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external controller to its motors or motor equivalents, and translates them into operating system events.  SegMan is 
currently limited to operation in user interfaces for Microsoft Windows 95/98/2000/XP. 
 
Internally, SegMan uses simple computational vision routines to pick out features of interest in the Microsoft 
Windows graphical interface. The basic architecture of the SegMan system has a dynamic-link library (DLL), which 
is able to capture the screen as a bitmap and then process the bitmap into lists of pixel groups. A pixel group is a 
region of the screen where all pixels are like-colored. All pixels on the screen are assigned to non-overlapping pixel 
groups. 
 
In Figure 2, in the diagram on the left, Group 1 is a pixel group composed of the pixels in the letter 'F'. Group 2 is 
the pixel group composed of the pixels in the dot. Group 3 is the pixel group composed of the pixels in the stem of 
the 'i'. Group 4 is the pixel group consisting of the background pixels.  Pixel groups can be examined for specific 
shapes and for relationships between shapes. For shapes that consist of a single pixel group, such as the letter 'F', 
recognition is simple. One could either look at the arrangement of pixels within the group, or one could look at the 
pixel neighbour  numbers. 
 

 

 

 
 

Figure 2.  Pixel patterns 
 

 

Figure 1. SegMan integration with a cognitive model. 



Each pixel group has an array of pixel neighbour numbers associated with it. The pixel neighbour numbers are 
encodings of the relationships between pixels within the group. Each pixel in a group has 0-8 neighbours, as shown 
on the upper right in Figure 2. Looking at an individual pixel in a pixel group, there are eight possible positions that 
a neighbour can be in: west, southwest, south, southeast, east, northeast, north, and northwest. We assign a 
numerical value to each neighbour position, respectively. Thus the west position is assigned to "0" and the northwest 
position is assigned to "7".  Each of these numbers can be mapped to a bit in a single integer. Thus if a pixel is the 
top-right corner of a box, it has neighbours to the south (position 2), southeast (position 3), and to the east (position 
4). The pixel neighbour value of that top-right corner pixel is 22 + 23 +24 = 28. To characterize an entire pixel group, 
based on the pixel neighbour integer associated with each pixel, we maintain a vector indexed by 0..255, each entry 
of which is the number of pixels in a pixel group with that specific pixel neighbour value.  For example, in a pixel 
group that represents a 5 x 5 solid box, the inner 9 elements have a pixel neighbour value of 255; the entry at index 
255 in the vector representing the pixel group is thus 9. 
 
A pixel group can also be characterized by properties other than pixel neighbour properties, including the following: 

• count  is the number of pixels in the group; 
• size  is the area of the group's bounding box; 
• area is the ratio of count to size; 
• height  is the height of the group's bounding box; 
• width  is the width of the group's bounding box; 
• red  is a component of the group's RGB value; 
• green  is a component of the group's RGB value; 
• blue  is a component of the group's RGB value; 
• color is the group's numerical RGB value; 
• proportion is the group's height divided by its width, or 0 if width is 0. 

 
 We define pixel patterns to capture combinations of group properties. A simple declarative form allows the 
definition of specific patterns.  For example, a simple definition corresponding to a small box of a specific color and 
proportions can be expressed as given below, in which the unlabeled numbers correspond to pixel neighbor values.  
The definition can be entered in text form or automatically generated by a screen-parsing program, with specific 
patterns selected and named by the user.  
 

(define-pattern small-box () 
  (:and   (:count 42) (:area 1) (:size 42) (:height 6) (:width 7) 
 (:red 212) (:green 208) (:blue 200) 
 (:proportion 5/6) 
 7 28 (31 5) 112 (124 4) 193 (199 4) (241 5) (255 20))) 

 
Segmentation of the screen into pixel groups gives us power in terms of recognizing features. However, simple 
segmentation only allows us to see shapes that consist of a single pixel group. Often it is valuable to recognize 
features that are made up of more than one pixel group. Examples of features made up of multiple pixel groups are 
icons, buttons, window borders, and strings of letters. 
 
