
Categorical Data Displays Generated from Three Architectures
Illustrate Their Behavior

Kevin Tor (tor@cse.psu.edu)
Steven R. Haynes (shaynes@ist.psu.edu)
Frank E. Ritter (frank.ritter@psu.edu)

School of Information Sciences and Technology, The Pennsylvania State University
University Park, PA 16802

Mark A. Cohen (mcohen@lhup.edu)
Business Administration, Computer Science, and Information Technology, Lock Haven University

Lock Haven, PA 17745

Abstract

The following introduces CaDaDis, an extension to the
architecture-independent VISTA toolkit. CaDaDis creates
visible accounts of cognitive model behavior through a set of
Categorical Data Displays. It includes a standard Pert Chart
showing tasks by category (or resource), a Nonstandard Pert
Chart that shows the temporal dependencies, and a Gantt chart
that helps show occurrences of agent events along a time line.
Perhaps most usefully, it can display categorical and numeric
data generated by models as they run. Structured messages
are sent on behalf of the cognitive model by several example
script-based interfaces. This paper presents a series of exam-
ples of CaDaDis with three different cognitive architectures.
The displays, for example, show that the sample models
included in the Soar distribution have different structures.

Introduction
Textual traces from cognitive models are often considered
unhelpful by observers trying to understand them, and these
traces are essentially unintelligible to non-programmers.
Modelers and subject matter experts want to know the
structure of models as well as how they work (Avraamides
& Ritter, 2002; Councill, Haynes, & Ritter, 2003). One
approach that has been relatively well received is to provide
a graphic representation of a model’s internal processing
and behavior. Where this has been done, observers have at
least thought they understood the models more, and in some
cases have seen and learned new things about their models
(Ritter, Jones, & Baxter, 1998; Ritter & Larkin, 1994).

We present a general tool for displaying categorical data
generated by cognitive models. It can be and has been used
by multiple cognitive architectures to display their internal
processing. It is based on a no-cost toolkit, implemented in
a widely used programming language, and should help
many models to be understood. The display tool is designed
to support the reuse that Newell (1990) referred to in his
Unified theories of cognition, in this case by helping models
be understood and by being used itself in multiple
applications.

It appears to take an expert programmer about an after-
noon to start to use CaDaDis with an architecture that they
know, and about an hour for a typical graduate student to
use it with an new model within an existing supported
architecture. In the first case, the user must adapt the archi-

tecture to pass information that they want displayed to
CaDaDis through a socket. For ACT-R, for example, this
meant creating a socket and modifying an existing function
in the architecture to pass information when a rule is fired.
In the second case, the user has to download CaDaDis, and
load into the ACT-R Tcl interface a file, and load a file into
the ACT-R Lisp system. In each case, a user has to get
permission to use Vista and download it through a web site.

This is an update on a tool that we have previously intro-
duced to a different community (Tor, Ritter, Haynes, &
Cohen, 2004). We report here several new features and new
analyses and this is directed at cognitive modelers, not the
simulation and synthetic forces community.

We start by describing several displays that have inspired
us and provide lessons for our design. We provide example
displays created quickly to work with Soar, ACT-R, and the
Jess agent architecture. These displays helped us under-
stand the models we did not write ourselves, and show the
types of knowledge that can be gleaned from models using
categorical displays of their internal processing. We hope
that readers are inspired to create such displays for their
models, and that they use our system, CaDaDis.

Previous Systems
A wide range of graphical displays have been used by cog-
nitive modelers. Not every model and not every cognitive
architecture has had one, but the displays that have been
available appear to help explain models. The following is a
brief summary of the previous work in graphical displays
for cognitive models. A slightly more comprehensive
review of these systems is available (Tor, et. al., 2004).

Gray, John, and Atwood (1993) implemented, by hand,
some task analysis for a new and old telephone workstation
in CPM-GOMS. This study gave us the groundwork for our
nonstandard Pert Chart, where resources appear on the left
of the display. The main problem with this was the lack of
automation.

Automation was introduced with APEX (John, Vera,
Matessa, Freed, & Remington, 2002). Pert charts were
created with a CPM-GOMS approach with such success that
it was later added to the ACT-R architecture.

