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Abstract

This research examined the effect of heterogenous agents in comparison with ho-
mogeneous agents in socio-cognitive network formation. I used cognitive agents
connected to a virtual world and based on their interaction formed networks. The
agents are different in movement strategies and starting locations. I found that:
(a) the difference between homogeneous agents and heterogeneous agents, and (b)
the starting locations of agents, both affect network formation. The results of
heterogeneous agents in network formation is different from the average results of
homogeneous agents and indicates heterogeneity changed the network formation
fundamentally. So, network simulation should include heterogeneous agents.
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Chapter 1
Introduction

This research applied heterogeneous agents to social network formation simulations

and considered several factors in social network formation, including spatiality,

human memory, and heterogeneity of movement strategies and locations.

Agent-based modeling and simulation (ABMS) is a modeling paradigm [Macal

and North, 2005] that is important in several reasons. First, by modeling, it

gives us a way to reproduce the facts and understand them. Second, it gives us

possibilities to predict large-scale properties that are hard to produce with real

objects. Third, there are some circumstances that are hard to do experiments

with only a single object. Fourth, it gives the possibilities to take the environment

around the objects into consideration.

Using ABMS gives us an overall status of the system measurement. Using

simulations, experimental factors can be examined thoroughly within an environ-

ment that can be controlled, repeat experiments as many times as wanted, and

record the detailed data. There are several categories of agents in ABMS: cognitive

agents, software agents, intelligent agents, and robotic agents [Fan and Yen, 2004].

This thesis used cognitive agents for the agents in the simulations.

Dunbar [1998] explained the relation between neocortex and relationships. He

claimed that on average we have 150 friends memorized, and stable relationships

require repeated memory activation. We can have connections between different

groups and friends, but what we can remember daily is still limited. With Dunbar’s
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claim in mind, I built cognitive models and use them to form networks between

agents. Capabilities and constraints of memory is thus important for this work.

The spatial factor is also what was examined in this research. In the simula-

tions, agents move in a virtual world to meet other agents. The spatial factor is

important because different agents have different movement strategies and this in-

fluences their network formation. I chose to change the starting locations of agents

and found different starting location settings make difference.

Existing research of social agent models does not consider individual

differences. Carley and Newell [1994] studied the nature of social agents.

Fan and Yen [2004] studied modeling and simulating human teamwork

behaviors. Sun [2009] studied cognitive architectures and multi-agent

social simulation. Zhao et al. [2011, 2012a,b], and Kaulakis et al. [2012]

studied socio-cognitive networks. All of these research do not consider

heterogeneity.

Human variability is an important parameter that should be con-

sidered more often. It is suggested by Ritter and Norling [2006] that

variability plays an important role in influencing task completion within

a group. Due to their different properties and behaviors, heterogeneous

agents seem to be the best tool to use to model and account for this

variability in order to improve the accuracy of future network simula-

tions. With agent-based simulation, we can explore the social network formation

without making lots of assumptions in the beginning. We only need to define agent

behaviors and environment constants then run experiments, read and interpret the

results.

This thesis focuses on the effects of heterogeneity of agent models to social

networks. Based on a National Research Council report [Zacharias et al., 2008], a

more realistic model composition and models of groups and teams are suggested

as a future direction. To explore heterogeneity of agents, I designed and ran

experiments with: (1) different starting locations, and (2) different types of agents.

I found the results with heterogeneous agents are different from networks with

homogeneous agents, and the values of heterogeneous agents are not the average

of the values from two homogeneous agents. Hence, running experiments with

homogeneous agents is not enough and heterogeneous agents reflect the real cases
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should be considered.

This thesis contains four additional chapters. Chapter 2 explains the back-

ground of this thesis, including agent based simulation, cognitive architectures,

network analysis and VIPER, a simulation tool. Chapter 3 describes the environ-

ment of the experiments, the agent models I built for simulation, and the exper-

iments I did. Chapter 4 presents the results and initial analyses them. Chapter

5 gives the conclusions of experiments, discusses the limitations of this work, and

suggests some future work.



Chapter 2
Background

In this chapter, I present the background and related work of this thesis. In Be-

havioral modeling and simulation: From individuals to societies, Zacharias et al.

[2008] listed several future directions in cognitive science and architecture devel-

opment, and two of their suggestions are highly related to this thesis: enhance

realism and models of groups and teams. From the aspect of enhancing realism, it

is important to introduce variabilities characteristic of human behavior; from the

aspect models of groups and teams, it means applying cognitive architectures to

model group and teams is important [Mannix and Neale, 2005; Ritter and Norling,

2006]. With these two directions combined, it points out that homogeneous-agent

simulations are not enough, and we need to consider simulations in a larger scale.

A simulation tool, VIPER (Virtual Implementation of Plural Environmental

Representations) is suitable to simulate multiple agents in a spatial environment,

and I want to use it to simulate network formations in a cognitive approach. The

background of VIPER is discussed in section 4 of this chapter. Also, the related

topics used in this thesis including (1) agent-based simulation, (2) cognitive archi-

tecture, and (3) network analysis, are reviewed in the following sections.

2.1 Agent-based Simulations

In Artificial Intelligence, the word “agent” is widely used, which can be defined

as a software or hardware system that has the following properties: autonomy,

social ability, reactivity, and pro-activeness [Wooldridge et al., 1995]. An agent
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can continuously and automatically behave based on the environment, which may

include other agents [Shoham, 1993]. Agent-based modeling can be applied to

study numerous fields, such as business and organization, economics, infrastruc-

ture, crowds, social and culture, terrorism, military, biology [Macal and North,

2005].

A lot of work has been done in agent-based simulation; below are a list of some.

The first related work is Schelling [1971] studied dynamic models of segregation.

Other work includes Carley and Gasser [1999], who modeled organization theory;

Carley and Newell [1994] discussed the Model Social Agent; Ritter et al. [2004]

studied models related to behavior moderators. However, these studies do not

have a large-scale simulation focused on networks.

We can group individual agents together to form a Multi-Agent System (MAS).

MAS’s form complex systems with independent agents interact with the environ-

ment and other agents. MAS’s are required in some domains because the interac-

tion between different subjects need to be handled [Stone and Veloso, 2000].

MAS’s can be used to solve complex and unpredictable problems [Sycara, 1998]

because they split the problem into subproblems and solve them in parallel. The

characteristics of MAS’s are (1) each agent has incomplete information for solving

the problem (2) there is no global system control (3) data are decentralized (4)

computation is asynchronous [Sycara, 1998]. The motivation to use MAS’s in-

cludes: (1) the problem domain is too large to solve by a single agent (2) the way

to solve the problem can be done by interactions between different components

of the system (3) data need to be or is better to be distributed (4) some system

performance can be improved, includes computational efficiency, reliability, exten-

sibility, robustness, maintainability, responsiveness, flexibility, and reuse [Sycara,

1998].

