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Abstract. The era of Industry 4.0 demands innovative solutions to pro-
duce high-quality products within tight lead times. This paper explores
the integration of cognitive architectures (CAs) into manufacturing solu-
tions, with a focus on using VSM-ACT-R, a cognitive architecture
model built upon the ACT-R architecture. VSM-ACT-R aids in making
informed decisions in smart scheduling that boosts productivity while
ensuring consistent quality. The model stands out in three key aspects of
decision-making in manufacturing: First, it executes tasks using decision-
making algorithms and knowledge representations observed in human
subjects, supported by declarative memories that reflect intuitive and
domain-specific knowledge. Second, it mimics various levels of decision-
making-from novice through to expert—using production rules and
retrieval mechanisms that replicate variations of human behavior. Third,
it simulates the learning processes of decision-makers, managed by a
decision-choice control center that is driven by utility learning and rein-
forcement reward. We conclude by discussing an evaluation of this model,
its applications, and its implications.
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1 Introduction

Industry 4.0 aims to create “intelligent factories” where advanced manufacturing
technologies enable smart decision-making through real-time communication and
cooperation among humans, machines, and sensors [13]. Smart scheduling, which
leverages advanced models and algorithms using sensor data, exemplifies one
such solution [10].

A value stream map (VSM) is an essential tool in smart scheduling. It serves
as a sophisticated flowchart that visualizes and controls the production line [8].
VSM meticulously tracks metrics like inputs, outputs, processes, overall equip-
ment effectiveness (OEE), and cycle times-all crucial for quality and efficiency
analysis in production control. However, plant managers face significant chal-
lenges in using VSM in production management. These challenges include diffi-
culty applying VSM concepts to complex, real-world scenarios characterized by
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a high number of intertwined variables. This complexity consistently impedes
plant decision-makers from making timely and optimal decisions regarding both
time reduction and maintaining stable quality on the production lines.

This paper proposes a novel approach to address these challenges by inte-
grating cognitive architectures into decision-making processes for manufacturing.
Specifically, it employs a cognitive architecture to build models representing deci-
sions and their process related to boosting productivity and ensuring consistent
quality. This model leverages data derived from the VSM and decision-makers
at Bosch plants.

Cognitive architectures (CAs) aim to create a unified model of the mind using
invariant mechanisms to simulate and explain human behavior [1,5,7]. CAs use
task-specific knowledge to generate behavior. They represent various types of
knowledge, including declarative (factual), procedural (how-to), and in recent
advancements, perception and motor skills. This knowledge allows CAs to not
only simulate behavior but also explain it, both through direct examination and
by tracing the reasoning steps involved in real-time (concurrent protocol).

This reports starts from prototypical decision processes distilled by plant
managers of Bosch. Their insights, combined with a VSM tailored to their specific
plant system, inform the build of our VSM-ACT-R model to enhance decision-
making. It then introduces the developed VSM-ACT-R model1, which stands out
in decision-making tasks with three key strengths. First, the model can execute
tasks using decision-making behaviors observed in humans and retrieve knowl-
edge representations similarly. This capability is achieved through incorporating
declarative memories that cater to intuition and professional knowledge from
human subjects.

Second, the model integrates personas ranging from novice to intermediate
and expert levels. This is achieved through developed sets of production rules
that mimic the behavior of decision-makers at various expertise levels, coupled
with retrieval mechanisms for full or partial knowledge representation.

Third, the model simulates the learning processes of decision-makers, transi-
tioning from novice to expert. This simulation is facilitated by the decision-choice
control center, which manages error-making, learning, and memory through util-
ity learning and reinforcement rewards. This approach creates a realistic and
dynamic decision-making simulation, making the VSM-ACT-R model a robust
tool in cognitive architecture-facilitated decision-making in manufacturing.

The following sections discuss the task, the model, the model’s performance
evaluation, its application, and implications.

2 Related Work

In this section, we introduce ACT-R and its strengths to create a model that
simulates human decision making behavior with learning.

There are currently primarily two kinds of knowledge representations in
ACT-R: declarative and procedural knowledge. Declarative knowledge consists
1 https://github.com/SiyuWu528/VSM-ACT-R.
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of chunks of declarative memory (e.g., apple is a kind of fruit), while procedural
knowledge performs basic operations, moves data among buffers, and identifies
the next instructions to be executed (e.g., to submit your answer, you have to
click the submit button). ACT-R has extensive applications across psychology
and computer science, including professional development [4], military simula-
tions [2], and autonomous driving simulations [11].