To recognize features that are not made up of a single pixel group we must employ a two-step process. The first step 
is to find the pixel groups that make up the feature. We do this by looking for specific pixel groups that might be 
part of overall feature. We do this by selecting pixel groups that have the right shape (the correct pixel neighbour  
numbers). Not all pixel groups with the correct shape are necessarily going to be part of the feature we are trying to 
detect. The second step is to choose from the candidate pixel groups the ones that are in proximity to each other and 
in the correct spatial configuration. The SegMan system provides a variety of functions that find pixel groups based 
on the spatial relationship to others. 
 
For example, a standard Windows button is a rectilinear feature that appears to be raised out of the screen. This 
raised effect is created by applying a thin strip of color around the edges; lighter on the top and darker on the 
bottom. A sample is shown on the bottom right in Figure 2.  As far as SegMan is concerned, a button is made up of 
three pixel groups: a rectangle and two L-shaped regions. However, these three groups must be in the correct 
relationship to each other in order to form what looks like a button. The lighter L-shape (upper shading) must be 



directly above and to the left of the rectangle and the darker L-shape (lower shading) must be directly below and to 
the right of the rectangle. When these relationships hold, there is a feature recognizable to the human use as a button. 
 
In the first stage, we find all the pixel groups of the shapes we need: rectangles, upper-shading, and lower-shading. 
Buttons is an empty list into which we will collect all features that look like buttons. In the first stage, we iterate 
through the rectangles, looking for those in the proper relationship to the other shapes we have indicated. We find a 
pixel group in the upper-shadings list that most closely contains the rectangle. We find a pixel group in the lower-
shadings list that most closely contains the rectangle. Containment is a useful relationship because, even though 
upper-shadings and lower-shadings are L-shaped, their bounding boxes enclose a much larger area that, ideally, will 
contain a rectangle if the feature is a button. The next check is proximity of the L-shapes to the rectangle. This is 
important because a button might be contained in a window and windows also are bounded by L-shaped shaded 
areas. But if the shading belonged to a window, one or both shadings will probably be further than five pixels away. 
Finally, we must make sure that the L-shape above the rectangle is lighter in color than the L-shape below the 
rectangle. If the upper L-shape was darker than the lower L-shape, perceptually, the feature will look recessed into 
the screen instead of raised. 
 
3 Cognitive modelling domains for image processing 
 
The image processing laid out in Section 2 is very simple in comparison with algorithms used for machine vision in 
demanding, real-world environments.  As we shall see, however, SegMan’s range of capabilities is surprisingly 
robust when applied to user interfaces, and even somewhat beyond. 
 
3.1 Moving toward interaction with off-the-shelf software 
 
Our earliest work on image processing of computer screens did not focus explicitly on cognitive modelling.  Rather, 
we speculated that if an agent could observe and interpret all of the information seen by the user in interacting with a 
software application, the agent could provide better assistance, by providing advice or even offering to carry out 
tasks for the user.  Our first demonstration of image processing capabilities for this purpose was in a system that 
could play the game of Windows Solitaire autonomously (Zettlemoyer & St. Amant, 1999).  Solitaire was a 
reasonable target for our work: it has no application programming interface (API), which means that there is no 
other way for an agent to gain information about the state of the system except through the images presented on the 
screen; the internals of the system are not accessible to be re-written to better suit the needs of an external 
programmatic controller; Solitaire is possibly one of the most widely installed pieces of software in the world. 
 
Figure 3 shows the interface to Solitaire.  We developed a specification of the knowledge necessary to play Solitaire 
at a novice level, and implemented it in a language appropriate for an autonomous planning system to execute (St. 
Amant & Zettlemoyer, 2000).  The system proved capable of recognizing most Windows icons, as well as the more 
specialized patterns representing card suits and ranks in Solitaire. 
 

