
Modeling Visual Search in Interactive Graphic Interfaces:

Adding Visual Pattern Matching Algorithms to ACT-R

Farnaz Tehranchi (farnaz.tehranchi@psu.edu)
Department of Computer Science and Engineering

Penn State, University Park, PA 16802 USA

Frank E. Ritter (frank.ritter@psu.edu)
College of Information Sciences and Technology

Penn State, University Park, PA 16802 USA

Abstract

We provide an update on JSegMan, an interactive system to
extend the ACT-R cognitive architecture to interact with
dynamic interfaces based on the screen contents and
generating input for the operating system directly. Current
ACT-R models typically interact with the world through
ACT-R's device interfacean abstract representation of the
world that is based on a simulated Lisp environment provided
with ACT-R, or by instrumenting interfaces. In JSegMan,
computer vision pattern matching algorithms and visual
patterns extend the ACT-R cognitive architecture. With
JSegMan, models directly move the cursor on the screen,
click on application GUI objects on PCs, and type through the
use of existing Java libraries. Implementing users' visual
search strategies and input abilities for different visual objects
enables the detailed modeling of interactive tasks on any
interface. The visual pattern matching algorithms serve two
goals: to simulate user behavior in interactive tasks and to
create representations of visual stimuli. We tested our visual
pattern matching approach by using it with an existing model
for a long spreadsheet task. We found that the revised model
more accurately predicted a 20-min task by entirely
performing the task on an uninstrumented and unmodified
interface.

Keywords: Cognitive model; Cognitive architecture; Human-
computer interface, interaction; Perception and motor output;
Computer vision; Simulated eyes and hands.

Introduction

Cognitive architectures are programming languages

specifically designed for modeling unified theory of all

human cognition, such as Soar (Laird, 2012; Newell, 1990)

and ACT-R (Anderson, 2007). Using models as users have

been envisioned before (e.g., Byrne, 1994; Lohse, 1997),

but has not yet been widely applied. These models require

simulating an interactive behavior.

ACT-R’s interactive behaviors include moving the cursor,

clicking, and typing. Although cognitive architectures such

as ACT-R provide powerful and flexible frameworks for

modeling general human behavior, only a portion of their

capabilities are often used to capture many complex real-

world behaviors (Fu et al., 2003), because the skills can only

be applied with unmodified ACT-R in specialized windows

provided with ACT-R. Additionally, cognitive models need

to interact with interfaces to be useful in human-computer

interaction (HCI) (Byrne & Kirlik, 2005; Kieras, 2009;

Ritter et al., 2000).

A Cognitive Model Interface Management System

(CMIMS), which is an extension of the User Interface

Management System (UIMS) concept (Ritter et al., 2001) is

an approach to provide models access to interfaces so that

cognitive models can be applied more routinely in HCI.

ACT-R/PM (Byrne & Anderson, 1998) is a CMIMS that

allows ACT-R models to interact with interfaces built

within a special Common Lisp window. Another successful

version of the interactive model is Salvucci’s (2006) driver

model. Salvucci also introduced an ACT-R system with an

implementation of the ACT-R cognitive architecture in the

Java programming language. It can be used as a library in

other ACT-R projects (Salvucci, 2009, 2013).

In all these approaches, it will be difficult to reuse these

models (their task knowledge) because of the nature of the

embedded task environment—the models can only interact

with their instrumented interfaces. The interfaces that have

been modified to provide the models access to information

on the display in that application. Also, the interfaces have

been adjusted to accept commands directly from the models.

Even in JSON ACT-R, which makes a general approach

available for these modifications (Hope, Schoelles, & Gray,

2014), reconfiguring the connection is challenging.