ACT-R is effective in developing models to simulate human learning. Three
key features distinguish the use of ACT-R in creating models that perform
decision-making tasks with learning:

Self-configuration: ACT-R efficiently translates instructions into structured
rules, forming the basis for task-specific production rules that enhance the effi-
ciency of task execution.

Modular Design Mirroring Human Cognition: ACT-R’s modules emulate
human cognitive functions: perceptual modules update the system’s view of the
environment, a goal module tracks progress towards objectives, a declarative
module uses past experiences for contextual understanding, and a central buffer
system enables communication between modules. Additionally, the central pro-
duction system recognizes patterns to initiate coordinated actions.

Subsymbolic Processes for Decision-making: ACT-R excels in its ability
to reliably retrieve relevant memories and activate appropriate rules, ensuring
both efficient and adaptive performance in decision-making tasks, such as skills
training. It does so at a pace that mirrors human performance and offers the
opportunity to model learning during this process.

3 The Task

This section details formulating a domain-specific decision problem for opti-
mal production efficiency, leveraging VSM to define efficiency sectors and then
abstracting the problem for mathematical modeling.

Fig. 1. An Example of Value Stream Map in a Plant Floor
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The VSM (Fig. 1) depicts a prototypical manufacturing production line work-
flow from supplier to customer. Key components include Body Production, Pre-
Assembly, Assembly, Honing, Washing, Testing, and Packaging. Later stages are
interconnected via First-In-First-Out (FIFO) processes. Metrics displayed for
each stage include Cycle Time (CT), Overall Equipment Effectiveness (OEE),
and Mean Absolute Error (MAE). The flow progresses through each stage, aim-
ing for efficient operation, performance monitoring, and error minimization to
ensure high-quality production output and timely customer delivery.

Focusing on maintaining stable output for the plant, we consider the plant
managers’ feedback alongside the Value Stream Map (VSM) structure to develop
a decision-making problem that aims to reduce total assembly time while min-
imizing the increase in defect rate. The task: Our manufacturing line has two
sections with potential defect sources: pre-assembly and assembly. Pre-assembly
takes 40 s with an OEE rate of 88%, while assembly takes 44 s with an OEE rate
of 80.1%. To reduce total assembly time by 4 s, we need to identify which section
can be shortened with minimal defect increase. There are two options: reduce
pre-assembly time or reduce assembly time.

4 The Model

This section starts with capturing intuition and domain knowledge from decision
makers, followed by the model structure and learning mechanism, and concludes
by examining a model output snippet from one run of our VSM model.

4.1 Model Design

The model, built upon the prototypical decision process distilled by Bosch plant
managers, incorporates how cognitive models are designed for different levels
of expertise [3,6]. For novices, the model utilizes intuitive deliberative chunks
to make decisions. For intermediates, it understands key metrics such as cycle
time (CT) and Overall Equipment Effectiveness (OEE). However, intermediates
often lack the ability to systematically analyze how these metrics interrelate and
cumulatively impact efficiency and quality. Experts, on the other hand, make
well-informed judgments based on a comprehensive view of all relevant metrics,
obtained through Value Stream Mapping (VSM).

4.2 Declarative Chunks

We created chunks representing knowledge from intuitions to professional exper-
tise. These representations are divided into three chunk types: decisions, decision
merits, and goals. Decision chunk encodes six slots: reduction time, decision-
making state (e.g., novice, intermediate, expert), OEE, and CT. The decision
merits chunk holds knowledge on weights for sectors, defect increase for sec-
tors, and the difference in defect rate increase between the two. The goal chunk
encodes the initial production conditions and the ultimate goal of making the
optimal decision.
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4.3 Production Rules

Three sets of production rules represent the decision-making behaviors of novice,
intermediate, and expert decision-makers. These sets comprise a total of 17 rules,
each driven by goal-focused objectives across 14 states.

We use the expert production rule set as an example, as shown in Fig. 2. Once
the decision-choice center decides to activate this set of expert decision produc-
tions, it starts by perceiving the problem and retrieving related decision-making
metrics from chunks. The imaginal buffer then acts as a temporary workspace,
holding and manipulating relevant information during decision-making. It allows
the model to build new mental representations or modify existing ones based on
incoming data or problem-solving needs. This involves using the imaginal buffer
to assess the relationships between the decision target and decision metrics, par-
ticularly considering the impact of each sector’s weight on the defect rate change,
and determining the final defect rate increase for each sector. These results are
stored in the imaginal buffer and later retrieved for comparison. This then allows
the model to select the sector with the lowest defect increase.