 
Figure 3.  Solitaire user interface 



3.2 Interacting with productivity applications 
 
It soon became clear, unfortunately, that the performance of our image processing algorithms was insufficient to 
support an interactive agent to assist users in the user interface.  Nevertheless the autonomous behaviour of a 
program in interacting with off-the-shelf software proved appealing to cognitive modellers.  We developed follow-
on applications for SegMan, in the sense that we added new patterns to its library, enabling a controller to recognize 
a greater variety of interface widgets, and we extended the system’s ability to perform character recognition of a few 
specific but common fonts.  Figure 4 shows the next two applications we addressed: Microsoft Windows Notepad 
and Adobe Illustrator.  Using SegMan, a simple programmatic controller in which squares, lines, circles, and other 
shapes could be represented produced the picture shown on the right.  From a cognitive modelling standpoint, the 
interface on the left, Notepad, is more significant: we were able to reproduce the behaviour of a tutorial model based 
on the ACT-R architecture, using an external text editor as an experiment testbed, rather than a purpose-built 
interface. 
 
3.3 Interacting with more dynamic environments 
 
SegMan takes advantage of a number of properties of the user interface, in order to be effective.  As visual 
environments, many user interfaces rely on relatively simple shapes that are composed of discrete visual elements 
that fall into predictable, static arrangements.  For many software applications, however, such properties do not hold.  
We examined two new applications in order to test SegMan’s effectiveness in dealing with more dynamic 
environments.  The application shown on the left in Figure 5 is a Mars Rover game.  The rover is shown by the icon 
in the middle left of the screen.  It moves about its environment, avoiding obstacles such as the large rock above it 
and collecting samples from the beneath the smaller rocks to its right.  Controlling the rover is straightforward for a 
human user: it involves selecting a direction via arrow keys and pressing an accelerator key to move the rover 
forward.  This application was the first attempt to have SegMan engage in continuous control of the environment, 

 

 

 

Figure 4.  SegMan applications: Notepad and Illustrator 
 

 

 

 
Figure 5.  SegMan applications: roving on Mars and driving 

 



with monitoring of the direction and location of the rover.  From an image processing standpoint, the task is still 
simple, involving recognition of the front bumper of the rover and rocks that stand out from the background.  
Processing is complicated by the scrolling behaviour of the application when the rover reaches the edge of the 
display; this requires distinguishing objects seen for the first time from objects that have simply changed position 
due to a different viewpoint. 
 
A driving game, shown on the right in Figure 5, was more challenging with respect to dynamic aspects of the 
environment.  In this game, an accelerator, a brake, and steering controls are provided to the user, who must drive 
the simulated car around curves and through tunnels, avoiding cars in both lanes.  A cognitive model we built for 
this purpose follows relatively simple heuristics for accelerating to an appropriate speed and staying in the centre of 
the lane.  Image processing was again straightforward, though because the environment is constantly changing as the 
car moves forward, there were stronger performance constraints on SegMan (Shah et al., 2003).  Our selection of 
specific visual features for SegMan to process was guided by observations of human driving behaviour (Land & 
Horwood, 1995; Land & Lee, 1994).  These indicate that human drivers focus on specific areas of their field of view 
in deciding whether and when to turn. As with the rover game, it turned out that only a small number of visual 
properties are relevant for competence in this task.  The edges of the road and the centre stripe provide sufficient 
information for the cognitive model to stay in its lane.  Identification of this information is not trivial, due to changes 
in the colours of the surfaces in the environment as the car passes through tunnels, over bridges, and by roadside 
objects that partially obscure its view, but it turned out to be possible with the simple image processing performed 
by SegMan. 
 