We take inspiration from SegMan, segmenting the screen

to different features (e.g., based on color) and manipulating

interface usage. SegMan was productive and was used to

interact with a wide range of interfaces (Ritter, Kukreja, &

St. Amant, 2007; St. Amant et al., 2005; St. Amant & Riedl,

2001). However, SegMan is hard to use and maintain at this

point. We have also explored providing a connection to any

task in Emacs, ESegMan, such as pressing a key, moving a

cursor, clicking a mouse, and moving attention (Tehranchi

& Ritter, 2017). ESegMan could only manipulate Emacs

window and is limited to Emacs.

These results have led us to design JSegMan, a system

written in Java that extends ACT-R to provide models with

interaction with any interface on a PC, and thus the world.

We report elsewhere its hands model that provides typing

and mouse interaction (Tehranchi & Ritter, 2018).

JSegMan creates a way to interact with all interfaces using

an extended Java library to input motor commands

(keystrokes, mouse moves, and mouse clicks).

Proceedings of the 16th International Conference on Cognitive Modeling (ICCM 2018)

162

We report here the first vision system for cognitive

models to see objects on the screen using pattern recognition

and other computer vision algorithms.

As an example application, we use ACT-R and JSegMan

to perform the Dismal spreadsheet task using an existing

large (500 rule) ACT-R model (Paik, Kim, Ritter, & Reitter,

2015). The revised model with JSegMan predicted the

response time more accurately while, importantly, using the

same but unmodified interface that the human subjects used.

Finally, we provide conclusions, lessons, and insights.

Visual Attention and Environment

There are theoretical and empirical challenges in

understanding visual attention and implementing its

mechanism. Constructing a system to simulate attention

based on eye movement data such as fixation and saccade

can enhance our knowledge of perceptual-motor aspects of

the human system. Besides cognition, perception, and action

are also essential for resembling the models’ behavior closer

to the human behavior. The focus of cognitive analysis is

often on cognition and response time, rather than an analysis

of interaction and knowledge related to the interaction.

Given the visual nature of most current user interfaces, the

vision module is relatively central in modeling most HCI

tasks. The vision module is used to determine what ACT-

R/PM “sees” (Byrne, 2001).

Each object on display will be represented by one or more

features in the vision module's icon. The vision module

creates chunks from these features that provide declarative

memory representations of the visual scene. These chunks

are visual location and visual object types. Production rules’

constraints can match chunks. After the vision module

creates a chunk representing an object, visual attention must

be directed to the location of that object, through a visual

location chunk.

Anderson et al. (1998) introduced the visual hunt-feature

and found-target in which there are the equivalents of move

attention and move the cursor in current ACT-R. The vision

module move-attention operator shifts attention to a

location; ACT-R/PM must have representation for those

visual locations.

Salvucci (2001) distinguished eye movements and shifts

of attention. The ACT-R visual mechanism mainly

considers moving attention to be the same as a saccade and

reflects a top-down search without backtracking.

Furthermore, the visual mechanism skips items that do not

have the same features as the target features. Kieras and

Meyer (1997) in EPIC predicted that eye movement patterns

at least in their task, menu search, are 50% top to bottom

and 50% random (Hornof & Kieras, 1997). The EPIC

inspired visual mechanism looks for the target object under

the current location rather than starts at the top of the

display; current ACT-R does not implement this

mechanism.

Static Environment: In this kind of environment, the

interface displays the application semantics with which the

user interacts directly and immediately. No other processes

can modify the environment and there will be only one level

of commands. For example, we have gathered data by

showing users pictures in a PDF document and having them

click on a target object. The object does not change when

clicked upon.

Interactive Environment: In this kind of environment, the

interface content only changes when the user provides input.

For instance, in Emacs, the display typically only changes

based upon the user input.

Dynamic Environment: These user interfaces often have a

high degree of interaction and are complex, and may be

non-deterministic to the user. The boundary between

application and user interface is difficult or impossible to

control, and what the user can see may change without the

user’s input. The screen content changes based on both user

input and time. Therefore, it becomes problematic to decide

if this interaction should be handled by the model or in the

application level (Soegaard, 2013).

