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Abstract 

We provide an update on JSegMan, an interactive system to 
extend the ACT-R cognitive architecture to interact with 
dynamic interfaces based on the screen contents and 
generating input for the operating system directly. Current 
ACT-R models typically interact with the world through 
ACT-R's device interfacean abstract representation of the 
world that is based on a simulated Lisp environment provided 
with ACT-R, or by instrumenting interfaces. In JSegMan, 
computer vision pattern matching algorithms and visual 
patterns extend the ACT-R cognitive architecture. With 
JSegMan, models directly move the cursor on the screen, 
click on application GUI objects on PCs, and type through the 
use of existing Java libraries. Implementing users' visual 
search strategies and input abilities for different visual objects 
enables the detailed modeling of interactive tasks on any 
interface. The visual pattern matching algorithms serve two 
goals: to simulate user behavior in interactive tasks and to 
create representations of visual stimuli. We tested our visual 
pattern matching approach by using it with an existing model 
for a long spreadsheet task. We found that the revised model 
more accurately predicted a 20-min task by entirely 
performing the task on an uninstrumented and unmodified 
interface. 

Keywords: Cognitive model; Cognitive architecture; Human-
computer interface, interaction; Perception and motor output; 
Computer vision; Simulated eyes and hands. 

Introduction 

Cognitive architectures are programming languages 

specifically designed for modeling unified theory of all 

human cognition, such as Soar (Laird, 2012; Newell, 1990) 

and ACT-R (Anderson, 2007). Using models as users have 

been envisioned before (e.g., Byrne, 1994; Lohse, 1997), 

but has not yet been widely applied. These models require 

simulating an interactive behavior.  

ACT-R’s interactive behaviors include moving the cursor, 

clicking, and typing. Although cognitive architectures such 

as ACT-R provide powerful and flexible frameworks for 

modeling general human behavior, only a portion of their 

capabilities are often used to capture many complex real-

world behaviors (Fu et al., 2003), because the skills can only 

be applied with unmodified ACT-R in specialized windows 

provided with ACT-R. Additionally, cognitive models need 

to interact with interfaces to be useful in human-computer 

interaction (HCI) (Byrne & Kirlik, 2005; Kieras, 2009; 

Ritter et al., 2000). 

A Cognitive Model Interface Management System 

(CMIMS), which is an extension of the User Interface 

Management System (UIMS) concept (Ritter et al., 2001) is 

an approach to provide models access to interfaces so that 

cognitive models can be applied more routinely in HCI.  

ACT-R/PM (Byrne & Anderson, 1998) is a CMIMS that 

allows ACT-R models to interact with interfaces built 

within a special Common Lisp window. Another successful 

version of the interactive model is Salvucci’s (2006) driver 

model. Salvucci also introduced an ACT-R system with an 

implementation of the ACT-R cognitive architecture in the 

Java programming language. It can be used as a library in 

other ACT-R projects (Salvucci, 2009, 2013). 

In all these approaches, it will be difficult to reuse these 

models (their task knowledge) because of the nature of the 

embedded task environment—the models can only interact 

with their instrumented interfaces. The interfaces that have 

been modified to provide the models access to information 

on the display in that application. Also, the interfaces have 

been adjusted to accept commands directly from the models. 

Even in JSON ACT-R, which makes a general approach 

available for these modifications (Hope, Schoelles, & Gray, 

2014), reconfiguring the connection is challenging. 

We take inspiration from SegMan, segmenting the screen 

to different features (e.g., based on color) and manipulating 

interface usage. SegMan was productive and was used to 

interact with a wide range of interfaces (Ritter, Kukreja, & 

St. Amant, 2007; St. Amant et al., 2005; St. Amant & Riedl, 

2001). However, SegMan is hard to use and maintain at this 

point. We have also explored providing a connection to any 

task in Emacs, ESegMan, such as pressing a key, moving a 

cursor, clicking a mouse, and moving attention (Tehranchi 

& Ritter, 2017). ESegMan could only manipulate Emacs 

window and is limited to Emacs.  