F R
In Proceedings of the International Conference on Cognitive Modeling, 2004. 302-307. Mahwah, NJ: Lawrence Erlbaum.

The Developmental Soar Interface (DSI) and the Tcl/Tk
Soar Interface (TSI) provide graphical traces of running
Soar models automatically (Ritter, Jones, & Baxter, 1998;
Ritter & Larkin, 1994). The DSI showed that cyclical
behavior can be found in some models and the TSI provided
multiple views of model’s behavior.

The connectionist model community initially had rather
poor interfaces that would print out all of the nodes each
epoch (e.g., the early PDP toolkits). But the users could at
least see the processing of their model. Later versions
showed it helps to be able to visualize model behavior.

Among the desired functionality motivating CaDaDis
development are searching for cyclical model behavior and
providing multiple views, two tasks shown to be important
in previous work on cognitive model data displays and
assumed to be important for any cognitive architecture.
These visualizations will aid novice to experienced
programmers, and perhaps prove useful for even non-
programming model users.

CaDaDis
We have created a general tool for displaying categorical
data generated by cognitive models. The system is imple-
mented in Java and VISTA (the latter we explain below).
We provide a general rational for the design first, and then
explain in order of increasing complexity the displays that
we and others have created.

The Use of Java and VISTA

We chose to create these displays in Java because it is port-
able and increasingly used to create displays for cognitive
models (e.g., ACT-R's new interface, and JACK's eye and
hand: Norling & Ritter, 2001). We used the Visualization
Toolkit for Agents toolkit (VISTA) (Taylor, Jones, Gold-
stein, & Frederiksen, 2002) because it supports creating
displays and a variety of communication channels between
the display and cognitive models. VISTA is supported and
available under a non-commercial license from Soar
Technology. As part of this project we also created and
used a VISTA tutorial web site (acs.ist.psu.edu/vista) to
learn VISTA.

VISTA facilitates the creation of model visualization
applications. This toolkit provides an infrastructure for
communication between models and VISTA enabled
applications. Using this communication channel, models
can convey changes in their internal attributes to a listening
VISTA enabled application, which then updates its display
to reflect these changes. The VISTA toolkit also provides
the ability to record and playback model activity (Soar
Technologies, Inc., 2002). Importantly VISTA includes
useful Java objects and methods for creating displays of
cognitive models (including the ability to parse and deparse
objects communicated), as well as a series of examples that
can be modified and reused. Using VISTA as the infra-
structure for communication between a cognitive architec-
ture and a visualization tool eliminates a significant amount

of development time and effort. VISTA proves to be well
designed, easy to use, and stable.

VISTA also provides classes to represent some of the
major categories of objects based on an analysis of cognitive
models, including goals, events, time, and so on, along with
corresponding sample display methods. These classes are
not directly available in Swing or other Java packages.
Also, VISTA's connection manager (via SoarComm) offers
some remote discovery capabilities, communication utilities,
and usability additions that have often been built to support
model/interface communications.

CaDaDis Design

A VISTA window displays the objects traced in the simple
(modified-PERT), Pert, or Gantt view. All views are gener-
ated in parallel and a view menu allows the user to toggle
between views. Advanced options will be added as this
project continues.

Each view consists of a scrollable canvas for graphical
objects. Objects represent actions of the model and are
specified as labeled rectangles. Each object consists of a
unique id, an associated code (operator name, etc.), start and
end times for execution duration, and an optional list of con-
straints drawn as lines. Currently, a default value of 50 ms
is being used for Soar objects in the Gantt view. This is our
assessed time for a decision cycle in the model’s run. Con-
straints are displayed as lines between rectangles. They
represent dependencies for the target action. If constraints
are not specified, a default constraint line can be drawn from
the previous action’s rectangle.

A useful design guideline when developing distributed
systems is to keep the interface between the client and the
server simple. It is important to realize that exposing the
visualization client’s objects and their methods can tightly
couple the client and the cognitive architecture. For
complex displays, this level of dependency can be necessary
and beneficial, and VISTA supports such complex displays.
However, if the designer is not careful strong dependencies
can make the system difficult to maintain, and, for simple
displays, provide no added benefit. As a result, when
designing CaDaDis the classes exposed to the cognitive
architecture were minimized.