Moreover, Stone and Veloso [2000] separated MAS’s system into four categories

based on agent variance and communication between agents: (1) homogeneous

agents with no communication, (2) homogeneous agents with communication, (3)

heterogeneous agents with no communication, and (4) heterogeneous agents with

communication. In the second and fourth case, if agents can communicate seam-

lessly, we can regard the whole system as a single complex agent. In this thesis,

the first and the third kind of cases are conducted. In other words, the agents in
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this thesis have no communication with each other, and comparison between these

two categories of agents sets that do not communicate are studied.

The related work of MAS’s includes: Davidsson [2001] compared multi-agent-

based simulation (MABS) with parallel and distributed discrete event simulation,

object oriented simulation and dynamic micro simulation, and suggested some

advantages of MABS, such as MABS is easy to simulate persons with different

behavioral characteristics. Morgan et al. [2010] studied modeling of participation

for small groups. As previous mentioned, this research differs because it focuses

on a large-scale network formation simulation with heterogeneous agents.

2.2 Cognitive Architectures

A cognitive architecture comes from the concept of computer architecture, which

defines the product of a design. Or I can borrow from Anderson’s definition [An-

derson, 2007, p.7]: “A cognitive architecture is a specification of the structure of

the brain at a level of abstraction that explains how it achieves the function of the

mind.” In the following sections, I first gave an overview of cognitive architectures,

then my choice of the architecture used in this thesis, ACT-R.

2.2.1 Overview of Cognitive Architectures

Anderson’s definition points out the three parts of a cognitive architecture: brain

(structure), mind (functional cognition), and the architectural abstractions be-

tween them. Some research has been done by ignoring one of these parts. If we

ignore the brain, then it is classic information-processing psychology; If we ignore

the mind, then it is eliminative connectionism; If we ignore the architecture, then

it is rational analysis [Anderson, 2007]. Each area has its own progress and suc-

cessfulness, but, as Newell’s claim “you can’t play 20-questions with Nature and

win” [Newell, 1973], we definitely need a unified theory of cognition (UTC) because

by this approach, the knowledge can be cumulated.

The ultimate goal of cognitive architectures is to produce a system that can

generate human-level agents. We humans can have cognitive capacities on numer-

ous tasks and seem to pursue an infinite variety of tasks. Therefore, we want a
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human level agent that can do what a human mind does: interacting with a dy-

namic complex environment, planning, pursuing a variety of tasks, and learning.

Cognitive architectures are the fundamental of building cognitive agents be-

cause they provided basic cognition functions. Cognitive architectures are fixed

(or slowly changing) and task independent, where the knowledge of agents grows

by learning and is task focused. A cognitive architecture provides processes and

memories that acquire, represent, and process knowledge of environment and tasks

for reasoning, problem solving, and goal-oriented behavior [Laird, 2012].

Because of different long-term goals, we can separate research in cognitive ar-

chitectures into three categories: (1) cognitive modeling: the goal of which is to

provide models that match data from human behavior; (2) agent development: the

goal of which is to develop agents that can interact with dynamic environments;

(3) human-level agent development: the goal of which is to develop agents that

have human cognition capabilities [Laird, 2012]. This thesis is related to the first

and second categories.

2.2.2 ACT-R

ACT-R [Anderson et al., 2004] is a cognitive architecture that forms a specification

of the structure of the brain at a level of abstraction and explains how it achieves

the function of mind. It is built up by the data from psychological experiments

as well as general assumptions of human cognition. It provides a framework and

a DSL (Domain-Specific Language)1 to let researchers develop their own domain-

specific models which combined ACT-R assumptions with their own assumptions

to the specific task. These assumptions can be tested by comparing the result and

performance of a task between the model and humans. The model can thereafter

use to predict performance in other tasks.

ACT-R has several components to fulfill the work.

Modules. ACT-R has two types of modules: the perceptual-motor module and

the memory module. Perceptual-motor modules are interfaces to the real world,

such as the visual module reflects human vision. The memory module includes

two kinds of memory, one is declarative memory and the other is procedural mem-

1If we considered ACT-R is built in addition to Lisp as a library for modeling cognition.
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ory. Declarative memory contains chunks, which are knowledge related to reality,

such as the Pennsylvania State University is located in Pennsylvania. Procedural

memory contains productions, which are knowledge about how we do things, such

as how to hold a cup, and how to click a mouse.

Buffers. The model accesses modules through buffers. Buffers represent cur-

rent state. A buffer can only holds one chunk at a time.

Pattern Matcher. At a given time, the pattern matcher searches among

productions and finds one that matches the current state of the buffers. Only one

production is fired at a time. A production can modify the buffers and change the

state of the system.

Though it looks like a programming language, ACT-R is different from most

other programming languages. Most programming languages have high-level op-

erators executed on a low-level processor, and the commands are performed in a

specific order. On the other hand, ACT-R is a low-level language that runs on a

high-level cognition capacities processor. The actions depend on the production

that matches the current state of buffers and modules.

In ACT-R, a chunk has an associated numerical value called its activation that

indicates a chunk is useful in the current context. The chunk with the largest

activation will be put into the retrieval buffer when a retrieval request is made.

There is one constraint on the activation, called the retrieval threshold, which is

the minimum activation value that a chunk can still be retrieved. The activation

Ai can be computed by Equation 2.1:

Ai = Bi + ε (2.1)

Bi is the base-level activation that reflects the frequency and recency of retrieval

of a chunk. The equation of Bi is:

Bi = ln(
n�

j=1

t−d
j ) (2.2)

In Equation 2.2, n is the number of presentations for chunk i, tj is the time

since the jth presentation, and d is the decay parameter, usually set to 0.5. The

equation represents that every time an item is presented, there is an increase in

the base-level activation, but the effect of the increase decays as a power function
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of the time since the presentation.

ε is the noise that contains two sources. The first source is a permanent noise

associated with a chunk, and the second source is an instantaneous noise that will

be recomputed while retrieving. The noise value is generated according to

a logistic distribution.

The memory of cognitive models has the above properties, so when an agent

does not meet its friend for a long time and the length of time is enough to lower

the activation value of the chunk, it will forget the memory of that friend.

The models used in the experiments are discussed in the second section of

Chapter 3, and some integration for connecting ACT-R models with the experiment

environment is explained.