3.4 Interacting with more complex environments 
 
To further test SegMan’s ability to interact with off-the-shelf software we turned to a much more complex online 
visual interface, an online Casio’s Roulette board, as shown in Figure 6.  As with the interfaces in the previous 
section, the roulette interface requires real-time response, which imposes constraints on SegMan’s processing time. 
The cognitive model used to drive this application is a relatively simple ACT-R model that collects visual 
information via specialized patterns  devised for the roulette application.  The model fires decision-making 
productions and uses SegMan’s motor functionality to interact with the application.  The model was based on a 
simple theory of gambling.  The payout function is simple doubling-up scheme, which is successful only with 
infinite funds but is a losing strategy in reality. We found the successful implementation of an ACT-R model using 
SegMan in order to interact with a live online interface to be very encouraging.  However, throughout the course of 
developing the model and integrating it with SegMan, it became apparent that SegMan is not yet capable of 
processing this complex of an interface in its entirety. The possible lessons and implications of this will be covered 
in Section 4. 
 

 
Figure 6.  Roulette user interface 

 



 

3.5 Generalizing over cognitive modelling architectures 
 
Up until this point, while we had been able to show that SegMan could provide control over a user interface to a 
cognitive model, a planning system, or an arbitrary program, our cognitive modelling work had been limited to the 
ACT-R architecture.  We believed that it would be useful to demonstrate explicitly that SegMan could work with 
other modelling architectures, in particular Soar and EPIC.  To do this we designed a simple Soar model to play 
Microsoft Minesweeper through the interface shown on the left in Figure 7.  The model is able to play a game to 
completion, though it picks squares randomly.  On the left in Figure 7 is the display of an image used in one of the 
cognitive models released with the EPIC system.  The numbers and the crosshair provide targets for the model’s 
focus of attention, which drives different actions to be taken.  The model was run in a port of EPIC to Windows. 
 
3.6 Modelling cell phone dialling 
 
Consumer products are commonly being built around computational platforms that continue to decrease in size and 
expense.  The increase in power that this gives consumers is often offset by increases in complexity.  Cognitive 
models can help us better understand the usability properties of novel computational devices.  In recent work we 
have examined cell phone interfaces.  There are about a billion cell phones in use today, with this number growing 
rapidly.  The most common activities on cell phones is dialling numbers, but modern phones include tools for 
managing contact information, voice mail, and hardware settings, and often software for playing games, browsing 
the Web, and connecting to specialized information services.  Ensuring that users can make access such capabilities 
easily is a difficult problem. 
 
We have developed models for dialing and for selecting menu items on phones.  The models for dialing were 
developed for software interfaces to telephone simulations, as shown on the left in Figure 8 (St. Amant, Freed, & 
Ritter, 2004).  Some of the questions that a cognitive model might answer concerning such interfaces include how 
quickly numbers can be dialed, how quickly other common procedures such as saving a number in memory can be 
carried out, and how many errors occur during different activities.  Evaluation of these interfaces was possible using 
SegMan to provide information about button spacing, labels, and so forth to a cognitive model.  In other work, we 
focused on user performance on real cell phones.  We applied SegMan to the problem by analyzing the geometrical 
properties of digital images of cell phones, as shown on the right in Figure 8 (St. Amant, Horton, & Ritter, 2004).  
Despite the fact that SegMan was originally designed for artificial environments, its image processing approach 
worked reasonably well.  In an informal test based on 12 images downloaded from the Web, of cell phones from 
different manufacturers with different keypad styles, we used SegMan in an attempt to identify the 12 standard keys. 
For six images, all standard keys were identified correctly, while in two others, 10 of 12 keys were identified 
correctly (errors involved merging two neighbouring keys.)  For four images, SegMan was unable to identify any 
keys—we believe that the failures were due to such factors as variation in background color, lighting artifacts, and 
low distinguishability of key borders. 

 

 

 
 

Figure 7.  Soar and EPIC applications 
 



 
3.7 Modelling interactive robot navigation 
 
In our most recent work, we have built cognitive models for remote control of a simple mobile robot.  Our robot is 
an ER1 Personal Robot System, a simple hobbyist robot marketed by Evolution Robotics™. While the ER1 is an 
entry-level robot lacking highly specialized technological capabilities, it has many features analogous to those in 
more expensive field robots and can perform comparable tasks.  On the 24 x 16 x 15 inch ER1, a laptop is placed 
running Windows XP to perform the robot’s onboard computing. The robot is teleoperated via another laptop, using 
a wireless internet connection. The ER1 robot Control Center software is installed on both laptops, which supports 
development and debugging.  The laptop on the robot platform is connected via USB cables to the robot’s camera, 
its gripper, and the motors that drive its wheels.  
 