Our only public datatype is a CaDaDis Object
(CDDObject). It can be used to represent any event in the
execution of the model whether it is the firing of a rule, or
the entrance into a new problem space, state or operator.
The generality afforded by this implementation provides
flexibility to the users of this tool.

Simple Charts

A simple version of the categorical data from a model can
be plotted. It is sometimes called a modified PERT. It can
be quite helpful, for example, to sequentially chart Soar
operators in a model. Figure 1 shows a CaDaDis display of
operator firings for the Waterjug demo included with the
Soar 8 distribution. The model has four operators (seen on

the left as codes) and each point on the right side represents
the firing of the corresponding operator. Creating this dis-
play required building a CaDaDis and a Soar-Tcl interface
file, now included in CaDaDis. This file contains generic
Soar rules used to generate data for CaDaDis such as states
and operators from any Soar model. Figure 1 shows that
this task had interesting combinations of operators and no
clear cycles.

Figure 1: A simple display of a Soar model (Waterjug) with
a categorical display of the operators as they are executed.

The order of the codes is initially arbitrary in all of these
displays. They can be set by the user to more accurately
reflect their meaning. The order can be modified dynami-
cally by moving them with the mouse, by loading a file, or,
by default, they are put in order of first use.

Pert Charts

A Pert chart is a display used to do task analysis. It is used
to estimate the time to completion for a particular task
(Harris, 1996). Based on dependencies of actions, subtasks
can be started earlier if they are independent. Therefore, the
end result of the Pert chart is the realization of the critical
path of a task—what is the sequence of actions to complete
a task in the least amount of time?

There are two variations on the Pert chart in CaDaDis.
The first is the Standard Pert chart implementation. The
Standard Pert chart is a simple drawing canvas that contains
a set of rectangles representing tasks and arrows represent-
ing dependencies between tasks. Once the model has com-
pleted, the view can adjust to show the critical path. This is
available in CaDaDis but no models have been yet instru-
mented to use it. Doing so would require modifying an
architecture to pass the relevant information of start and stop
times, and the actions' dependencies.

The other is based on John’s CPM/GOMS Pert chart, a
Nonstandard Pert chart, where codes are located on the left-
hand side of the window. Objects are drawn in the row of
corresponding to their category.

Gantt Charts

A Gantt chart uses a time line to show execution time for a
particular action. The codes are on the left side as tasks in
the Nonstandard Pert chart and rectangles are on the right
canvas. The size of the rectangle is based on time of execu-
tion with respect to the time line. This is available in

CaDaDis but no models have been yet instrumented to use
it.

A new modification we are working on, called the
Modified Gantt chart, will examine the life of an operator
from proposal to completion with respect to the time line. A
dashed line will represent an operator that is proposed.
When the operator is selected, the dashed line will become a
solid line.

Interface Features
These displays provide enough functionality that users will
want to take advantage of their features, but will need sup-
port to do so. Table 1 lists several of the manipulations
users can perform to their displays. Features in the table
with an asterisk (*) are in the process of being implemented.

Example Uses
We present some examples to illustrate CaDaDis and its
use. The first example displays operator applications. It
uses an example Soar model in the Nonstandard Pert View,
which is easy to create — the operator names are placed in
the left pane and large or small boxes are drawn along the
line corresponding to the operator that fires in the right
pane. All the figures here use the Nonstandard Pert. As a
default, dependencies are specified as the box representing
the last operator or production that fired. A portion of this
display is shown in Figure 2.

Soar provides a set of demos with its TSI distribution.
We used these demos as a test set for CaDaDis. Each demo
was run in CaDaDis to see if any interesting behavior could
be found. (Figure 1 showed the demo model for the
Waterjug problem.) At this stage of development, CaDaDis
receives only operators from the Soar models to display.
However, even with operators, the demo models can be
categorized.

Table 1: CaDaDis Features.