2.3 Network Analysis

Network analysis is a general topic related to numerous areas. The basic concept

of network analysis is that nodes (or vertices) represent components of a network,

and edges between nodes represent the connections between components. This can

be applied to fields like biology, physics, economics, social studies, etc.

There are lots of work that has been done in this area, to name a few: as

early as the 1970s, Zachary [1977] studied the opinion and information flow in

small groups; Albert and Barabási [2002] studied statistical mechanics of complex

networks; Kossinets and Watts [2006] studied social network in a large university

by merging email interactions, personal attributes, and class information; Watts

[1999] has a book about the small-world phenomenon. Newman [2003] has a great

review on network analysis and structure.

Simulations are used to study network formation for this thesis. Through graph

theory, the structure of network formation results is examined and compared.

There are several network attributes based on graph theory in the network I want

to examine and use them to compare between the experiment results:

• Edges: The edges in a graph formed from simulation is the first thing I want

to examine because they represent the relationships between agents. I have

a fixed number of agents run in the experiments, that make connections with
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each other. Because of the memory assumption mentioned in the previous

section, each agent may remember different numbers of friends, which means

that nodes have different number of edges connected to them. Also, the edges

are directed because an agent may remember another while the other does

not.

• Assortativity (coefficient): Assortativity is a measure of homophily between

nodes in a network based on some label or value assigned to a node, usu-

ally a node’s degree. Homophily implies that we tend to be similar to our

friends [Easley and Kleinberg, 2010]. The reason to use a node’s degree to

determine assortativity is because the connections between nodes of similar

degrees are often found in networks. For example, in a social network, nodes

with high degrees tend to connect with other high-degree nodes.

Equation 2.3 is used to calculate assortativity [Newman, 2002]:

r =
1

σ2
q

�

jk

jk(ejk − qjqk) (2.3)

σ2
q =

�
k k

2qk − [
�

k kqk]
2 is the variance of the distribution qk. qk, the

normalized distribution of the remaining degree, is qk =
(k+1)pk+1�

j jpj
. Here pk is

the probability of a randomly chose vertex with degree k. In such networks,

the remaining degree, the number of edges leaving the vertex other than the

one arrived, is considered. And ejk is the joint probability distribution of the

remaining degrees of the two end vertices of a randomly chosen edge. The

properties of ejk is
�

jk ejk = 1 and
�

j ejk = qk.

Assortativity is a value between 1 and –1. If the value equals 1, then it

means the label between nodes have great assortative patterns; if the value

equals 0, then the network is not assortative; if the value equals –1, then the

network is disassortative. In analysis, I use degree of vertices to compute

associativity.

• Global Cluster Coefficient: The cluster coefficient, or transitivity [Wasserman

and Faust, 1994, p.243], is a measure that shows the nodes in a graph tend to

cluster together. If the value is higher, then it means the nodes are grouped
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with higher density. Global Cluster Coefficient is represented by the number

of triplets between nodes divided by the maximum number of edges in the

graph. A triplet means three nodes are connected to each other.

• Diameter: In a graph the distance between two vertices is the number of

edges that connected them together in the shortest path. It is also known

as geodesic distance. The diameter of a graph is the maximum geodesic

distance in a graph.

• Reciprocity: Reciprocity measures the mutual connections between nodes in

a directed network. Garlaschelli and Loffredo [2004] defined reciprocity as

the correlation coefficient between the entries of the adjacency matrix of a

directed graph, represented as Equation 2.4:

ρ ≡
�

i �=j(aij − ā)(aji − ā)
�

i �=j(aij − ā)2
(2.4)

Where aij = 1 if there is a link from i to j, and aij = 0 if not. ā ≡
�

i �=j aij
N(N−1) , N

is the total number of edges in the graph. If it equals 1, then the network is

a pure bidirectional one. If it equals 0, then it is a unidirectional one. With

reciprocity, we can understand the probability of mutual direction links in a

network.

These attributes are used to analyze the network formation results of the ex-

periments in Chapter 4.

2.4 VIPER

To conduct the simulation, a simulation environment is required. The choice for

this thesis is VIPER [Hiam et al., 2011; Zhao et al., 2012a], a text-based, multi-

agent simulation environment that is built on top of NakedMud [Hollis, 2009], a

content-less MUD engine. A MUD (Multi-User Domain) is a text-based multi-

player real-time virtual world with role-playing games as the main content. Typ-

ically, players connect to the server and send commands to interact with other
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objects in the virtual world. A player can read a description of rooms, objects,

players, and non-player characters and perform actions.

VIPER takes advantages of this server-client architecture to run experiments.

The architecture ensures that each client runs independently without interference

and the server can handle the overall conditions and ensure clients start to run at

the same time. The server and clients communicate through the Telnet protocol

with text messages, which is a common protocol of MUDs.

As a usual MUD system, my cognitive agents act as a player, read messages,

and behave based on the cognitive model inside a 2-D room-based map. The map

used by VIPER is configurable with different spatial settings and can be chosen

during the preparation stage of experiments. Basically, each room has doors in

four directions: north, south, east, west. If a room is at the edge of the map, then

the side is a wall. An agent is placed into a particular room after being logged

into the server. It can then take actions with other objects inside the same room

or decide to move to other adjacent rooms.

The basic actions that an agent can do inside VIPER includes: (1) look: look

means look around the room it stays in, which means VIPER will give the agent

information about this room, includes who else are also in this room and the

information of other objects. (2) say: an agent can say some words and they will

be heard by other agents in the same room. (3) north: go to the room that located

in the north side of this room. (4) south: go to the room that located in the south

side of this room. (5) east: go to the room that located in the east side of this

room. (6) west: go to the room that located in the north side of this room.

The reasons VIPER is used as the experiment environment is because:

(1) we can have essentially unlimited agents if we have enough powerful hardware.

Due to the server-client architecture, we can run them on different machines to

help performance. (2) VIPER provides a great logging system to log the behavior

of agents both from the view of agent itself or from a system-wide perspective.

With both logging results, it is easy to examine the details of network formation.

Zhao et al. [2011, 2012a,b], and Kaulakis et al. [2012] have done different exper-

iments based on VIPER with different factors, such as environment configuration,

agent size, or cognitive models. But none of them has run experiments with het-

erogeneous agents, which is what this study is concerned with.
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2.5 Summary

This chapter reviewed (1) agent-based simulations, includes MASs and hetero-

geneous agents in MASs. (2) cognitive architectures and my choice of cognitive

architecture: ACT-R. (3) Network analysis for the results of network formations.

(4) VIPER, the simulation environment for the experiments.

A more specific experiment environment is explained in the first section of

Chapter 3 on the experiment method, which gives the server specification and

software versions that is used in the experiments.



