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Abstract

This paper analyzes the use of a genetic algorithm (GA) for
auto-fitting a non-linear, multivariable model to data.  The
example model and task used to illustrate the effectiveness of
a GA is the Tower of Nottingham task.  Empirical data
collected from adults completing the task were used to create
an initial model.  This model’s variables were adjusted with a
GA to simulate the performance of a child completing the
task.  The optimized fit was better than the previous fit
generated by hand.  We note the steps required to duplicate
the process with other models.

Introduction
Achieving the perfect picture on a television can be a
painstaking problem.  Settings for hue, color, and other
variables interact.  As the people on the screen turn red, then
purple, the user frenetically switches back and forth from
tint to brightness making slight adjustments.

Adjusting the fit of a cognitive model to data, like
adjusting a television, can depend on many parameters.
Changing only one may not be enough to achieve the
desired outcome.  Hand optimization of a model can take an
extraordinary amount of time in situations involving the
adjustment of multiple parameters to understand how they
influence problem solving.  This occurs, for example, when
modifying parameters to represent development or the effect
of behavior moderators on cognition.

Complications also come from the size of the search
space.  The search space for a model of multiple parameters
grows exponentially with the number of parameters.  Quick
solutions for these problems, which are attained by hand,
can be simply the result of luck and cannot be relied on for
consistency.  For this reason, it is better to pursue an option
involving automatic search (Ritter, 1991).  These problems
appear to have local minima and certainly have noisy
evaluation functions, so we chose to explore the use of
Genetic Algorithms (Davis & Ritter, 1987).  Other
approaches should also be tried, such as gradient descent.

Overview of Example Problem

To provide a basis for testing the effectiveness of a GA in
optimizing the fitting of a model, an example problem must
be used.  Here, we use a cognitive model simulating a child
putting together a puzzle.  Empirical data was taken from
both children and adults who constructed the puzzle.  This
data was used as a comparison for the model simulation.

Puzzle Construction.  The puzzle is a pyramid consisting
of five levels and a top.  It is known as the Tower of
Nottingham puzzle or, simply, the Tower Task (Wood &
Middleton, 1975).  The puzzle is constructed one level at a
time and each level is made up of four pieces.  The bottom
level is constructed first followed by the next largest.
Typically, two levels are not constructed simultaneously.
Thus, the problem solver is concerned with finding and
manipulating at most four pieces of the puzzle at a time.

Model construction and fit to the data.  Adults provided
the initial empirical data for the task. A model was created
and fit to the adult’s data by adjusting a set of parameters
used by various prominent developmental psychologists in
their theories of 'what develops' (Jones, 1998; Jones, Ritter,
& Wood, 2000). These parameters range from memory
capacity to understanding whether the puzzle’s edges are
flush. Adults have an accepted set of values for the
parameters and a model was created to fit the adult data.
Therefore, using this model and data collected from five
seven-year-old children, the parameters were adjusted to fit
the behavior of children.  The problems lay in determining
which parameters need adjustments, and what the
appropriate ranges are for these parameters, and how much
of an adjustment they need.

Use of the genetic algorithm. Once the desired parameters
have been chosen and a set of ranges determined, the GA
can commence fitting the model. In this case, a randomly
generated bit string represents an individual or child. In the
GA metaphor, this is a genotype. The bit string is parsed in
a programmer-defined way to become the parameters of the
genotype’s runs. (The model that realizes the parameters is
the phenotype).  Here, a gene might represent processing
speed and another whether block edges were checked.

After each genotype completes a series of constructions
(the number of times the genotype puts the puzzle together),
a fitness function provides a value based on a statistical
measure of performance over those runs for how close the
model’s performance fits the data.  This fitness measure is
then multiplied in our GA by the fraction of successful
constructions. In some cases, a phenotype does not complete
the puzzle or does not complete it properly, resulting in a
penalty on average performance.

This process occurs for all phenotypes in the population.
Once the entire population has completed its construction
sets, a best phenotype is chosen. If the model deems the best
phenotype close enough to the children’s performance, the
GA terminates and the model is considered fit. Otherwise, a
new generation is created by selecting some genotypes (bit
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strings) from the phenotypes (successful models) that
performed well and creating new genotypes through
combination and mutation.