The software Control Center is shown in Figure 9, with a detail view shown on the right.  On the upper left of its 
display is the camera view from the ball-shaped camera on the top of the robot.  The navigation buttons for 

  
Figure 8. A desktop telephone interface and a cell phone image, after  automatic identification of keys  

 

 

 

 

 
Figure 9.  ER1 robot controller interface 



controlling the robot’s movement are on the bottom right.  Users can drive the robot in three ways: (a) use the arrow 
keys on the keyboard; (b) click on the navigation buttons; and (c) use the software joystick that appears as a dot in 
the middle of the navigation buttons.  The camera view in the left image in Figure 9 shows a navigation task for a 
cognitive model that uses SegMan: the model follows a marked path to a goal location, at which point a simple 
grasping task is accomplished by the robot.  The black line is provided by tape on a white background, to eliminate 
such problems as lighting variation for SegMan’s image processing.  On the right of Figure 9 a different task is 
shown that illustrates the potential for SegMan’s interaction with existing software.  The ER1 includes its own 
pattern recognition capabilities, which here are applied to the identification of a pattern on its shipping box.  Rather 
than superseding this functionality, SegMan simply identifies the blue rectangle surrounding the recognized object, 
and passes this information to a cognitive model controller.  SegMan can also read the text provided by the ER1’s 
control centre in the box below the camera view, in order to learn specifically what kind of object the robot has 
identified.  SegMan has also been used to create two other models that program the ER1 interface to open and close 
the gripper when there is an object in it, and to have the robot speak “I see a dollar” when a dollar bill is recognized 
(Kukreja, 2004).   
 
4 Discussion 
 
The wide range of examples given in Section 3 point to a number of lessons we can learn from our attempts to make 
information from rich visual environments available to cognitive models. 
 

• A more detailed and cognitively accurate account of visual processing is needed in SegMan.  The image 
processing approach laid out in Section 2, while adequate for many purposes, does not necessarily extend 
to environments outside standard user interfaces.  A significant step forward, for example, would involve 
generalization over recognized patterns, via machine learning, such that SegMan could recognize objects 
that were not already part of its library of templates.  The internal representation of objects in terms of pixel 
neighbour counts and pixel group properties is not rich enough for such generalization.  Creating these 
patterns by hand is possible for small tasks, but is difficult for large ones. 

•  Engineering appropriate task-dependent visual representations remains a barrier.  While SegMan, even in 
its current form, provides a useful set of building blocks from which patterns for recognizing complex 
objects can be constructed, this is still a time-consuming and error-prone process.  The difficulty is that 
these building blocks are at too low a level of abstraction. 

• Complex interfaces cannot be handled with generality.  One lesson we learned about SegMan was that it 
has difficulty processing complex interfaces.  Although this is correctly viewed as a shortcoming of 
SegMan, it is also in accordance with perceptual theories (Bartels & Zeki, 1998).  In short humans do not 
process interfaces in their entirety. Rather, there is a complex interaction of attention allocation and 
focalized attention that makes up human visual processing.  Currently SegMan’s algorithms process all 
areas of the screen with the same level of acuity.   SegMan has progressed to a point where it could greatly 
benefit from both attention allocation and foveal increased acuity.  Not only would this greatly improve 
SegMan’s ability to accurately test and critique interface design, but it would also be a large step for the 
development of an accurate unified theory of perception.     

 
Despite its limitations, SegMan has proved to be a useful addition to cognitive modelling technology.  It has led us 
into areas that have not yet been explored in cognitive modelling research, and we believe that the future of such 
integrative approaches to cognitive modelling is bright. 
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