Chapter 3
Experiments

To test the assumption that the starting location of an agent and heterogeneous

agents influence network formation, VIPER is used with the cognitive agents to run

two experiments of network formation simulation and take measurements. This

chapter describes about the setup of the experiment environment. The results and

analysis are presented in the next chapter.

3.1 Computing Environment of the Experiments

The experiments have the following setup: the VIPER server is installed on a

machine with the specification shown in Table 3.1, running Mac OS X 10.5.8 with

Python 2.5.1. VIPER itself is built up with NakedMud version 3.8.1. The agents

ran on a machine with the specification shown in Table 3.2, running RedHat Linux

with Python 2.6.6, SBCL 1.0.58, and ACT-R 6.0.

Though the specification of the machines is listed here, it does not mean the

experiments need to be run on the same specification, but the software version

may need to be verified or modified.

A Python script was written for reusing and convenience. It follows the follow-

ing procedures to conduct an experiment.

Administrator connection. The script starts another Python script that

connected to the VIPER server as an administrator. After being connected, the

administrator user waits for all agents to connect to the server. The administrator

then moves the agents to the starting locations specified by the command line
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Table 3.1. The hardware specification of the VIPER server.

Attribute name Value

Model Name Power Mac G5
Model Identifier PowerMac7,2
Processor Name PowerPC 970 (2.2)
Processor Speed 2 GHz
Number Of CPUs 2
L2 Cache (per CPU) 512 KB
Memory 1 GB
Bus Speed 1 GHz

Table 3.2. The hardware specification of the server running clients.

Attribute name Value

CPU Intel Dual Core i5 2400 Processor
(3.1GHz, 6M)

RAM 8GB DDR3 Non-ECC SDRAM, 1333MHz
Hard disk 250GB 7,200 RPM 3.5” SATA, 6.0Gb/s

Hard Drive with 8MB Cache

argument. It also moves other characters that are not connected during this ex-

periment to a different map so they will not influence the current experiment. It

then sends out the logging command to start a new log, and sends out the “start

simulation” broadcast messages to notify all the agents to start their actions, which

also means the initiation of an experiment.

Agents connection. The agents connect to the server one-by-one to avoid

the maximum simultaneous connection limit on the server. After connected to the

server, the agents wait for the administrator to send out the “start simulation”

broadcast messages as a notification to start actions based on their model. They

will continue to take actions until reaching the running time limit. They will then

record their memory status in a local CSV file and disconnect from the server.

Logging and clean up. After the set length of time, the script waits for the

agents processes to stop. If all the agents stop properly, then it is a successful

experiment and the script will copy the system-wide log file from the server and

collect the memory result of agents into a combined file for analysis. If some agent

exits exceptionally, the Python script will terminate other processes, make error

logs, and restart a new experiment run.
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The map configuration I used on the VIPER is all the same in each run, which

is a full 5 x 5 grid with grid ratio 1.0, also know as well connected grid in previous

work [Zhao et al., 2012a], as shown in Figure 3.1.

Figure 3.1. The 5 x 5 grid that is used in the experiments.

3.2 Agent Models in the Experiments

The client side of the experiment is cognitive agents based on ACT-R, a unified

theory of cognition and a cognitive architecture [Anderson et al., 2004]. As a

cognitive architecture, it reflects assumption of human cognition and provides the

memory module of humans that I want to examine.

A library—TAWA (Telnet Agent Wrapper for ACT-R)—is used to connect

ACT-R agents to VIPER, which is a Telnet-based service. It adds features like

synchronization, logging, halting, and writing results to CSV files. The synchro-

nization function is especially important because it ensures that all the agents

start their actions at the same time, which is required for the experiments. With

TAWA, an agent can perform the following actions: (1) send: send a message to

VIPER. This is the way that agents send commands and take actions in the MUD

system. (2) say: An agent says a given string. (3) list-exits: the system will give a

list of strings contains the names of exits of a room. (4) list-peers: the system will

give a list of strings with the names of other characters in the room. (5) list-front:

the system will give a list of strings with the front-matter that describe the room

itself. (6) look: the system give the description of current room.

The following chunk types are designed in the ACT-R models: (1) friend-list: a

list of friends the model remembers. (2) friend: the chunk type memorized in each
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agent’s friend-list, including the name and the id of a friend. (3) event: includes

information about the event that met a person in a particular location as well as

the action. (4) walk-info: the current state. (5) task: contains information of

current subgoal that agents going to do during the simulation. (6) route: contains

the information of a route when the agent is in a particular room. (7) counter:

the agent walks based on the information of this counter. On the other hand, the

model has the following production rules sets: (1) moving strategy, and (2) rules

when meet other agents.

I have two models that have different moving strategies. The first model moves

randomly around rooms, so I named it “random-walk” model. When it goes into

a room, it reads the information from the server, knows what are the exits of this

room, randomly chooses one direction, and goes to the next room.

When an agent is in a room, it will look around and see if there is any other

agent in the room. If there is any other agent, it will first search its memory to see

if it has the memory of this agent, and retrieve the information from memory and

strengthen it. If the other agent is new, it will create a new memory chunk related

to this agent, and remember this agent as its friend. It will continue to memorize

all the agents in the same room.

The other model shared the same behavior of memorizing friends, but has a

different moving strategy. When it starts to move during the experiment, it will

randomly choose one possible exit of the starting location, but later it will walk in

the same direction across the next room, turn left, and walk in the same direction

across a room, and repeat this behavior through the grid. In other words, it

tries to walk surrounding the walls of a room in a counter-clockwise

movement. This means it tends to stick to a place and does not go too far away

from the starting location. Also, because all the agents move with a fixed speed,

the overlap between agents is limited if they follow the same path. This model is

named “round-walk” model. Figure 3.2 shows an example of the path.

In the simulation, when two agents meet each other, they memorize the other

agent as their friend. This is implemented by the ACT-R memory chunks men-

tioned previously. Every memory chunk in ACT-R has its activation value and

threshold. The memory need to keep activate or the activation value will decay

over time. So if two agents do not meet each other again before the memory decays
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Figure 3.2. An example of round-walk agent’s movement strategy.

down to the threshold, they will forget the other agent as their friend. If there are

multiple agents in the room, the agent will remember them all as friends.

3.3 Explanation of Experiment 1

In the first experiment, I examine the effect of different starting locations in net-

work formation. VIPER is used as the experiment environment and the map is

the well-connected grid explained in Section 3.1. Following the common setting of

experiments, this type of experiment uses the attributes shown in Table 3.3.

Table 3.3. The attributes of experiment 1.