These results have led us to design JSegMan, a system 

written in Java that extends ACT-R to provide models with 

interaction with any interface on a PC, and thus the world.   

We report elsewhere its hands model that provides typing 

and mouse interaction (Tehranchi & Ritter, 2018).  

JSegMan creates a way to interact with all interfaces using 

an extended Java library to input motor commands 

(keystrokes, mouse moves, and mouse clicks).  
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We report here the first vision system for cognitive 

models to see objects on the screen using pattern recognition 

and other computer vision algorithms.  

As an example application, we use ACT-R and JSegMan 

to perform the Dismal spreadsheet task using an existing 

large (500 rule) ACT-R model (Paik, Kim, Ritter, & Reitter, 

2015). The revised model with JSegMan predicted the 

response time more accurately while, importantly, using the 

same but unmodified interface that the human subjects used. 

Finally, we provide conclusions, lessons, and insights. 

Visual Attention and Environment 

There are theoretical and empirical challenges in 

understanding visual attention and implementing its 

mechanism. Constructing a system to simulate attention 

based on eye movement data such as fixation and saccade 

can enhance our knowledge of perceptual-motor aspects of 

the human system. Besides cognition, perception, and action 

are also essential for resembling the models’ behavior closer 

to the human behavior. The focus of cognitive analysis is 

often on cognition and response time, rather than an analysis 

of interaction and knowledge related to the interaction. 

Given the visual nature of most current user interfaces, the 

vision module is relatively central in modeling most HCI 

tasks. The vision module is used to determine what ACT-

R/PM “sees” (Byrne, 2001). 

Each object on display will be represented by one or more 

features in the vision module's icon. The vision module 

creates chunks from these features that provide declarative 

memory representations of the visual scene. These chunks 

are visual location and visual object types. Production rules’ 

constraints can match chunks. After the vision module 

creates a chunk representing an object, visual attention must 

be directed to the location of that object, through a visual 

location chunk.  

Anderson et al. (1998) introduced the visual hunt-feature 

and found-target in which there are the equivalents of move 

attention and move the cursor in current ACT-R. The vision 

module move-attention operator shifts attention to a 

location; ACT-R/PM must have representation for those 

visual locations. 

Salvucci (2001) distinguished eye movements and shifts 

of attention. The ACT-R visual mechanism mainly 

considers moving attention to be the same as a saccade and 

reflects a top-down search without backtracking. 

Furthermore, the visual mechanism skips items that do not 

have the same features as the target features. Kieras and 

Meyer (1997) in EPIC predicted that eye movement patterns 

at least in their task, menu search, are 50% top to bottom 

and 50% random (Hornof & Kieras, 1997). The EPIC 

inspired visual mechanism looks for the target object under 

the current location rather than starts at the top of the 

display; current ACT-R does not implement this 

mechanism. 

Static Environment: In this kind of environment, the 

interface displays the application semantics with which the 

user interacts directly and immediately. No other processes 

can modify the environment and there will be only one level 

of commands. For example, we have gathered data by 

showing users pictures in a PDF document and having them 

click on a target object. The object does not change when 

clicked upon.  

Interactive Environment: In this kind of environment, the 

interface content only changes when the user provides input. 

For instance, in Emacs, the display typically only changes 

based upon the user input.  

Dynamic Environment: These user interfaces often have a 

high degree of interaction and are complex, and may be 

non-deterministic to the user. The boundary between 

application and user interface is difficult or impossible to 

control, and what the user can see may change without the 

user’s input. The screen content changes based on both user 

input and time. Therefore, it becomes problematic to decide 

if this interaction should be handled by the model or in the 

application level (Soegaard, 2013).  

The JSegMan system is intended to allow modelers to 

participate more directly in all of these environments, 

particularly the interactive and dynamic environments to 

study computer behavior. 

In this paper, JSegMan has been examined in the Dismal 

spreadsheet mode of Emacs, which requires a nested level 

of commands (Ritter & Wood, 2005). Dismal is a 

spreadsheet developed for Emacs that was designed to 

gather and analyze behavioral data. Users can interact with 

the spreadsheet similar to other Emacs windows and also 

with Dismal function calls. Dismal is an interactive 

environment that its interface components change by user 

input and commands. 