Fig. 2. Production rules control structure for expert decision making and their use of
the ACT-R Goal and Imaginal buffers

4.4 Level of Expertise Mechanism

The model can learn while performing tasks through two mechanisms leading to
varying levels of expertise, as shown in Fig. 3.

The model mimics human decision-making behavior through differentiat-
ing knowledge representations. Declarative Memories: These memories store
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Fig. 3. Level of expertise mechanism in VSM-ACT-R

knowledge that aligns with human intuition and expertise gained from the VSM.
For example, the green triangles in the figure represents a portion of the intu-
ition used by novice decision-makers. Production Rules: These rules capture
the rational decision-making processes observed in human subjects. The green
(lighter) lines illustrate how the imaginal buffer retrieves relevant portions of
the novice declarative memory and feeds them to the novice production rule set.
Intermediate and expert decision-making levels follow the same principle. Red
and blue shapes represent their respective declarative memory chunks, and the
corresponding (darker) colored arrows show the flow of information through their
production rule sets. Finally, the goal buffer utilizes the “goal focus” command
to manipulate the different phases of the task.

Beyond mimicking human behavior, the model also simulates the learning
progress achieved by the Decision-Choice Control, which manages errors,
learning, and memory through utility learning and reinforcement rewards. Novice
decision-making starts with a utility base and includes a noise setting. The
intermediate and expert production rules receive rewards when the correspond-
ing decision-making results are achieved. The utility of these production rules
updates is based on the rewards received and the retention of memory, which
depends on the time passed since the rule last fired.

4.5 Model Output

The partial trace in Fig. 4 shows how the model transitions from naive to more
expert-like behaviors. Each production rule’s utility is updated based on the
reward received and the time since the last selection. For example, the NAIVE-
CHOICE rule’s utility decreased from 6.36 to 5.07 due to a reward of –0.1 for the
time passed since the last selection. As the utility of naive strategies decreases,
the likelihood of the EXPERT-STRATEGY being fired increases.
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Fig. 4. VSM-ACT-R Model Output Fig. 5. Trend of Decision Types over
Trials with SD shown as gray fill (Color
figure online)

5 Model Evaluation

To answer the question of whether this model learns and how it simulates learn-
ing progression and captures individual differences, we first use descriptive statis-
tics and linear regression to show the average progression of decision types across
16 trials. We then use a mixed linear model to assess and illustrate the effects
of trials on decision types across ACT-R model personas, with repeated mea-
sures of trials, and random effects to account for individual differences. Last but
not least, we use an ordered logistic regression to analyze and understand the
relationship between the number of trials and an ordinal dependent variable of
learning progress from novice to expert.2

5.1 Analyzing Learning Rate

We ran the ACT-R model 15 times to understood its behavior [9]. Each time, we
asked it to run 15–16 trials until the model achieved stable expert behavior. We
collected data with decision types encoded as 0, 1, and 2 for novice, intermediate,
and expert strategies.

The decision-making data for the runs, acting as ACT-R personas, are shown
in Fig. 5. the average progression of decision types from novice (0) to expert
(2) across 16 trials. Starting at approximately 0 in trial 0, the mean decision
type rises to about 0.75 by trial 4 and reaches around 1.25 by trial 8. Despite
slight fluctuations, the trend continues upward, with the mean decision type
approaching 1.75 by trial 12 and around 1.9 by trial 16. The narrowing 95%
confidence intervals, ranging from approximately 0.5 to 2.0 initially to 1.5 to
2.0 in later trials, indicate increasing consistency among participants’ decision-
making abilities.

The learning rate, defined as the rate at which decision type progresses from
novice (0) to expert (2) across trials, is modeled using a linear regression. This

2 Notebook and data can be accessed at https://github.com/SiyuWu528/VSM-ACT-
R/tree/main/Brims_data_analysis.

https://github.com/SiyuWu528/VSM-ACT-R/tree/main/Brims_data_analysis
https://github.com/SiyuWu528/VSM-ACT-R/tree/main/Brims_data_analysis
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model assumes a constant learning rate across all trials shown in Eqn. 1.

Eqn. 1 : y = β × x+ α

where y is the mean of decision type, x is the trial number, and β (the slope)
represents the learning rate. The learning rate for the ACT-R personas is 0.111
with variance of the residuals of 0.026.

5.2 Analyzing Individual Differences

We then use a mixed linear model that includes both fixed and random effects,
to assess the effects of trials on decision types, and random effects to account
for individual differences. This analysis allows to handling data with nested
structures (e.g., multiple trials per personas). In addition, it accounts for the
correlation of responses within the same participant and allows for the inclusion
of random effects due to individual differences (Table 1).