Attribute Value

Running time 300 seconds
Number of agents 30

Map 5 by 5 grid
Agent type random-walk agent

The running time is chosen based on previous work [Zhao et al.,

2012a], where after 300 seconds, the number of links formed is relatively

stable. There is a delay of 16 seconds that after every movement, and

also a 4 seconds delay after other actions.

There are four types of starting locations: (1) center: all the agents start

in the center of the map. (2) corner: all the agents start from a corner of the

map. (3) random: the agents are assigned their starting location randomly with

replacement. (4) equally distributed: the agents are assigned their starting location

equally distributed across all the rooms.
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All four settings were run 10 times. The number of runs is chosen based

on previous work [Kaulakis et al., 2012]. I recorded the memory and the

behaviors of the agents.

3.4 Explanation of Experiment 2

In the second experiment, I wanted to examine the effect of heterogeneous agents

in the network formation simulation in addition to the first experiment. The same

as Experiment 1, VIPER is used as the experiment environment and the map is

the well-connected grid explained in section 3.1. Following the common setting of

experiments, this experiment uses the attributes shown in Table 3.4.

Table 3.4. The attributes of experiment 2.

Attribute Value

Running time 300 seconds
Number of agents 30

Map 5 by 5 grid

There are three different sets of agents: (1) All agents are random-walk agents.

(2) All agents are round-walk agents. (3) Half of the agents are random-walk

agents, and half of the agents are round-walk agents. There are also four types of

starting locations as Experiment 1: (1) center: all the agents start from the center

of the map. (2) corner: all the agents start from a corner of the map. (3) random:

the agents are assigned their starting location randomly. (4) equally distributed:

the agents are assigned their starting location equally distributed across all the

rooms.

Based on these factors, I have 12 conditions, and I ran each one 10 times. I

recorded the memory and the behaviors of the agents and the result is explained

in section 4.2.

3.5 Summary

This chapter described the details of the experiment environment, agent models

used in the experiments, and the factors in the experiments that were run. The
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next chapter describes the results of experiments and provides a summary of the

results.



Chapter 4
Results and Analyses

This chapter presents the results and analysis of experiments. It is presented as

two sections: the results of Experiment 1 and the results of Experiment 2.

There are two types of data generated by the simulation. One is log data

extracted from VIPER, which recorded the actions that every agent took during

the simulation as well as the real time of events. The other is egocentric data that

represents an agent’s declarative memory, which records the friends that an agent

remembers at the end of the simulation. This gives me details about the memory

results of the cognitive model.

In the following sections, egocentric data is used to form the network

for analysis. From the data, an agent move on the map approximate

7 times. In such data, every agent is represented as a node. If an agent A

has a memory record of another agent B, there is a directed link from A to B.

In this research, the activation values of memory are considered. Zhao

et al. [2013] found that having threshold of the activation values changes

the total number of links in a network. With perfect memory, the

total number of edges formed in a network is larger the condition with

memory activation threshold.

For this research, the threshold of activation values of the memory

is set to –3.5, which means that an agent forgets the relationship if the

activation value is lower than –3.5. The edges are formed only when

the activation value related to an edge is greater than the threshold.

So in the analysis, 3.5 is added to the original activation value and the link is
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weighted with the modified value. Therefore, a directed weighted graph is formed

with nodes represent agents and the weighted links between nodes represent their

friendships. Figure 4.1 is an example of a direct weighted graph.

Box plots are used to represent the results. The thick line inside the box is the

median, and the bottom and the top of the box are the first and third quartiles.

The top line and the bottom line are the maximum and minimum of the data, and

outliers are represented as small circles.

To indicate the significance between each data set, I made two-sample t-tests

to compute the significance of the differences between the two data sets. Equation

4.1 is used to calculate the t value.

t =
x̄1 − x̄2�
SD2

1
n1

+ SD2
2

n2

(4.1)

x̄1 and x̄2 are the average of both samples, SD1 and SD2 are standard devia-

tions of both averages, and n1 and n2 are the number of samples. Based on t-table

with N = 10, α = 0.05, and 2-tailed, I emphasized values greater than 2.262 with

a bolded font because the two data sets have data difference.

4.1 Results of Experiment 1

In Experiment 1, the random-walk agent model is used with different starting lo-

cations. As previous chapter mentioned, there are four possible starting locations:

center, corner, randomly distributed, and equally distributed. After the graph for-

mation, I compare the properties of the graph. I give descriptive statistics first,

and at the end give the inferential statistics as a summary.
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Figure 4.1. An example of the network formation result.

Edges. As mentioned in Chapter 2, edges between nodes means the relation-

ships between agents, and they are the first thing to examine. From the cumulative

data, it shows an overview of the network formation. The maximum count of

edges is 30× 29 = 870 (bi-directional links).

Figure 4.1 shows that the starting locations influenced the number of edges

formed during simulation. The center starting location and the corner starting

location are two starting locations where agents all started in the same room. As

a result, these two types of starting locations encouraged agents to form more

relationships. On the other hand, randomly and equally distributed locations

means agents were put all around the grid, so it is harder for them to meet other

agents.
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Figure 4.2. The box plot of total edge count with four different starting locations (N
= 10 runs per box). Maximum is 870.

Table 4.1. t values of the edges between starting location pairs with N = 10. It is a
two-tailed test with degree of freedom = 19. The bold values are t value >2.26 or p<.05.

Starting location pair t value

Center/Corner 7.15
Center/Random 34.99
Center/Distributed 47.32
Corner/Random 39.01
Corner/Distributed 49.57
Random/Distributed 1.30

Assortativity. Associativity of nodes is used to see the homophily between

agents, where homophily implies that nodes tend to be similar to their connected

nodes. As mentioned in Chapter 2, the degree of nodes is used to compute as-

sortativity. From Figure 4.3, the box plot of the results, the data sets with the

center starting location and the corner starting location have disassortativity. On

the other hand, the data sets with randomly distributed starting locations and

equally distributed starting locations have assortativity and there is no significant

difference between these two data sets (with t value = 1.255). This again explained
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that the starting location is a factor that influenced network formation, and ran-

domly distributed starting locations and equally distributed starting locations are

similar.

Figure 4.3. The box plot of associativity with four different starting locations (N = 10
runs per box).

Table 4.2. t values of the assortativity between starting location pairs with N = 10. It
is a two-tailed test with degree of freedom = 19. The bold values are t value >2.26 or
p<.05.

Starting location pair t value

Center/Corner 6.05
Center/Random 13.51
Center/Distributed 19.84
Corner/Random 10.86
Corner/Distributed 17.15
Random/Distributed 1.26
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Global cluster coefficient. In graph theory, a clustering coefficient indicates

how much the nodes in a graph cluster together. The global cluster coefficient

gives the global indication of such properties. Figure 4.4 shows that when the

data sets are with the center starting location or the corner starting location, the

network is highly clustered together because the global cluster coefficient is around

1.0. On the other hand, the global cluster coefficient with the random distributed

starting location and equally distributed starting location are around 0.7, which

is less clustered than the center starting location and the corner starting location.