Visual patterns in JSegMan are small images, a 

representation of an object in the visual scene. Figure 1 

shows different patterns on the screen. Visual patterns in 

JSegMan are equivalent to visual location and visual object 

chunks in ACT-R. ACT-R can access all required objects of 

the current visual scene by defining the patterns as 

independent patterns or a logical mix of patterns. JSegMan 

needs to use multi-part patterns to interact with more 

complicated environments. Modelers create required visual 

patterns for JSegMan. 

In the Dismal model, to find a spreadsheet cell, as shown 

in Figure 1, the user first finds the column and then looks 

for the row. To implement this action in JSegMan, we have 

to find the pattern, re-set the overlap region, and find the 

new pattern (e.g., the row) inside a pattern. This nested 

pattern finding will make the models more human-like by 

requiring additional knowledge and steps that take 

additional time and allow the opportunity for additional 

errors. To add this functionality, the matching algorithm 

needs some higher level of built-in logic. 

In JSegMan, the target visual pattern is compared with all 

the same size available frames in the screen. It moves the 

comparison frame one pixel at a time, a constant distance in 

each saccade, from left to right and top to bottom. 
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This approach uses patterns instead of regular visual 

objects. Therefore, visual object features in ACT-R such as 

size and location are not practical for the model. 

Consequently, any changes in the visual scene cannot affect 

patterns such as changes in screen resolution and size. The 

model can still find the target visual object because visual 

attention does not change by screen-x and screen-y. Instead, 

the model finds/re-finds the pattern in the visual scene. 

From Java process, JSegMan can use these features and 

update the visual representation in ACT-R. This approach is 

independent of the task environment’s system because the 

location of task environment on the screen does not change 

the underlying patterns. 

To support working with interaction interfaces,  we 

propose two methods: (a) The model always has a 

knowledge of the dynamic environment because the model 

has to respond appropriately to manipulation of said 

environment (Anderson, Farrell, & Sauers, 1984; Soloway 

& Johnson, 1984), and (b) The model uses pattern matching 

logic. The next section explains these methods in details.  

Visual Pattern Matching Algorithms 

We used two Java packages: (a) Robot and (b) Sikuli (Yeh, 

Chang, & Miller, 2009) to develop the JSegMan system. 

JSegMan functions are divided into two primary sections. 

The first, hand simulation, includes motor module methods, 

move cursor to, get mouse coordinates, handle click, handle 

keypress, and type word. The second section, the eye 

simulation, includes move attention, process display, and 

print visicon (a debugging command).  

Java Robot is used to automate operating system actions 

such as clicks and typing. The Robot package implements 

actions from the ACT-R motor module, such as moving the 

mouse as moving the attention pointer by ACT-R, clicking a 

mouse, and pressing keystrokes. 

The experimental environment is an application GUI that 

contains the information of visible objects such as labels, 

text fields, images, buttons, links, radio buttons, and toggle 

buttons. With Sikuli, we have access to all these objects 

through the screen bitmap and can define them as Java 

objects (Kasper, Correll, & Yeh, 2014; Yeh, Chang, & 

Miller, 2009). 

With Sikuli, cognitive models can identify and control 

GUI components, anything the end users could interact with 

and see on the screen (not just from Java applications), and 

also could support reading from text recognition (OCR). 

More specifically, it uses GUI screenshots for searching 

patterns to direct mouse and keyboard events in contrast 

with seeking screen locations, which may change during the 

experiment. Also, it utilizes Template Matching, a pattern-

matching algorithm in OpenCV, an open-source computer 

vision library in which a pattern (small image) is compared 

against the overlapped image regions (the computer screen). 

Algorithm 1 summarizes the methods. Both the display and 

the visual pattern pixels matrix are the input of 

matchTemplate (Bradski, 2004). In the end, it returns the 

location with a higher matching value. This algorithm has 

been implemented in Sikuli.     