Preview of Results.  The GA finds a good fit to the data.
With this particular GA, a run was conducted of 10
genotypes per population each constructing the model three
times. In the first full run, the model ran for 77 generations.
Possible solutions based on this population set were found
(Tor, 2004).  Further runs with larger populations and more
constructions per genotype will be needed to achieve
complete optimization of the model.

Example Problem

To illustrate the application of GA to this problem, an
example model will be optimized.  Jones (1998) created a
model of child development with multiple parameters. This
is an ideal example for running our experiment. The values
for the parameters can be incorporated in a GA. Due to the
number of parameters being monitored, a substantial
number of generations may be needed, showing the
effectiveness of the GA in a large search space.

Developmental Theories Examined

Psychologists argue over which changes in which
mechanisms explain the changes in thought.  There are
several theories about what mechanisms change.  We
worked with a subsample of the set of theories Jones (1998)
used.  Table 1 shows how the theories were implemented in
the model, including the ranges for each parameter.  This set
of ranges was checked with Lebiere (2003).

Pascual-Leone's (1987) M-Power theory explains that
what develops is the number of working memory elements
that could be managed at one time. His theory states that as
children grow, their memory capacity increases allowing
them to have access to more information at a given moment.

Siegler believes that development stems from strategy
choice. Children have less ability in choosing an appropriate
strategy than adults (Siegler & Shipley, 1995). There are
many ways to make strategy choices less rational:
increasing noise to decisions, decreasing the, or decreasing
the accuracy in checking for obstructions of fit.

Kail (1996) argues that processing speed in humans
increases with age.  Essentially, a child takes longer to
perform a cognitive task than an adult.

Piaget (1952) had a stage theory about how humans
developed. Each stage represents a step in complexity of
thinking that can be performed and thus understanding the
environment around them. Children represented by this
model are 7 years-old and, according to Piaget, are at the
end of the pre-operational stage and about to enter the
concrete operational stage. This means that they have
trouble hypothesizing mental manipulations to objects found
in the outside world. In this case, the objects would be
blocks or block constructions, and it has been

operationalized in the model by modifying the accuracy of
checking flush edges in the puzzle.

Source of Data

The empirical data was taken from work done in Jones'
(1999) thesis.  For the adults, he filmed five undergraduate
students completing the Tower task. The students had no a
priori knowledge of the task and were given five attempts at
the puzzle. Throughout the attempts the students were asked
to give verbal accounts of their behavior and choices. The
exhibited behavior was noted and subsequently coded. This
became the basis for the original model.

The childrens' data was taken from observations on
videotapes of children performing the task (Reichgelt, et al.,
1993). Jones analyzed the children’s videotapes the same
way the adult data was analyzed.

Tower of Nottingham Model

Jones wrote the model for the Tower of Nottingham Task
using the ACT-R 3 cognitive architecture (Anderson, 1993).
Jones included a graphical representation of the Tower
using Garnet (Myers, et. al., 1990), a toolkit for building
user interfaces in Common Lisp.

Jones looked at the developmental theories and wrote a
separate model to incorporate each one.  He ran each model
and adjusted their parameters by hand.  Although each
model provided favorable results, Jones’ best results came
from the strategy choice model.

Cornwell (2001) in his thesis furthered the exploration of
what develops. He took Jones’ models and created a single
model combining the theories. This model had multiple
parameters to adjust.  Hand adjustment was too difficult so a
GA was added. Cornwell left the project with a usable
model but the graphics implementation made running the
GA quite slow.  His GA runs were thus limited in number of
genotypes and number of generations. We started our
project based on his GA and optimized its performance.

The genetic algorithm used on this model is called GAL.
It is open-source code downloadable from Carnegie-Mellon
(Spears, 1991). The implementation of this particular GA
maintains diversity amongst the population with low
mutation rate, distinct genotypes across generations, and by
limiting the spread of the best individuals.  All that needs to
be added to the GA is the fitness function, a mapping from
binary genotypes to the model parameters, and the
termination function, all of which we took from Cornwell
(2001).