• Rescale x and y, and the objects
• Choose fields to display (i.e., hide some fields to

create abstract display, or highlight remaining fields)
• Print the figure to a printer*
• Save the figure to file, both as a jpeg and

semantically
• Change the type of display and provide a best-effort

display under the new type *
• Provide information about CaDaDis and the type of

display
• Provide help functions *
• Set display options, such as autoscroll and absorb

new codes (or generate an error)
• Gantt timeline in milliseconds or decision cycles *
• Reorder categories in nonstandard Pert by mouse or

by loading a file
• Logging and log replay support for Soar and ACT-R
• Other architectures including: JACK, and CAST *

The next demo examines the 8-puzzle problem. This con-
sists of 8 tiles numbered one through eight on a 3x3 board.
There is a space to allow movement. A series of move-
ments is performed to achieve the proper configuration
(numerical order) of the tiles. The demo model attempts to
solve the puzzle. The model uses two operators: evaluate-
operator and move-tile. The first operator examines the
current board configuration to determine the next move and
the second, predictably, moves one of the tiles. The initial
run showed the model examining the board, then moving
the tile or tiles, before repeating this cycle (Figure 2), and
sometimes not using an operator.

Figure 2: Operator trace of the Soar 8-puzzle model.

The Tower of Hanoi is a famous task where a number of
disks in ascending size are found on one peg. The Soar
model consists of one operator, move-disk. A run of
CaDaDis does not provide an interesting picture, as shown
in Figure 3, but it does display the model’s behavior. This
result suggests that operator-based traces require more
detailed attribute displays to expose meaningful information
about model behavior. These has since been added;
displays using this feature are described below.

Some models employ a Wait operator. No decision needs
to be made because the world does not require (or allow) a
decision. The Blocks World model shows this operator in
use (Figure 4).

Another example of a model using the wait operator is
found in a run of dTank (acs.ist.psu.edu/dTank). dTank is an
environment that allows models to play in a simple tank
game. In this example, CaDaDis displays the operator
applications in a simple Soar dTank model. Once again,
dependencies are specified as the previously entered state.

Figure 3: Operator trace of the Soar Tower of Hanoi model.

Figure 4: Blocks World example of wait operator.

Our dTank trace (Figure 5) comes from a basic tank
agent. This display contains the portion of the run where
the model has just found an opponent to attack. The hori-
zontal portion of the trace represents the idle period (of Wait
operators) of the tank waiting for something to come into
view. The first set of spikes show the recognition of the
opponent. The waiting period is waiting for more percep-
tions to arrive. The decision to attack is made and shown
with the subsequent spikes in the trace. This is a nice illus-
tration of agent behavior in the dTank environment.

In revisiting the 8-puzzle demo, we implemented an
extension to the model that would give more information
about the model. Similar to the Tower of Hanoi model,
most of the action concerns the operator attributes. Our
extension pulled information about the attributes out of the
model and sent them to CaDaDis as categorical data. Figure
6 presents the 8-puzzle model run with an initial configura-
tion that is unsolvable. We added one Soar rule and a Tcl
function to the model to pass attributes from the operator of
the tiles as they moved. Cyclical behavior emerging from
the model as Soar attempts to solve the puzzle in now visi-
ble. Also, with some inspection, one can see that the blank
tile is labeled as Tile 3 because this tile is not used.

Finally, because of the VISTA toolkit’s architecture inde-
pendence, CaDaDis can be used by a number of different
cognitive architectures. The final examples are from models
written in ACT-R and Jess. Production names are passed to
CaDaDis from the model as they fire. The instance of a
production firing is represented by a dot in the

Figure 5: A Soar dTank model trace of tank behavior.

Figure 6: Unsolvable 8-puzzle problem using an attribute
display to show individual tile movements.

graph. The ACT-R model traced in Figure 7 is a Serial
Subtraction model being revised (Ritter, Avraamides, &
Councill, 2002; Ritter, Reifers, Klein, Quigley, & Schoelles,
in press). The model starts with a four-digit number and
continually subtracts seven. This behavior is naturally
cyclical as the figure shows. The productions consist of
checking for the need to borrow, the act of borrowing, and
simple subtraction. This portion of the trace illustrates some
cycles where the subtraction was simple but ends with a
need to borrow from the hundreds position, hence the
downward spike. This display uses CaDaDis and a Lisp file
addition to ACT-R (now included with CaDaDis) that
passes information to CaDaDis when a rule fires.