The t value between the center and corner starting location is 2.498, and the t

value between randomly distributed and equally distributed starting locations is

0.786. Both t values show strong relation between two data sets.

Figure 4.4. The box plot of global cluster coefficient with four different starting loca-
tions (N = 10 runs per box).
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Table 4.3. t values of the global cluster coefficient between starting location pairs with
N = 10. It is a two-tailed test with degree of freedom = 19. The bold values are t value
>2.26 or p<.05.

Starting location pair t value

Center/Corner 2.50
Center/Random 20.59
Center/Distributed 49.84
Corner/Random 21.21
Corner/Distributed 53.99
Random/Distributed 0.79

Diameter. The diameter of a graph is the longest path length of the graph.

Figure 4.5 shows that the diameter with the center and the corner starting location

share similar numbers, which are around 5, and the t value of this pair is 0.526.

On the other hand, the random and the equally distributed starting location have

similar diameter numbers, which are about 12, and the t value of this pair is 0.058.

This measurement also fit my other measurements that the agents tend to cluster

together when the starting location is the center or the corner.

Figure 4.5. The box plot of diameter with four different starting locations (N = 10
runs per box).
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Table 4.4. t values of the diameter between starting location pairs with N = 10. It is a
two-tailed test with degree of freedom = 19. The bold values are t value >2.26 or p<.05.

Starting location pair t value

Center/Corner 0.53
Center/Random 5.61
Center/Distributed 15.24
Corner/Random 5.68
Corner/Distributed 15.05
Random/Distributed 0.06

Reciprocity. Recall that reciprocity is the probability of the mutual connec-

tions between nodes in a directed network. Figure 4.6 shows that this attribute

is different from other attributes with only the corner starting location has differ-

ence than other starting locations, and other starting locations do not significant

difference.

Figure 4.6. The box plot of reciprocity with four different starting locations (N = 10
runs per box).
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Table 4.5. t values of the reciprocity between starting location pairs with N = 10. It
is a two-tailed test with degree of freedom = 19. The bold values are t value >2.26 or
p<.05.

Starting location pair t value

Center/Corner 12.33
Center/Random 0.15
Center/Distributed 0.50
Corner/Random 8.17
Corner/Distributed 13.94
Random/Distributed 0.48

Significant difference between different factors. Table 4.1 is the t-test

values between starting location pairs.

It presents that the center and corner starting location do not have a significant

difference when considering global cluster coefficient and diameter. Also, randomly

distributed starting locations and equally distributed starting locations do not have

a significant difference for all the properties I examined. However, reciprocity is

not a property that can separate between data sets well, because half of the data

pairs do not have a significant difference.
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4.2 Results of Experiment 2

Experiment 2 extended the setting of Experiment 1 with heterogeneous agents.

As previously noted, I have two types of agent models, so I have three different

types of agent sets: (1) all the agents are random-walk agents. (2) all the agents

are round-walk agents. (3) Half of the agents are random-walk agents and half

of the agents are round-walk agents. After the graph formation, I compared the

properties of the measures.

The abbreviations I used in the graphs in this section have the meanings as in

Table 4.2 and 4.3. Again, I give descriptive statistics first, and at the end give the

inferential statistics as a summary.

Table 4.6. Abbreviations used in graphs.

Abbreviation Meaning

C starting location: Center
E starting location: corner (Edge)
R starting location: Randomly distributed
D starting location: equally Distributed

(Ran) agent model: Random-walk agent
(Rd) agent model: Round-walk agent
(HH) Half are random-walk agents and Half are

round-walk agents
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Edges. Figure 4.7 shows that starting locations had a greater influence than

the types of agents. When the starting location is randomly distributed or equally

distributed, even the difference between random-walk agents and round-walk agents

is not significant, so heterogeneity does not affect much. But when the starting

location is center or corner, there is the difference between random-walk agents

and round-walk agents, and heterogeneity agents also have formed different num-

ber of edges. There is only no significant difference between round-walk agents

and heterogeneous agents with the center starting locations.

Figure 4.7. The box plot of total edge count for Experiment 2. N = 10 runs per box.
Maximum is 870. (Labels from Table 4.2)

Table 4.3 is the t values of the edges between agent set pairs. It shows that

when the starting locations are randomly or equally distributed, the difference

between agent models or heterogeneity does not influence the edges of a network.
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Table 4.7. t values of the edges between agent set pairs of all starting location settings.
N = 10. It is a two-tailed test with degree of freedom = 19. The bold values are t value
>2.26 or p<.05.

Starting location Agent set pairs t values

Center Random/Round 9.66
Center Random/Hetero 10.31
Center Round/Hetero 0.99

Corner Random/Round 14.18
Corner Random/Hetero 7.21
Corner Round/Hetero 19.57

Randomly distributed Random/Round 0.69
Randomly distributed Random/Hetero 0.23
Randomly distributed Round/Hetero 0.51

Equally distributed Random/Round 1.04
Equally distributed Random/Hetero 1.78
Equally distributed Round/Hetero 0.72

Assortativity. Figure 4.8 is the box plot of the results. The the center

starting location and the corner starting location conditions have disassortativity

and the data sets with random starting locations and equally distributed starting

locations have assortativity. There is an exception, when running round-walk

agents with the corner starting location, the data have variance that is possible to

form assortativity. The reason is because the moving strategy of round-walk agents,

they sometimes stuck around the edges of the grids. But considered heterogeneity,

I found that with the center starting location, the corner starting location, and

randomly distributed location, heterogenous agent set has the mean value between

two homogeneous sets. But when the starting location is randomly distributed,

heterogeneous agents has less associativity than other two types of homogeneous

agent sets and the value of associativity is near 0.

Table 4.4 is t values of the assortativity between agent set pairs. It shows that

heterogeneity influences assortativity in most of the cases.
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Figure 4.8. The box plot of associativity for Experiment 2. N = 10 runs per box.
(Labels from Table 4.2)

Table 4.8. t values of the assortativity between agent set pairs of all starting location
settings. N = 10. It is a two-tailed test with degree of freedom = 19. The bold values
are t value >2.26 or p<.05.