Optimization of Model Runs

The initial system (Cornwell, 2001) was created in a
Macintosh environment and was nearly complete.  We
ported the program to Red Hat Linux, putting it in a Unix
environment.  Because Unix often offers access to faster
machines and offers a more advanced operating system for
testing GA implementations, this port was essential.



Table 1:  The incorporation of the developmental theories in the ToN model and GA.

Theorist
Theory as it Relates to ToN Model Theory Implementation in ToN

Model
GA Implementation (genes)

Piaget 7-year-olds fall at the end of the pre-
operational stage—they may not be
able to manipulate internal
representations of objects and events
in the external world.

Conditionally removed mental check
to determine if two blocks will have
flush outer edges when fit together

Conditionally loaded different
production rules for mental fitting
operations.

Siegler Children should be slower and less
accurate at both choosing and
implementing an effective strategy
than adults.

Added noise to rule firings with
ACT-R’s expected gain noise
parameter(:egn)

:egn parameter set to integer
value between 2 and 9

Varied accuracy of check to
determine if the outer edges of two
blocks would be flush if fit together

probability of correctly checking
for flush edges set between 1 and
0.5 (chance)

Varied accuracy of check to
determine if obtruding features
would obstruct the fit of two blocks

probability of correctly checking
for obstructing features set
between 1 and 0.5 (chance)

Pascual-Leone The number of knowledge structures
that can be simultaneously held in
memory increases with age.

Limited the number of DMEs that
could be active at once with ACT-
R’s retrieval threshold parameter
(:rt)

:rt parameter set to integer value
between 0 and 7
[between -2 and 7]

Kail Processing speed increases with
development

Varied the default time allotted to
rule firings with the ACT-R’s
default action time parameter (:dat)

:dat parameter set between 65
and 100 ms
[between 40 and 100 ms]

Varied the time allotted to hand
movements

:effort parameter for productions
involving hand movements set
between 700 and 1,050 ms

  Varied the time allotted to eye
movements

:effort parameter for productions
involving eye movement speed
set between 65 and 100 ms

A fitness function for the genetic algorithm focuses on 24
measures of comparison between the 7 year-old empirical
data and the simulated data as determined by Jones (1998).
These measures include layer completion times, total
completion time, number of construction attempts for a
layer, number of errors, and number of blocks examined.

Statistical t-tests are used to measure differences between
the real and simulated data.  The sum of the 24 t-tests is the
major component of the fitness function.  The sum is
inverted to create a value that increases as the sum of the
values of the t-tests decreases. That is, as fit increases, the
fitness increases. (This is an example fitness function.  It
should not be inferred that we wish to accept the null
hypothesis this way, merely that the numbers provide a
useful and intuitive measure of data fit.  Many others, quite
possibly better ones, are possible.)  Finally, a penalty is
assessed by a successful construction ratio consisting of the
number of successful constructions over the number of total
constructions. A successful construction consists of the
complete construction of the puzzle without skipping a level
or constructing a level incorrectly. Therefore, the number of
successful constructions over the genotype’s total
constructions is multiplied against the fitness value.

There were a few problems. The state of the model left by
Cornwell appeared to have a memory leak. Jones’ model
was written to run for one construction and was not scalable
to accommodate multiple runs. For the purposes of the GA,
the model needed to run continually. Attempts to reset the
graphics for the next puzzle construction were unsuccessful.

To alleviate these problems, many options were explored.
Ultimately, we spawned Unix processes that each executed
a model constructing the puzzle. Once a set number of
constructions are completed, a fitness value is attained for
that genotype and the next genotype begins.  Using system
processes works with a model that was originally written to
run once.

Results
To illustrate how the GA works, a sample, small run is
explained. The following is the preliminary set of results for
the first full run, consisting of 77 generations of ten
genotypes, each evaluated three times.  Each evaluation
takes about 5 minutes on standard PC, so this represents
about 8 days of processing.

The results presented are the best three genotypes found
during the first full 77 x 10 x 3 run.  These genotypes are



then rerun more times to validate the soundness of the
achieved fitness values. Then, they are compared to the
previous best of Jones.

The model was started with a randomly-generated, initial
population of 10 genotypes, each made up of 24-bit strings
as specified by the GA. The bit string is parsed and
converted into the parameters that are used in the puzzle
construction simulation. At this point, the GA runs the
resulting model and collects the results of the fitness
function for each of the genotypes.  It takes the results and
manipulates the better genotypes to create the next
generation.  We also saved the best genotypes.