 

Algorithm 1: Visual Pattern Matching 

1 Input: Visual Pattern pixels matrix  

           Display pixels matrix 

Output: Result matrix in the size of the display,  

              maximum value of the Result matrix  

2 matchTemplate(Display, Visual Pattern, Result,  

       CV_TM_CCOEFF_NORMED); 

3 Return MaxLocation(Result); 

 

First, JSegMan loads the visual patterns by processing the 

display. Then, the model uses pattern-matching algorithms 

 

Figure 1. Defining visual patterns in an interactive environment. 
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to find the pattern on the screen and then move the visual 

attention. The current visual scene is a screenshot of a 

computer screen. 

Patterns should be distinct enough for JSegMan to be 

identified uniquely. The pattern-matching algorithm is color 

sensitive. There are some suggested approaches to use 

grayscale (e.g., Kuchhal, 2014). When JSegMan is looking 

for a visual pattern on display, one or more locations may be 

matched by the pattern matching process, depending on the 

number of objects on the display, display complexity, and 

the production rules’ constraints. 

The JSegMan process will check the pattern existence. 

When the JSegMan process is running, the ACT-R process 

pauses and resumes when JSegMan finishes the eye and 

hand simulation. Therefore, the JSegMan task completion 

times will not affect the ACT-R theoretical response time, 

but the system together does run modestly slower in real 

time. Currently, JSegMan takes 195.5 ms for pressing a 

keystroke (Burns, Ritter, & Zhang, 2016) and the eyes 

simulation delay takes 500 ms to do search tasks; JSegMan 

searches up to 1000 ms to find patterns in real time. If the 

JSegMan process cannot find the pattern, it will return an 

error message and pause the ACT-R process.  

 Furthermore, ACT-R passes a Value slot of the vision 

object, the name of the pattern, to the Java process. Finally, 

the task environment responds successfully to each of the 

requests made by the ACT-R model, and the model is able 

to create and attend to objects within the 

dynamically/interactively changing visual scene. 

Figure 1 distinguishes logic pattern matching and regular 

matching. For example, to shift attention to cell B6 in the 

spreadsheet, we can either define a unique independent 

pattern for B6, the B6 visual pattern or define two patterns: 

one for its column and one for the row. Then, JSegMan 

calculates the exact location of B6 and move there directly. 

By collecting not only the reaction time data but also the 

eye-tracking data, we can predict how humans find a cell in 

the spreadsheet environment, and image recognition will 

have a more natural approach. In the Dismal model, the 

cell’s B7 visual pattern is dependent on the B6’s cell value. 

The Sikuli screenshot search engine can match the B7 visual 

pattern after the change in B6 is affected because the B7 

visual pattern contains the B6’s cell value. Using a logic 

pattern matching methods eliminates this dependency.  

The Sikuli script operates only in the visible screen space 

and does not work on invisible GUI elements, such as those 

hidden beneath other windows, in another tab, or scrolled 

out of view. For instance, moving the cursor can cause a 

pop-up description which will block some patterns. 

Additionally, any UI-specific interaction, such as clicking 

the sidebar to scroll down the page, can be implemented by 

Sikuli classes. Further details, installation documents and 

instructions, and example models can be found on the 

project’s website1.  

                                                           
1 https://sites.psu.edu/ftehranchi/projects/ 

Revising the Dismal Model 

To demonstrate the application of JSegMan, we tested our 

system with the Dismal model (Paik et al., 2015). In this 

study, data from 30 participants were collected while 

completing 14 subtasks of the Dismal spreadsheet task for 

mouse users. The Dismal spreadsheet subtasks were related 

to declarative and prosedueralize knowledge. The models’ 

performance and participants’ performance comparison was 

not completely realistic because the detailed trace of hand, 

fingers, and mouse movements were not modeled in much 

detail.  

In our first attempt using JSegMan hands simulation, 

several missing keystrokes in the Paik et al.’s (2015) Dismal 

model had to be added, and the hands and fingers position 

on the virtual keyboard had to be adjusted. We were able to 

implement all the motor actions related to the keyboard in 

the original model. By redefining some of the keystrokes, 

we made more realistic key press actions in the virtual 

keyboard in ACT-R. For some keys that were not reachable 

by either the left or right hands, there had to be a request to 

the motor module to adjust the hand position. We added 

these requests to the original model.  