The JSegMan system is intended to allow modelers to

participate more directly in all of these environments,

particularly the interactive and dynamic environments to

study computer behavior.

In this paper, JSegMan has been examined in the Dismal

spreadsheet mode of Emacs, which requires a nested level

of commands (Ritter & Wood, 2005). Dismal is a

spreadsheet developed for Emacs that was designed to

gather and analyze behavioral data. Users can interact with

the spreadsheet similar to other Emacs windows and also

with Dismal function calls. Dismal is an interactive

environment that its interface components change by user

input and commands.

Visual patterns in JSegMan are small images, a

representation of an object in the visual scene. Figure 1

shows different patterns on the screen. Visual patterns in

JSegMan are equivalent to visual location and visual object

chunks in ACT-R. ACT-R can access all required objects of

the current visual scene by defining the patterns as

independent patterns or a logical mix of patterns. JSegMan

needs to use multi-part patterns to interact with more

complicated environments. Modelers create required visual

patterns for JSegMan.

In the Dismal model, to find a spreadsheet cell, as shown

in Figure 1, the user first finds the column and then looks

for the row. To implement this action in JSegMan, we have

to find the pattern, re-set the overlap region, and find the

new pattern (e.g., the row) inside a pattern. This nested

pattern finding will make the models more human-like by

requiring additional knowledge and steps that take

additional time and allow the opportunity for additional

errors. To add this functionality, the matching algorithm

needs some higher level of built-in logic.

In JSegMan, the target visual pattern is compared with all

the same size available frames in the screen. It moves the

comparison frame one pixel at a time, a constant distance in

each saccade, from left to right and top to bottom.

163

This approach uses patterns instead of regular visual

objects. Therefore, visual object features in ACT-R such as

size and location are not practical for the model.

Consequently, any changes in the visual scene cannot affect

patterns such as changes in screen resolution and size. The

model can still find the target visual object because visual

attention does not change by screen-x and screen-y. Instead,

the model finds/re-finds the pattern in the visual scene.

From Java process, JSegMan can use these features and

update the visual representation in ACT-R. This approach is

independent of the task environment’s system because the

location of task environment on the screen does not change

the underlying patterns.

To support working with interaction interfaces, we

propose two methods: (a) The model always has a

knowledge of the dynamic environment because the model

has to respond appropriately to manipulation of said

environment (Anderson, Farrell, & Sauers, 1984; Soloway

& Johnson, 1984), and (b) The model uses pattern matching

logic. The next section explains these methods in details.

Visual Pattern Matching Algorithms

We used two Java packages: (a) Robot and (b) Sikuli (Yeh,

Chang, & Miller, 2009) to develop the JSegMan system.

JSegMan functions are divided into two primary sections.

The first, hand simulation, includes motor module methods,

move cursor to, get mouse coordinates, handle click, handle

keypress, and type word. The second section, the eye

simulation, includes move attention, process display, and

print visicon (a debugging command).

Java Robot is used to automate operating system actions

such as clicks and typing. The Robot package implements

actions from the ACT-R motor module, such as moving the

mouse as moving the attention pointer by ACT-R, clicking a

mouse, and pressing keystrokes.

The experimental environment is an application GUI that

contains the information of visible objects such as labels,

text fields, images, buttons, links, radio buttons, and toggle

buttons. With Sikuli, we have access to all these objects

through the screen bitmap and can define them as Java

objects (Kasper, Correll, & Yeh, 2014; Yeh, Chang, &

Miller, 2009).

With Sikuli, cognitive models can identify and control

GUI components, anything the end users could interact with

and see on the screen (not just from Java applications), and

also could support reading from text recognition (OCR).

More specifically, it uses GUI screenshots for searching

patterns to direct mouse and keyboard events in contrast

with seeking screen locations, which may change during the

experiment. Also, it utilizes Template Matching, a pattern-

matching algorithm in OpenCV, an open-source computer

vision library in which a pattern (small image) is compared

against the overlapped image regions (the computer screen).