Starting location Agent set pairs t values

Center Random/Round 10.69
Center Random/Hetero 3.46
Center Round/Hetero 6.33

Corner Random/Round 2.69
Corner Random/Hetero 3.35
Corner Round/Hetero 1.99

Randomly distributed Random/Round 4.15
Randomly distributed Random/Hetero 5.01
Randomly distributed Round/Hetero 0.85

Equally distributed Random/Round 6.38
Equally distributed Random/Hetero 2.42
Equally distributed Round/Hetero 2.95
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Global cluster coefficient. Experiment 1 shows that when the starting loca-

tion is at the center or corner, the agents are highly clustered together because the

global cluster coefficient is around 1.0. In Figure 4.9, it also reproduce the result

and the difference between homogeneous agents and heterogeneous agents is less

than 0.25. Also, though the values of global cluster coefficient with random-walk

agents and round-walk agents are both around 1, heterogeneous agents has lower

values. This shows heterogeneous agents changes the network formation on this

property.

On the other hand, when the starting location is randomly distributed, hetero-

geneous agents has lower values; when the starting location is equally distributed:

heterogeneous agents have the value between two homogeneous agents. The values

shows that heterogeneous agents have different network formation based on global

cluster coefficient. Table 4.5 presents the t values of the global cluster coefficient

between agent set pairs.

Table 4.9. t values of the global cluster coefficient between agent set pairs of all starting
location settings. N = 10. It is a two-tailed test with degree of freedom = 19. The bold
values are t value >2.26 or p<.05.

Starting location Agent set pairs t values

Center Random/Round 2.70
Center Random/Hetero 6.87
Center Round/Hetero 2.55

Corner Random/Round 1
Corner Random/Hetero 3.87
Corner Round/Hetero 3.87

Randomly distributed Random/Round 6.48
Randomly distributed Random/Hetero 8.14
Randomly distributed Round/Hetero 0.08

Equally distributed Random/Round 16.15
Equally distributed Random/Hetero 3.37
Equally distributed Round/Hetero 9.77
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Figure 4.9. The box plot of global cluster coefficient for Experiment 2. N = 10 runs
per box. (Labels from Table 4.2)

Diameter. Experiment 1 shows that with the center or the corner starting

location, the diameter of the network formation graphs is smaller. The result

in Figure 4.10 follows this analysis, and the heterogeneous agents also moder-

ate the network formation. With the center starting location and the equally

distributed starting locations, heterogeneous agents have the value between homo-

geneous agents. But with the corner starting location, heterogeneous agents have

higher diameter; with the randomly distributed starting location, heterogeneous

agents have lower diameter. Table 4.6 is t values of the diameter between agent

set pairs.
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Figure 4.10. The box plot of diameter for Experiment 2. N = 10 runs per box. (Labels
from Table 4.2)

Table 4.10. t values of the diameter between agent set pairs of all starting location
settings. N = 10. It is a two-tailed test with degree of freedom = 19. The bold values
are t value >2.26 or p<.05.

Starting location Agent set pairs t values

Center Random/Round 3.70
Center Random/Hetero 4.11
Center Round/Hetero 1.52

Corner Random/Round 3.43
Corner Random/Hetero 2.09
Corner Round/Hetero 4.45

Randomly distributed Random/Round 1.73
Randomly distributed Random/Hetero 2.45
Randomly distributed Round/Hetero 1.26

Equally distributed Random/Round 6.22
Equally distributed Random/Hetero 2.67
Equally distributed Round/Hetero 3.75
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Reciprocity. Recalled that reciprocity is the probability of the mutual connec-

tions between nodes in a directed network. Figure 4.11 shows that this attribute

is different from other attributes, where only the corner starting location has dif-

ference than other starting locations. The reciprocity with round-walk agents and

the corner starting location is near 1.0, but when using heterogeneous agents, the

value is more near to the results with only random-walk agents. Table 4.7 is t

values of the reciprocity between agent set pairs.

Figure 4.11. The box plot of reciprocity for Experiment 2. N = 10 runs per box.
(Labels from Table 4.2)
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Table 4.11. t values of the reciprocity between agent set pairs of all starting location
settings. N = 10. It is a two-tailed test with degree of freedom = 19. The bold values
are t value >2.26 or p<.05.

Starting location Agent set pairs t values

Center Random/Round 18.37
Center Random/Hetero 16.10
Center Round/Hetero 1.08

Corner Random/Round 22.64
Corner Random/Hetero 4.96
Corner Round/Hetero 52.04

Randomly distributed Random/Round 2.93
Randomly distributed Random/Hetero 2.72
Randomly distributed Round/Hetero 0.95

Equally distributed Random/Round 10.11
Equally distributed Random/Hetero 3.15
Equally distributed Round/Hetero 6.35

4.3 Summary of Results

To sum up the results, there are several points that can be noted:

1. The starting locations of agents in a network formation simulation is a strong

factor. I chose four types of starting location options and found the center

and the corner starting locations are alike and the randomly distributed and

equally distributed starting locations are alike. But these two sets of starting

locations also have significant differences on some network measures. This

suggested that the choice of starting locations of agents is important and

needs to be considered and reported when designing experiments.

2. Different types of agent models form different networks, and heterogeneous

agents with each agents at 50% do not give an average value of network prop-

erties. This shows that heterogenous agents change the network formation

fundamentally compared to sets of homogeneous agents, and are not simply

averages of the homogeneous network values.

The next chapter is the summary of this thesis, and it explains the limitations

of the current work, and provides some possible future work.



Chapter 5
Conclusion and Discussion

In this chapter, I give a summary of the experiments, and explain the limitation

of the experiments and the future work that I look forward to be done.

5.1 Summary

In this thesis, I set up an environment to run cognitive-agent-based network for-

mation simulation, made two different models, ran experiments with both homo-

geneous agent sets and heterogeneous agent sets in different starting locations, and

analyzed the results.

Experiment 1. Experiment 1 shows that the starting locations of agents influ-

ence the network formation strongly. Four kinds of starting locations were tested.

I found the data sets with the center starting location and the corner starting

location have similar results and the randomly distributed starting locations and

the equally distributed starting locations have similar results.

For the edge count, the mean value of the randomly distributed starting loca-

tions and the equally distributed starting locations are around 200 edges, where

the mean value of the center starting location and the corner starting location are

around 600 edges.

For assortativity, the results of the randomly distributed starting locations and

the equally distributed starting locations have assortativity, but the results of the

center starting location and the corner starting location have disassortativity.

For global cluster coefficient, the mean value of the randomly distributed start-
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ing locations and the equally distributed starting locations are around 0.7, where

the mean value of the center starting location and the corner starting location are

around 1.

For diameter, the mean value of the randomly distributed starting locations

and the equally distributed starting locations are around 5, where the mean value

of the center starting location and the corner starting location are around 12.