Recently, CaDaDis has been successfully used with Jess
(Friedman-Hill, 2003). A Jess model for dTank used in a
programming languages course was adapted to send strings
to CaDaDis. The project took three hours but included
generating a reusable interface for Jess and CaDaDis. A
display of a Jess model in Figure 8 shows that it has similar
behavior to the Soar dTank model. The model waits and
scans for enemies. Then, it aims and fires until the enemy is
out of sight or dead. The display shows that Jess works on
productions, and that this model is simpler than the Soar
model.

Figure 7: Serial Subtraction Model in ACT-R.

Figure 8: A Jess dTank model trace of tank behavior.

Conclusions
In addition to providing a useful tool for understanding
cognitive models and providing a documented and reusable
display in VISTA, creating CaDaDis provided several
lessons for cognitive modeling and behavior representation.
These lessons can be grouped into lessons about our
CaDaDis system and the models examined, about VISTA as
a tool, and for this process. We take them up in turn.

Lessons about CaDaDis

Preliminary results show that CaDaDis is successful in
showing model behavior. It can create unique displays
showing information with more clarity than textual traces.
It provides nice displays of model activity in two different
cognitive architectures and an agent architecture. Further-
more, it can prove useful in debugging cognitive models by
analyzing rule usage, whether certain operators fire, and so
on.

The CaDaDis displays included here have become easy to
create because creating new displays can be done by modi-
fying previous examples. The displays work with multiple
architectures and provide multiple views. They need to be
expanded to include more of the functionality in Table 1.

To realize their potential, these displays need to be reused
by others. To this end we have put these displays on the
VISTA tutorial web site (acs.ist.psu.edu/vista). The dis-
plays here created in CaDaDis suggest that the ability to
help models explain their behavior can be significantly
enhanced with CaDaDis and the VISTA toolkit.

For many applications of VISTA, CaDaDis can serve as a
library, providing much of the additional graphics needed.
For systems that need more complex graphics, or that need
to modify the displays we have created, the source code for
the graphic displays that make up CaDaDis have been
designed to be extended and are documented
(acs.ist.psu.edu/CaDaDis). We thus find that we will need
libraries of graphical displays for cognitive models as much
as we need libraries of model components. It may be possi-
ble, however, that interfaces are more reusable.

Lessons about Vista

Developing the interface to CaDaDis required extending the
VISTA toolkit. The VISTA source code and manual are
both available facilitating changes such as those we
required. VISTA provides a base library for 2d-drawing that
can be taken advantage of. However, in the example appli-
cation included in the VISTA distribution, there were no
classes related to the specific categorical display objects
required for CaDaDis.

The creation of CaDaDis also provides a chance to reflect
on the VISTA toolkit as it is used externally. We found that
VISTA requires some overhead to learn and to create dis-
plays, but provides a worthwhile framework for creating
these displays and provides a productive approach to reuse.

This level of understanding is not required unless the user
wishes to modify the or extend these displays.

In summary, VISTA is a well-designed, easy to use, and
powerful tool. Its use can reduce the development time of
cognitive model visualization tools and allow the developer
to concentrate on the domain specifics of the applica-
tion—as opposed to the communication infrastructure.

Reuse in Cognitive Models

The reuse of displays with ACT-R, Soar, and Jess suggests
that the first major reuse of cognitive modeling behavior
may be in interfaces and not of knowledge. This might not
be that surprising, given that the interface code looks more
like the code that currently gets reused. Interfaces make up
about 50% of most systems (Myers & Rossen, 1992). If this
is true, which we believe it can be for cognitive models and
agents using CaDaDis and VISTA, this resuse is a very
worthwhile result.