The best three genotypes found are displayed in Table 2,
including their fitness and t-test values. There is some
commonality between the three in terms of expected gain
noise and the motor and perceptual speeds. The fitness value
and the first t-test sum were attained from the initial GA
run. The t-test sum is the sum of the t-test values for the 24
measures. The order of the genotypes in the chart
corresponds to the order that they were generated.

As can be seen, the GA was finding higher fitness values
with time. Genotype 3 performed better than Genotypes 1 or
2 but did not check for flush edges during construction. It
also had a longer processing time that the Adult meaning
that the child model takes more to apply one of its rules.

Logically, Genotype 3 would not appear to be a good set
of parameters. It does not check for flush edges, causing the
puzzle to create more incorrect constructions.  Also, its
retrieval threshold is extremely high, allowing very few
pieces of knowledge to appear in memory. Finally, it is
drastically different from Genotypes 1 and 2.  It may
represent a local minimum and provide evidence that a GA
is an appropriate optimization technique.

For further analysis these three genotypes were run 10
more times. Genotypes were run until 10 perfect
construction sets of 3 runs each were completed.
Construction sets where any of the three constructions failed
were excluded with no penalty.  The 10 fitness values were
averaged to get the average t-test sum shown in the table.
The max t-test measure, shown in Table 2, is the measure of
the genotype that performed worst. As a group, the
genotypes appear to perform poorly on timing measures.

The average t-test analysis showed that Genotypes 1 and
2 were initially performing correctly as they did not vary
much from the initial t-test sum. They did experience
regression to the mean as the average t-test sum did increase
slightly over the initial t-test score.  However, Genotype 3
had a unique, initial performance for those parameters
leading to the belief that three constructions per genotype
may not be enough to attain stable measures.  In order for
the GA to improve the genotypes, it would need to run with
more constructions and more genotypes per generation.

The GA’s performance should be considered successful
based on these preliminary results. The initial fitness values
of the three best genotypes did increase as the generations
progressed. A termination function, created as specified by

the GA, was not used in this run.  This was done purposely
to see how close a fit could be reached

Comparison to Jones’ Results

The results attained in this study should be compared
against other data previously found in this area, that is,
Jones’ hand optimization models. The easy method is to
take the best model from his research and compare it to the
three best genotypes discussed earlier. Jones found that the
best performance came in the implementation of the Siegler
model (Jones et al., 2000). This model affects the strategy
choice by adding noise to the decision process. The model
with these parameters was run until 10 successful puzzle
construction sets were found in the same manner as with the
three best genotypes. This is illustrated in Table 2

The average t-test sum for the Siegler model turned out to
perform better than two of the top-performing genotypes.
However, Table 2 shows that Jones’ Siegler model took 67
attempts to get 10 puzzle construction sets that finished.
This shows that his Siegler parameter set often cannot solve
the Tower task. In fact, the parameters find the solution only
about 1 in 7 times whereas the GA-computed parameters
solve the task at a rate of about 1 in 1.5 to 2. The problem is
that there was no penalty assessed for poor performance in
Jones' analysis. Forcing the Siegler model to finish 10
perfect sets did give a good average t-test sum but may not
be a good measure of its fit to the children’s data. It also
suggests that we need to go back and examine how often
Wood's children completed the task on their own. As this
task was designed to study contingent tutoring, the model
predicts that many children cannot solve the task without
assistance.

These results take a small step towards answering the
question of what develops. The results in Table 2 suggest
that multiple aspects develop. The best fitting model
modified the children’s model in several dimensions,
providing support for several theories. The fit (and direction
of parameter modifications) is not clear enough and good
enough to suggest that we have a complete understanding of
this task and data. There remains what appears to be some
noise in the fit, and there may be multiple parameter sets
that fit the data well. We will have to run the GA longer to
get more stable and clear results.

Conclusions
This work shows that a genetic algorithm can be used to
optimize models' fit to data where the fit consists of a large
search space due to multiple model parameters. Hopefully,
genetic algorithms will be used to optimize other complex,
nonlinear models. The following is a discussion of possible
improvements to this approach and how implementing a GA
to optimize other should be approached.