Algorithm 1 summarizes the methods. Both the display and

the visual pattern pixels matrix are the input of

matchTemplate (Bradski, 2004). In the end, it returns the

location with a higher matching value. This algorithm has

been implemented in Sikuli.

Algorithm 1: Visual Pattern Matching

1 Input: Visual Pattern pixels matrix

 Display pixels matrix

Output: Result matrix in the size of the display,

 maximum value of the Result matrix

2 matchTemplate(Display, Visual Pattern, Result,

 CV_TM_CCOEFF_NORMED);

3 Return MaxLocation(Result);

First, JSegMan loads the visual patterns by processing the

display. Then, the model uses pattern-matching algorithms

Figure 1. Defining visual patterns in an interactive environment.

164

to find the pattern on the screen and then move the visual

attention. The current visual scene is a screenshot of a

computer screen.

Patterns should be distinct enough for JSegMan to be

identified uniquely. The pattern-matching algorithm is color

sensitive. There are some suggested approaches to use

grayscale (e.g., Kuchhal, 2014). When JSegMan is looking

for a visual pattern on display, one or more locations may be

matched by the pattern matching process, depending on the

number of objects on the display, display complexity, and

the production rules’ constraints.

The JSegMan process will check the pattern existence.

When the JSegMan process is running, the ACT-R process

pauses and resumes when JSegMan finishes the eye and

hand simulation. Therefore, the JSegMan task completion

times will not affect the ACT-R theoretical response time,

but the system together does run modestly slower in real

time. Currently, JSegMan takes 195.5 ms for pressing a

keystroke (Burns, Ritter, & Zhang, 2016) and the eyes

simulation delay takes 500 ms to do search tasks; JSegMan

searches up to 1000 ms to find patterns in real time. If the

JSegMan process cannot find the pattern, it will return an

error message and pause the ACT-R process.

 Furthermore, ACT-R passes a Value slot of the vision

object, the name of the pattern, to the Java process. Finally,

the task environment responds successfully to each of the

requests made by the ACT-R model, and the model is able

to create and attend to objects within the

dynamically/interactively changing visual scene.

Figure 1 distinguishes logic pattern matching and regular

matching. For example, to shift attention to cell B6 in the

spreadsheet, we can either define a unique independent

pattern for B6, the B6 visual pattern or define two patterns:

one for its column and one for the row. Then, JSegMan

calculates the exact location of B6 and move there directly.

By collecting not only the reaction time data but also the

eye-tracking data, we can predict how humans find a cell in

the spreadsheet environment, and image recognition will

have a more natural approach. In the Dismal model, the

cell’s B7 visual pattern is dependent on the B6’s cell value.

The Sikuli screenshot search engine can match the B7 visual

pattern after the change in B6 is affected because the B7

visual pattern contains the B6’s cell value. Using a logic

pattern matching methods eliminates this dependency.

The Sikuli script operates only in the visible screen space

and does not work on invisible GUI elements, such as those

hidden beneath other windows, in another tab, or scrolled

out of view. For instance, moving the cursor can cause a

pop-up description which will block some patterns.

Additionally, any UI-specific interaction, such as clicking

the sidebar to scroll down the page, can be implemented by

Sikuli classes. Further details, installation documents and

instructions, and example models can be found on the

project’s website1.

1 https://sites.psu.edu/ftehranchi/projects/

Revising the Dismal Model

To demonstrate the application of JSegMan, we tested our

system with the Dismal model (Paik et al., 2015). In this

study, data from 30 participants were collected while

completing 14 subtasks of the Dismal spreadsheet task for

mouse users. The Dismal spreadsheet subtasks were related

to declarative and prosedueralize knowledge. The models’

performance and participants’ performance comparison was

not completely realistic because the detailed trace of hand,

fingers, and mouse movements were not modeled in much

detail.