In our analysis of the output of the model the keystrokes 

and mouse moves, we found missing actions such as 

clicking, including of which increased the total task time 

when compared to previous reports. 

The Dismal spreadsheet environment is an interactive 

environment that changes based on user input. For instance, 

the B6 visual pattern in Figure 1 contains B5 cell’s value. 

JSegMan simulates Dismal model eyes and hands correctly 

with this modification. The structure of the original Dismal 

model is based on pre-knowledge. Therefore, all individual 

patterns should be defined in advance without using the 

logic pattern matching strategy. The declarative chunks 

have been defined to move attention directly to cells rather 

than rows and columns. All patterns of cells are similar to 

the B6 visual pattern in Figure 1. We adjusted 162 

declarative chunks in the original Dismal Model by adding a 

new slot for visual objects. In addition, to model eye 

movements, we added 52 new visual objects and visual 

locations. When JSegMan run with the Dismal model, we 

noticed a few missing sub-tasks (because the model did not 

produce a complete solution in the spreadsheet), so three 

new declarative chunks were added to the original model. 

The sequence of the subtasks for the visual module is not 

correctly interpreted. Therefore, we added a new constraint 

for the production rule that requests a new visual location be 

placed in the visual-location buffer. 

Table 1 shows how the response time has been affected 

by our modification while the model learns over four trials. 

Besides proving the functionality of the JSegMan Dismal 

model, we were able to fit the Dismal model slightly better 

to the human data. The correlation shifts from 0.997 to 

0.998 and reduced the mean square error (MSE).  
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Discussion and Conclusion 

In this paper, we described our efforts to bridge the gap of 

interaction between cognitive models and task 

environments. This article focused on models written with 

the ACT-R cognitive architecture, but other architectures 

could use this approach and system. 

We call our approach JSegMan because simulation eyes 

and hands in ACT-R models require the original ACT-R 

model, the Robot and Sikuli packages in Java, and currently 

Emacs (as a connector). The JSegMan approach will 

increase the usability, applicability, and accessibility of 

cognitive architectures. Also, it can be used as a cognitive 

model examinerto see if the knowledge can do the task. 

Using the JSegMan eyes and hands simulation in place of 

a user, questions about user interface designs such as 

evaluating designs, changing the interface and examining 

the effects on task performance can be answered more 

efficiently. The proposed approach can prove the 

advantages of CMIMS in HCI, and realize the use of user 

models in system design (Pew & Mavor, 2007). JSegMan 

can help implement this approach by testing user interfaces, 

making this process more approachable and more practical. 

Our results running the Dismal model and finding missing 

knowledge illustrates that JSegMan also offers the ability to 

understand a model more accurately. 

The advantages of this approach are: (a) ACT-R code 

does not change due to the JSegMan, (b) JSegMan does not 

affect the ACT-R response time because JSegMan has 

separate timing formula and runs along with ACT-R, and (c) 

models are able to interact with any interface on a PC.   

Further Research and Limitations 

Further work remains. We still need to manually check if 

the action takes place correctly in JSegMan and the eyes 

follow the hands successfully, as well as exploring error 

generation and correction. Furthermore, we plan to use an 

object recognition algorithm to extract the visible objects 

without pre-defining them for models, but this functionality 

is beyond current ACT-R’s action execution.  

JSegMan should use the OCR capability more directly as 

it is likely more efficient and more comfortable to use. 

Additionally, the nested pattern matching that follows the 

EPIC visual search will be useful to implement. The current 

screen scanning approach is a bit mechanistic. The scan 

starts in the upper left every time. It is probably more 

realistic to start either where the previous task left off or 

based on other heuristics that people use (Hornof & Kieras, 

1997).  

In the future, we plan on offering an installation method 

that includes bundled versions of all dependencies, allowing 

near plug and play support with ACT-R. JSegMan 

components could also be expanded so JSegMan can 

observe the users, collect more realistic inputs, and thus 

better predict human performance. Therefore, JSegMan can 

be a substitute for humans in the software testing process 

and can be considered as a software testing tool. 
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