Reciprocity is the only value that the results of the corner starting location is

different from other three, where the mean value is 0.65, and the other three are

between 0.45 and 0.5.

With the results, it shows that when doing a network formation simulation

with spatial settings, it is required to consider and report the starting locations of

agents and how they are distributed.

Dunbar [1998] claims that on average we have 150 friends memorized. If we

take the number into consideration and want a normalized simulation, then the

results of putting agents distributed on a map is closer to it. On the other hand,

putting agents together simulates another scenario.

Experiment 2. Experiment 2 shows that heterogeneous agents in comparison

with homogeneous agents change the network formation, though the effect on edges

count, assortativity, global cluster coefficient, diameter, and reciprocity is not as

strong as changing starting locations.

If I compare the property values between agent model sets, I found that putting

two types of agents together with half and half percentage, the properties of the

network graph are not simply the average of networks with two types of homoge-

neous agents. Moreover, the values from heterogeneous agents do not always fell

between two sets of homogeneous agents.

For the edge count, the mean value of the randomly distributed starting lo-

cations and the equally distributed starting locations are around 200. With the

center starting location and the corner starting location, the values have variances

between different agent sets. Heterogeneous agents formed fewer edges than the

other two types of agents alone.

For assortativity, most of the results of the randomly distributed starting lo-

cations and the equally distributed starting locations have assortativity, but the

results of the center starting location and the corner starting location have disas-
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sortativity. Round-walk agents with the corner starting location is an exception,

where the value possible to be associative and dissociative. But homogeneous

agents make networks less associative for both associativity and disassociativity.

For global cluster coefficient, the mean value of the randomly distributed start-

ing locations and the equally distributed starting locations are between 0.5 and

0.7, where the mean value of the center starting location and the corner starting

location are around 1. The heterogeneous agents lower the value of global cluster

coefficient except when with the equally distributed starting locations.

For diameter, with the center starting location, heterogeneous agents have value

between homogeneous agents; With the corner starting location, heterogeneous

agents have value bigger than homogeneous agents; With randomly distributed

starting locations, heterogeneous agents have value smaller than homogeneous

agents; With equally distributed starting location, heterogeneous agents have val-

ues between homogeneous agents but closer to the random-walk agents.

For reciprocity, with the center starting location, heterogeneous agents have

value between homogeneous agents but closer to the round-walk agents; With the

corner starting location, heterogeneous agents have a smaller value than homoge-

neous agents; With randomly distributed starting locations, heterogeneous agents

have a smaller value than homogeneous agents; With equally distributed start-

ing location, heterogeneous agents have a value between homogeneous agents but

closer to the random-walk agents.

This suggests heterogeneous agents not only change the result of network for-

mation, and the introduction of heterogeneous agents gave me a different network

formation. Using homogeneous agents appears to not represent diversity in agents

when doing simulation and variances of agents needs to be considered. This also

suggests that if we run the simulation with the agent model set that do not reflect

the real condition, the simulation may fail to represent the real cases, and the

realism of modeling is always a target to pursue.

So, this work shows that heterogeneity of agents is important, it influences

edges, assortativity, global cluster coefficient, diameter, and reciprocity of a net-

work. Heterogeneous agents should be used to model humans if they are diverse.
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5.2 Limitations and Future Work

Below are some limitations of this work and some future improvements.

Modularization. The current models of ACT-R have duplicate code if I

made a new model, especially the productions and the chunk types setting related

to ACT-R. This is because ACT-R is a low-level language compared to other

programming languages [ACT-R Research Group, 2012]. According to software

development principles, it is a good practice to avoid duplicate code. To make the

code reusable, finding a way to put productions in the models into modules is a

future direction. Cohen et al. [2005] introduced a high-level language, Herbal, that

can also compile into Jess [Friedman-Hill, 2002] or Soar [Lehman et al., 2007]. It

let developers focus onknowledge representation rather than details of cognition

modeling. If Herbal can support ACT-R and TAWA better, it is a good direction

to remodel the current models.

Scaling. In this research, the experiments are running with two servers: one

for the VIPER server and one for agents. If the environment is moved to a cloud or

HPC (High-Performance Computing), it is possible to scale up experiments with

more agents at the same time. Right now, there is a hard boundary of memory

that an affordable server can provided. With HPC, I can simulate a larger scale

of agents and examine larger network formations.

But in such case, I may have to solve some new problems introduce with the new

infrastructure, such as the network latency between servers and the synchronization

problem in a distributed system. However, having different numbers of agents is

expected to form a different network, and with the increased amount of agents, I

can expect more realistic results.

VIPER. VIPER is a flexible system that is possible to adopt different scenarios

and form different kind of experiments. There are still many possible social network

formation simulations that can be done with VIPER, such as:

1. Use more realistic maps that reflect the real world and make the agents per-

form more realistic behaviors with better timing assumptions. The current

setting of the map is a well connected 5 x 5 grid that can be regarded as a

perfect environment with boundaries. For a real world case, we have routes

connect between places and people tend to stick around some locations. With
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this settings, we may not only simulation network formations but predict the

locations that people tend to gather together and form a town. An example

of a more realistic behavior is that an agent will spend more time on a friend

if it knows this friend better. This can be done by the activation value of

the chunk to memorize this friend and adding the timing constraint.

2. It is also possible to apply to the Predator/Prey domain, which is used in

Stone and Veloso [2000]. In the Predator/Prey domain, or “Pursuit” domain,

there are usually four predators and one prey. The goal of predators is to

capture the prey. Predators can see and talk to each other, where the prey

move randomly and sometimes stay at the same point. Because there are

several possibilities to apply agent models to the predators, it is a domain that

can be used to study agents and compare the results between homogeneous

and heterogeneous agents or agents with different strategies. Also, what will

happen if there are multiple groups of Predator/Prey on the same map?

3. Make the agents have the ability to communicate with each other and ex-

change information. There are numerous possibilities of the information,

such as the locations where an agents met a lot of other agents, or expressing

personality. Then it is possible to do simulation with homophily [McPherson

et al., 2001]. The agent models I use now do not differentiate between them-

selves except by names, and they do so completely uniquely. So it is possible

to add characteristics, such as using colors to decorate agents, and have cog-

nitive productions that urge agents to find other agents in the same color.

Some work has been done in this topic, such as Schelling [1971], Möbius and

Rosenblat [2001].

4. Have goals for each agent. There are several possibilities of goals, for example,

all agents have the same goal to cooperate, all agents have their own private

goals, or two groups of agents have different goals. The last one can be

regarded as another kind of heterogeneity. This can improve our knowledge

with team work and groups, which is suggested in [Ritter and Norling, 2006;

Zacharias et al., 2008].
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