Acknowledgments
This work was supported by the Office of Naval Research
through a subcontract from Soar Technology, contract
VISTA03-1. Doug Hogan, Andrew Reifers, Glenn Taylor,
and Al Wallace provided useful suggestions about the
design and implementation of these displays and about this
presentation. Isaac Council and Andrew Reifers have
provided extensions to CaDaDis. Doug Hogan and Andrew
Reifers generated displays for this paper. Geoff Morgan
and three anonymous reviewers provided useful comments.

References

Avraamides, M., & Ritter, F. E. (2002) Using multidiscipli-
nary expert evaluations to test and improve cognitive
model interfaces. In Proceedings of the 11th CGF
Conference. 553-562, 02-CGF-100. Orlando, FL: U. of
Central Florida.

Councill, I. G., Haynes, S. R., & Ritter, F. E. (2003).
Explaining Soar: Analysis of existing tools and user
information requirements. In F. Detje, D. Doerner, & H.
Schaub (Eds.), Proceedings of the Fifth International
Conference on Cognitive Modeling. 63-68. Bamberg,
Germany: Universitats-Verlag Bamberg.

Friedman-Hill, E. (2003) Jess in Action. Greenwich, CT:
Manning Publications, Co.

Gray, W. D., John, B. E., & Atwood, M. E. (1993) Project
Ernestine: Validating a GOMS analysis for predicting and
explaining real-world task performance. H u m a n -
Computer Interaction, 8(3), 237-309.

Harris R. L. (1996) Information graphics: A Comprehensive
illustrated reference. Atlanta, GA: Management Graphics.

John, B., Vera, A., Matessa, M., Freed, M., & Remington,
R. (2002). Automating CPM-GOMS. In Proceedings of
the CHI‘02 Conference on Human Factors in Computer
Systems. 147-154. New York, NY: ACM.

Myers, B. A., & Rossen, M. B. (1992) Survey on user inter-
face programming. In Proceedings of CHI'92. 195-202.
New York, NY: ACM Press.

Newell, A. (1990) Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Norling, E., & Ritter, F. E. (2001). Embodying the JACK
agent architecture. In M. Stumptner, D. Corbett, & M.
Brooks (Eds.), AI 2001: Advances in Artificial Intelli-
gence. Proceedings of the 14th Australian Joint Confer-
ence on Artificial Intelligence. 368-366. Berlin: Springer.

 Ritter, F. E., Avraamides, M., & Councill, I. G. (2002) An
approach for accurately modeling the effects of behavior
moderators. In Proceedings of the 11th Computer Gener-
ated Forces Conference. 29-40, 02-CGF-002. Orlando,
FL: U. of Central Florida.

Ritter, F. E., & Larkin, J. H. (1994). Using process models
to summarize sequences of human actions. Human-
Computer Interaction, 9(3), 345-383.

Ritter, F. E., Jones, R. M., & Baxter, G. D. (1998) Reusable
models and graphical interfaces: Realising the potential of
a unified theory of cognition. In U. Schmid, J. Krems, &
F. Wysotzki (Eds.), Mind modeling - A cognitive science
approach to reasoning, learning and discovery. 83-109.
Lengerich, Germany: Pabst Scientific Publishing.

Ritter, F. E., Reifers, A., Klein, L. C., Quigley, K., &
Schoelles, M. (in press). Using cognitive modeling to
study behavior moderators: Pre-task appraisal and anxi-
ety. In Proceedings of the Human Factors and Ergonom-
ics Society.

Soar Technology, Inc. (2002). VISTA Developer's Hand-
book. Soar Technology. www.soartech.com/research.
downloads.vista.php

Taylor, G., Jones, R. M., Goldstein, M., & Frederiksen, R.
(2002) VISTA: A generic toolkit for visualizing agent
behavior. In Proceedings of the 11th Computer Generated
Forces Conference. 29-40, 02-CGF-002. Orlando, FL: U.
of Central Florida.

Tor, K., Ritter, F. E., Haynes, S. R., & Cohen, M. A. (2004)
CaDaDis: A Tool for Displaying the Behavior of Cogni-
tive Models and Agents. In Proceedings of the 13th
Conference on Behavior Representation in Modeling and
Simulation. acs.ist.psu.edu/papers/torRHC04.pdf

