturbed.  
 
Fig. 8 displays an inverse relation between success rate 
and noise value. A very interesting fact shown in Fig. 8 
is that the success rate also falls significantly at the 
noise value of 1.0. This matches the result of Fig. 7 that 

noise value of 1.0 is a threshold for the robustness of 
the model. This result also suggests that success rate 
and running time are related because they share the 
same threshold. 
 

 
Fig. 7 The effect of activation noise on time to navigate 

the maze. 
 

 
Fig. 8  The performance of model degrades with the 

increase of noise. 
 

6. Conclusion and Discussion 
 
In this paper, we discussed a memory-based model of 
human navigation implemented in ACT-R. The model 
illustrates the connection between spatial memory 
representations and strategy choices, as well as 
simulating both spatial learning and navigating. In the 
model, we proposed a novel approach to represent 
human spatial memory in ACT-R that simultaneously 
encodes both route-based and map-based 
representations into declarative memory. To enhance 
the model’s adaptability and robustness, the model 
employed three basic navigation strategies: route-
following, shortcut finding, and route-searching. we 
have three conclusions for our work.  
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First, we found in our experiment that map-based 
representations can improve an agent’s route-following 
abilities in at least two cases: (1) searching the route 
when the agent is in an off-route location, and (2) for 
finding novel shortcuts from the route. These findings 
arise from two basic behaviors: (1) relying on route-
based representations but supplementing those 
representations with map-based knowledge, and (2) 
switching navigation strategies when landmarks are 
missing.  
 
Second, as the model involves subsymbolic 
information to guide navigation, we also conducted an 
experiment to examine the relationship between the 
model’s subsymbolic processing and its performance. 
Testing the model at a range of activation noise values 
from 0 to 1.2, we found, as anticipated, that increases 
in activation noise corresponded with an increase in the 
model’s running time and a decrease in its success rate.  
The result also suggests a clear threshold for the model 
(an activation noise level of 1.0 with a -3.5 base-level 
activation). If the noise exceeds this threshold, we find 
a precipitous drop in performance. The result also 
indicates that the running time and success rate of the 
model are highly correlated because they share the 
same stability threshold. This model of navigation is 
thus influenced by factors included in ACT-R and its 
extension. For example, practice will make the route 
following faster; one of the processes that are stress 
and fatigue will impede navigation. This also does 
match the pilot study data that we collected informally 
(unpublishable due to the regulation of research in 
Penn State).  
 
Third, the model can be easily extended model social 
behavior. In the future work, we will build a functional 
model that could not only navigate based on existing 
memory but also could explore a new environment and 
independently record spatial information (dispensing 
with the hand-coded memory structure). Taking this 
step is necessary because human navigation behavior 
requires the dynamic formation of memory structures 
capable of supporting a wide array of navigation tasks.  
Also, it is in the formation of these structures that many 
of subsymbolic aspects of human spatial cognition 
come to influence the ability of human beings to 
navigate their surroundings. Bypassing this step 
seriously undermines the fidelity of these models. 
 
We hope to leverage this work in future studies. As a 
group, we have been interested in modeling social and 
network behaviors (e.g., Morgan, Morgan, & Ritter, 
2010; Qiu, Ivanova, Yen, Liu, & Ritter, in press).  To 
model these behaviors in a town or spatial layout, we 
needed a more robust navigation mechanism, one 
capable of simulating goal directed behavior.  This 
model now allows us to more fully explore how 
changes in proximity influence individual behavior 

(e.g., the inducement of stress and tension or the effect 
of leaders on subordinates), and potentially group 
outcomes.   
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