In our first attempt using JSegMan hands simulation,

several missing keystrokes in the Paik et al.’s (2015) Dismal

model had to be added, and the hands and fingers position

on the virtual keyboard had to be adjusted. We were able to

implement all the motor actions related to the keyboard in

the original model. By redefining some of the keystrokes,

we made more realistic key press actions in the virtual

keyboard in ACT-R. For some keys that were not reachable

by either the left or right hands, there had to be a request to

the motor module to adjust the hand position. We added

these requests to the original model.

In our analysis of the output of the model the keystrokes

and mouse moves, we found missing actions such as

clicking, including of which increased the total task time

when compared to previous reports.

The Dismal spreadsheet environment is an interactive

environment that changes based on user input. For instance,

the B6 visual pattern in Figure 1 contains B5 cell’s value.

JSegMan simulates Dismal model eyes and hands correctly

with this modification. The structure of the original Dismal

model is based on pre-knowledge. Therefore, all individual

patterns should be defined in advance without using the

logic pattern matching strategy. The declarative chunks

have been defined to move attention directly to cells rather

than rows and columns. All patterns of cells are similar to

the B6 visual pattern in Figure 1. We adjusted 162

declarative chunks in the original Dismal Model by adding a

new slot for visual objects. In addition, to model eye

movements, we added 52 new visual objects and visual

locations. When JSegMan run with the Dismal model, we

noticed a few missing sub-tasks (because the model did not

produce a complete solution in the spreadsheet), so three

new declarative chunks were added to the original model.

The sequence of the subtasks for the visual module is not

correctly interpreted. Therefore, we added a new constraint

for the production rule that requests a new visual location be

placed in the visual-location buffer.

Table 1 shows how the response time has been affected

by our modification while the model learns over four trials.

Besides proving the functionality of the JSegMan Dismal

model, we were able to fit the Dismal model slightly better

to the human data. The correlation shifts from 0.997 to

0.998 and reduced the mean square error (MSE).

165

Discussion and Conclusion

In this paper, we described our efforts to bridge the gap of

interaction between cognitive models and task

environments. This article focused on models written with

the ACT-R cognitive architecture, but other architectures

could use this approach and system.

We call our approach JSegMan because simulation eyes

and hands in ACT-R models require the original ACT-R

model, the Robot and Sikuli packages in Java, and currently

Emacs (as a connector). The JSegMan approach will

increase the usability, applicability, and accessibility of

cognitive architectures. Also, it can be used as a cognitive

model examinerto see if the knowledge can do the task.

Using the JSegMan eyes and hands simulation in place of

a user, questions about user interface designs such as

evaluating designs, changing the interface and examining

the effects on task performance can be answered more

efficiently. The proposed approach can prove the

advantages of CMIMS in HCI, and realize the use of user

models in system design (Pew & Mavor, 2007). JSegMan

can help implement this approach by testing user interfaces,

making this process more approachable and more practical.

Our results running the Dismal model and finding missing

knowledge illustrates that JSegMan also offers the ability to

understand a model more accurately.

The advantages of this approach are: (a) ACT-R code

does not change due to the JSegMan, (b) JSegMan does not

affect the ACT-R response time because JSegMan has

separate timing formula and runs along with ACT-R, and (c)

models are able to interact with any interface on a PC.

Further Research and Limitations

Further work remains. We still need to manually check if

the action takes place correctly in JSegMan and the eyes

follow the hands successfully, as well as exploring error

generation and correction. Furthermore, we plan to use an

object recognition algorithm to extract the visible objects

without pre-defining them for models, but this functionality

is beyond current ACT-R’s action execution.

JSegMan should use the OCR capability more directly as

it is likely more efficient and more comfortable to use.

Additionally, the nested pattern matching that follows the

EPIC visual search will be useful to implement. The current

screen scanning approach is a bit mechanistic. The scan

starts in the upper left every time. It is probably more

realistic to start either where the previous task left off or

based on other heuristics that people use (Hornof & Kieras,

1997).