Table 1. Mixed Linear Model Regression Results

Dependent Variable: decision_type
No. Observations: 227 Method: REML
No. Groups: 15 Scale: 0.4014
Min. group size: 15 Log-Likelihood: -232.9159
Max. group size: 16 Converged: Yes
Mean group size: 15.1

Coef. Std.Err. z P>|z| [.025 .975]
Intercept 0.151 0.112 1.340 .180 -0.070 0.371
Trial 0.127 0.010 13.198 .000 0.108 0.146
Group Var 0.076 0.063

Significant Effect of Trial on Decision Type. The coefficient for the trial
is 0.127 with a p-value of <.05, indicating a highly significant positive effect of
trial on decision type. This suggests that experience or exposure to more trials
positively influences the decision-making process, resulting in higher decision
type scores. Participants learn or adapt their decision-making strategies over
time, becoming more proficient or confident with each subsequent trial.

Individual Differences Among Participants. The random effects compo-
nent of the model shows a variance of 0.076 for participants, indicating variabil-
ity in the intercepts across different participants. This variability suggests that
while the overall trend shows an increase in decision-type scores with more trials,
individual participants start from different baseline levels. In humans, some par-
ticipants may naturally have higher or lower decision-type scores due to personal
characteristics, prior experience, or other unmeasured factors.
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5.3 Analyzing Learning Progress

We then use an ordered logistic regression model without considering individual
differences, to analyze the relationship between the number of trials and an
ordinal dependent variable of learning progress from novice to expert. This aims
to look deeper into how changes in the predictor influence the likelihood of
different levels of the ordered outcome in decision-making.

Table 2. Ordered Model Regression Results

Dep. Variable: decision_type Log-Likelihood: -182.40
Model: OrderedModel AIC: 370.8
Method: Maximum Likelihood BIC: 381.1
No. Observations: 227
Df Residuals: 224
Df Model: 1

coef std err z P>|z| [.025 .975]
Trial 0.3545 0.040 8.802 .000 0.276 0.433
0/1 1.6906 0.310 5.447 .000 1.082 2.299
1/2 0.2262 0.139 1.631 .103 -0.046 0.498

Table 2 shows that the threshold 0/1 (1.69) with p-value < 0.05 indicates a
significant cut-off between novice and intermediate categories. The threshold 1/2
(0.23) is not statistically significant (p-value = .103), suggesting that the model
does not provide strong evidence for a clear separation between intermediate
and expert decision types over just 15 trials.

ACT-R personas tend to move to higher decision categories as they undergo
more trials, with a significant transition between novice and intermediate, but
not as clear a transition between intermediate and expert. The initial learn-
ing curve is steep, however, once personas reach an intermediate level, further
improvements become subtler.

6 Conclusion and Discussion

This study towards using cognitive architecture to enhance manufacturing effi-
ciencies by creating VSM-ACT-R, created a model that incorporates learning
and behavior differentiation in a decision-making task aimed at optimizing a
manufacturing production line. The model simulates three types of behavior-
novice, intermediate, and expert-mirroring human decision-making rationales.
The model learns over the course of trials and exhibits individual differences. It
demonstrates a human-like learning progression, showing a steep learning curve
at the beginning and gradual improvements later on.
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It is worth noting that the subtle and gradual progression of the model from
intermediate to expert levels may be inherent to the model itself. It is possible
that the differentiation between the expert and intermediate decision-making
levels is not distinct enough. Additionally, the incentives provided to the expert
strategy may be significantly higher than those given to the intermediate strategy
and could lead the model to have a smooth learning curve later on. Therefore,
it could be worthwhile to adjust the model based on real-world scenarios.

VSM-ACT-R could be extended to teach novice decision-makers not only
optimized strategies but also highlight common mistakes they might make, guid-
ing them through a learning trajectory. It will be able to serve as a tutor in
manufacturing decision-making, not just by providing the right answers but by
guiding them on how to achieve those answers, akin to a peer.

We are particularly excited about the model’s potential for further deploy-
ment with open-source large language models [12]. In manufacturing decision-
making, off-the-shelf generative models often struggle to deliver accurate results
and learning behavior exhibited by cognitive models. We can leverage VSM-
ACT-R’s ability to simulate tens of thousands of ACT-R participants in decision-
making tasks to generate target data that incorporate learning and optimized
decisions. This generated data will be used as the target to fine-tune large lan-
guage models, aiming to align their decision-making with the ACT-R agents we
will develop, The fine-tuned language model not only predicts human decisions
for new problems but also provides important insights into the learning and
correction rates in these tasks.
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