Table 2:  Comparison of GA found models with Siegler Model as implemented by Jones.

Genotype 1 Genotype 2 Genotype 3 Siegler (Jones) Adult
Check flush edges T T Nil T T
Expected gain noise 2 2 2 6 0.4
Flush edge

accuracy (%)
90 95 100 100 100

Obstruction
detection
accuracy (%)

100 100 75 100 100

Retrieval Threshold 3 3 6 0 0
Processing Speed (s) 0.065 0.065 0.08 0.05 0.05
Eye Speed (s) 0.095 0.095 0.085 0.2 0.2
Hand Speed (s) 0.95 0.95 0.8 0.55 0.55
Average fitness

(x 10 sets)
46.7 47.4 55.1 46.9

Number of runs to
get 10 correct

16 19 18 67 10

Maximum t-test
measure

3.45
(Size 4 Layer

Time)

3.31
(Time Taken To

Complete)

6.28
(Time Taken To

Complete)

2.66
(# of Incorrect
Disassembled)

Improvements

The GA needs some measure to compare its performance
against. This measure comes from the empirical data set.
Given this statistical measure for comparison, the GA can
optimize the model. Next is the idea of how close a fit is
sufficient. Determining a measure of an appropriate fit is
arguably the most complicated part of the GA application.

In this example, the GA did not perform as well as we
would have liked;  the largest problem appears to be a
matter of having enough puzzle constructions per genotype
to get stable evaluations.  Three constructions may not be
enough to get acceptable results where 5, 10, or even 20
may. Running the model on a larger scale will cause the t-
tests to give results closer to the averages seen in Table 2
and remove the possibility of the unique performance seen
in Genotype 3, where a higher fitness value was achieved
initially but the average was significantly more.

Another plan is to adjust the GA to keep the best
performing genotypes in the current population. the GA we
used prefers diversity and uses the best performing
genotypes to create the next generation but they,
themselves, may not appear in the next generation. This
would allow the fitness value for a particular genotype to be
updated keeping performance realistic.

The successful construction ratio used to penalize a poor
run’s fitness can be squared to increase the penalty. The bit
string could be lengthened to 48 bits providing more
granularity for the parameters, creating more options in the
range.

Applying the Optimization to Other Models

Given a model that needs to be fit and empirical data to fit
the model to, optimization can be accomplished by

following a set of guidelines. The model should have
multiple parameters needing adjustment and fine granularity
in the range of acceptable values for those parameters. This
provides a large and expensive search space that makes a
GA a useful choice.

The genotypes need a way to be represented in the GA. In
this project bit strings were used because the GA operated
on bit strings.  Arrays of the parameter values can also be
used depending on the GA implementation. Then, simple
functions to parse the strings or arrays can be written to
incorporate the values into the model.  Theoretically, these
representations are equivalent; the bit string is easier for the
GA to manipulate, and the symbolic representations are
easier for modellers.

A set of measures need to be created for use in the
comparison of the simulation run data and the empirical
data. T-tests or other statistical measures, such as
correlations, should be used to provide a fitness value for
the model’s correspondence to the data.

Graphics are a nice addition to a running simulation
model but can be problematic when optimizing fits. A
decision should be made as to whether the model being
optimized needs graphics. If graphics are added, they should
be as independent of the model as possible and capable of
being shut off. Graphics slow models down.

GAs need to run for many generations, which can take
time.  The run of a genotype’s solution should take the
smallest amount of time possible.  This will help minimize
the overall run time of the GA and allow the search space to
be better explored. A summary of these lessons are shown in
Table 3.



Table 3:  List of Using a GA with another Model.

1. Multiple parameter model
2. Empirical data and measures of comparison
3. Candidate strings and parsing function
4. Fitness function that increases as fit improves
5. Graphics that can be “reset” by model
6. Minimized genotype run time
7. Loads of time

Further Work

Using this methodology to fully understand what develops
in children will not be complete until a larger population of
models has been examined over further generations.  We
have arranged supercomputer support from the U.S. Army
Research Laboratory in Maryland to perform this analysis.
The processing power found at their facilities will allow the
runs to be completed on the order of 100x faster.
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