In the future, we plan on offering an installation method

that includes bundled versions of all dependencies, allowing

near plug and play support with ACT-R. JSegMan

components could also be expanded so JSegMan can

observe the users, collect more realistic inputs, and thus

better predict human performance. Therefore, JSegMan can

be a substitute for humans in the software testing process

and can be considered as a software testing tool.

Acknowledgments

This work was funded partially by ONR (N00014-15-1-

2275). David Reitter provided useful comments on Emacs

and Aquamacs (the Emacs version for Mac). We wish to

thank Jong Kim who provided the idea for ESegMan and

Dan Bothell for his assistance with ACT-R.

References

Anderson, J. R. (2007). How can the human mind exist in

the physical universe? New York, NY: Oxford University

Press.

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning

to program in LISP. Cognitive Science, 8, 87-129.

Anderson, J. R., Matessa, M., & Lebiere, C. (1998). The

visual interface. In J. R. Anderson & C. Lebiere (Eds.),

The atomic components of thought. Mahwah, NJ:

Erlbaum.

Bradski, G. B. (2004). Open source computer vision library:

Springer.

Burns, M., Ritter, F. E., & Zhang, X. (2016). Using

Naturalistic Typing to Update Architecture Typing

Constants. In Proceedings of ICCM - 2016-14th

International Conference on Cognitive Modeling.

University Park, PA: Penn State.

Byrne, M. D. (2001). ACT-R/PM and menu selection:

Applying a cognitive architecture to HCI. International

Journal of Human-Computer Studies, 55(1), 41-84.

Table 1: The mean task completion time in seconds for the four learning sessions for the Dismal mouse-interface task

(Paik et al., 2015) and correlation with the human data (N=30).

M SE M SE M SE M SE

1 1366 60.8 1326 12.078 1338 12.06 1339 11.72

2 894 26.6 891 6.175 893 5.144 894 6.498

3 727 25.5 693 4.496 700 6.207 704 5.019

4 659 22.7 594 5.775 603 4.35 614 4.381

MSE 1747.5 1162.5 820.75

Day
Human Original Model

JSegMan Correction

Hands

JSegMan Correction

Hands and Eyes

Correlation 0.997 0.9978 0.9984

166

Byrne, M. D., & Anderson, J. R. (1998). Perception and

action. In J. R. Anderson & C. Lebiere (Eds.), The atomic

components of thought. Mahwah, NJ: Erlbaum.

Byrne, M. D., & Kirlik, A. (2005). Using computational

cognitive modeling to diagnose possible sources of

aviation error. International Journal of Aviation

Psychology, 15(2), 135-155.

Byrne, M. D., Wood, S. D., Sukaviriya, P., Foley, J. D., &

Kieras, D. E. (1994). Automating interface evaluation. In

Proceedings of the CHI‘94 Conference on Human

Factors in Computer Systems, 232-237. ACM: New

York, NY.

Fu, D., Houlette, R., Jensen, R., Bascara, O., & San Mateo,

C. (2003). A visual, object-oriented approach to

simulation behavior authoring. In Proceedings of the

Industry/Interservice, Training, Simulation & Education

Conference (I/ITSEC 2003).

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014).

Simplifying the interaction between cognitive models and

task environments with the JSON Network Interface.

Behavior Research Methods, 46(4), 1007-1012.

Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling

reveals menu search is both random and systematic. In

Proceedings of the CHI‘97 Conference on Human

Factors in Computer Systems, 107-114. ACM: New

York, NY.

Kasper, M., Correll, N., & Yeh, T. (2014). Abstracting

perception and manipulation in end-user robot

programming using Sikuli. In Technologies for Practical

Robot Applications (TePRA), 2014 IEEE International

Conference on, 1-6. IEEE.

Kieras, D. E. (2009). Model-based evaluation. The human-

computer interaction: Development process, 294-310.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the

EPIC architecture for cognition and performance with

application to human-computer interaction. Human-

Computer Interaction, 12, 391-438.

Kuchhal, P. (2014). Ameliorating the image matching

algorithm of Sikuli using Artificial Neural Networks.

International Journal of Computer Science &

Communication, 5(1), 1-4.

Laird, J. E. (2012). The Soar cognitive architecture.

Cambridge, MA: MIT Press.

Lohse, G. L. (1997). Models of graphical perception. In M.

Helander, T. K. Landauer & P. Prabhu (Eds.), Handbook

of Human-Computer Interaction (pp. 107-135).

Amsterdam: Elsevier Science B. V.

Newell, A. (1990). Unified Theories of Cognition.

Cambridge, MA: Harvard University Press.

Paik, J., Kim, J. W., Ritter, F. E., & Reitter, D. (2015).

Predicting user performance and learning in human-

computer interaction with the Herbal compiler. ACM

Transactions on Computer-Human Interaction, 22(5),

Article No.: 25.

Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system

integration in the system development process: A new

look. Washington, DC: National Academy Press.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M.

(2000). Supporting cognitive models as users. ACM

Transactions on Computer-Human Interaction, 7(2), 141-

173.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M.

(2001). User interface evaluation: How cognitive models

can help. In J. Carroll (Ed.), Human-Computer

Interaction in the New Millenium (pp. 125-147). Reading,

MA: Addison-Wesley.

Ritter, F. E., Kukreja, U., & St. Amant, R. (2007). Including

a model of visual processing with a cognitive architecture

to model a simple teleoperation task. Journal of Cognitive

Engineering and Decision Making, 1(2), 121-147.

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet

for sequential data analysis and HCI experimentation.

Behavior Research Methods, 37(1), 71-81.

Salvucci, D. D. (2001). An integrated model of eye

movements and visual encoding. Cognitive Systems

Research, 1(4), 201-220.

Salvucci, D. D. (2006). Modeling driver behavior in a

cognitive architecture. Human Factors, 48(3), 362-380.

Salvucci, D. D. (2009). Rapid prototyping and evaluation of

in-vehicle interfaces. ACM Transactions on Computer-

Human Interaction, 16(2), Article 9, 33 pages.

Salvucci, D. D. (2013). Integration and reuse in cognitive

skill acquisition. Cognitive Science, 37(5), 829-860.

Soegaard, M. (2013). Interaction design foundation.

Interaction Design Foundation–Free educational

materials.

Soloway, W. L. J.-E., & Johnson, W. (1984). Intention-

based diagnosis of programming errors. In Proceedings of

the 5th National Conference on Artificial Intelligence,

Austin, TX, 162-168.

St. Amant, R., Riedel, M. O., Ritter, F. E., & Reifers, A.

(2005). Image processing in cognitive models with

SegMan. In Proceedings of HCI International '05,

Volume 4 - Theories Models and Processes in HCI. Paper

1869. Erlbaum: Mahwah, NJ.

St. Amant, R., & Riedl, M. O. (2001). A perception/action

substrate for cognitive modeling in HCI. International

Journal of Human-Computer Studies, 55(1), 15-39.

Tehranchi, F., & Ritter, F. E. (2017). An eyes and hands

model for cognitive architectures to interact with user

interfaces. In MAICS, The 28th Modern Artificial

Intelligence and Cognitive Science Conference, 15-20.

Fort Wayne, IN: Purdue University.

Tehranchi, F., & Ritter, F. E. (2018). Using Java to Provide

Cognitive Models with a Universal Way to Interact with

Graphic Interfaces. In International Conference on Social

Computing, Behavioral-Cultural Modeling and

Prediction and Behavior Representation in Modeling and

Simulation. Washington DC, USA.

Yeh, T., Chang, T.-H., & Miller, R. C. (2009). Sikuli: Using

GUI screenshots for search and automation. In

Proceedings of the 22nd Annual ACM symposium on User

interface software and technology, 183-192. ACM.

167

