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ABSTRACT The Department of Defense has pursued the integration of virtual reality simulation into medical training
and applications to fulfill the need to train 100,000 military health care personnel annually. Medical personnel transitions,
both when entering an operational area and returning to the civilian theater, are characterized by the need to rapidly
reacquire skills that are essential but have decayed through disuse or infrequent use. Improved efficiency in reacquiring
such skills is critical to avoid the likelihood of mistakes that may result in mortality and morbidity. We focus here on
a study testing a theory of how the skills required for minimally invasive surgery for military surgeons are learned and
retained. Our adaptive virtual reality surgical training system will incorporate an intelligent mechanism for tracking
performance that will recognize skill deficiencies and generate an optimal adaptive training schedule. Our design is
modeling skill acquisition based on a skill retention theory. The complexity of appropriate training tasks is adjusted
according to the level of retention and/or surgical experience. Based on preliminary work, our system will improve the
capability to interactively assess the level of skills learning and decay, optimizes skill relearning across levels of surgi-
cal experience, and positively impact skill maintenance. Our system could eventually reduce mortality and morbidity
by providing trainees with the reexperience they need to help make a transition between operating theaters. This article
reports some data that will support adaptive tutoring of minimally invasive surgery and similar surgical skills.

INTRODUCTION
About 4,300 physicians of the U.S. Army Medical Com-
mand continuously rotate through deployments across pri-
mary care, combat casualty care, and host nation care, with
2,800 individual deployments and an average deployment
of 113 days. (Buller JL, Presentation given at the Medicine
Meets Virtual Reality meeting, February 2011). The nature
of required skills varies dramatically by deployment. For
example, in-theater care for high-velocity wounds often
requires procedures such as debridement, cauterization, and
ligation, whereas usual surgical care in the civilian setting
emphasizes procedures such as laparoscopic cholecystectomy
and hernia repair.

This constant shift of required skills confronts surgeons
with the need for skills different than those they are employing
before deployment, but that they must somehow train or retrain
to expertise before use. Although they are deployed, their pre-
viously sharp skills required in other theaters then may decay
through disuse unless they are able to somehow train those
skills as well. The enormous challenge posed by this prob-

lem is to understand and quantify the nature of surgical skill
decay and develop a set of methodologies for training inter-
ventions to prevent that decay that minimizes training time,
maximizes efficacy, and reduces mistakes during the initial
portion of deployments.

The Department of Defense estimates a need to train
100,000 military health care personnel annually, representing
a profound educational challenge.1 The consequences of
ineffective medical training are dire. In the United States,
medical errors are estimated to result annually in at least
50,000 excess deaths and 1,000,000 avoidable injuries.2 The
military has long pursued the integration of simulation and
robotic technologies into medical training and applications, and
these techniques may provide leverage to address this issue.

Specifically, the use of these intelligent technologies for
training military medical personnel can help measure skills,
minimize errors, schedule training, and control the duration
and expense of training. Medical personnel transitions, both
when entering an operational area, and when returning to
the civilian theater, are characterized by the need to rapidly
reacquire skills that have decayed through disuse.

During this period of skill reacquisition, there is an
increased risk of mistakes that may result in death and injury
to patients. It is urgent that we increase the speed of reac-
quisition of surgical skills, while avoiding regaining the nec-
essary skills on actual patients. The use of immersive virtual
reality (VR) techniques coupled with metric-driven scheduling
of training has the potential to dramatically reduce the cost of
training, and the cost both in lives and dollars of errors and
mistakes caused by lack of fluency in necessary techniques.

Although we are situating our solution within a particular
surgical domain, our focus is on generalizing a theory of
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skill decay to account for differential decay across skills that
vary in their dependence on cognitive and psychomotor ele-
ments that will apply more broadly to medical skills. The
particular domain we will focus on for preliminary work is
laparoscopic surgery (LS), which we have chosen for its
widespread use in the civilian theater, its affinity for study
through simulation, and the precision of data that can be col-
lected during its practice.

The skills required for LS, a minimally invasive sur-
gery, transfer poorly from proficiency at open surgery on
the same procedures, and the need for special training to
acquire the fundamentals of LS has long been recognized.3

Laparoscopic skills are difficult to acquire and maintain,
however, because of both their technical complexity and
the challenging physical environment in which they must
be executed, which includes a spatially restricted monocular
visual field, limited tactile feedback, and a confined working
area. Training for LS in an operating theater, the traditional
approach to surgical training, is both costly and time con-
suming,4 limiting the time that surgeons can spend learning
and practicing.

As a result, designers of medical curricula for minimally
invasive surgery have turned to simulated environments in
an effort to reduce or prevent the attrition of these critical
surgical skills. Introductory LS training through simulation
is now widespread, but has been primarily limited to novice
laparoscopic surgeons practicing on simple psychomotor
tasks, such as suturing. However, simulation training could
be useful for training more complex tasks for surgeons with
a wider range of experience, and for maintaining skills over
periods of disuse. Few studies have examined durability of
simulator-based training generally.5,6 Moreover, little atten-
tion has been given to learning important cognitive skills or
more complex tasks involving sequences of simple tasks.

To increase our understanding of learning cognitive skills
during surgical training, we developed several simple surgi-
cal tasks (e.g., peg transfer [PT], needle passing [NP]) in our
adaptive VR trainer for LS training.7 These fundamental
surgical tasks were used to train important basic surgical
skills for complex and advanced tasks learning; for example,
bimanual coordination, precision, and manipulations are the
simple, but fundamental surgical skills for suturing.

Our adaptive training framework (Fig. 1) consists of
three levels of design (modeling, comparison, and opti-
mal training). A modeling methodology was developed
including: (1) cognitive task analysis, to derive an ontology
of the knowledge and skills to be measured and trained,
(2) mathematical modeling, to determine the domain- and
individual-specific variation in skill acquisition and attrition,
and (3) cognitive modeling, to embed the specific model of
skill attrition within a more general model of learner behavior,
which can then be combined with the ontology derived from
the task analysis.

At the second level of performance comparison, human
subject data were collected from learners with varying
levels of surgical experience, novices to expert surgeons.
Our cognitive model at the first level is derived from and
subsequently tested against the empirical human learning and
forgetting data. We used the Adaptive Control of Thought/
Rational (ACT-R) cognitive architecture8,9 to model the learner’s
learning and forgetting. While these architectures are labeled
“cognitive,” cognitive architectures have been developed to
provide complete processing models including the entire
range of cognitive, perceptual, and psychomotor behavior,10

and ACT-R in particular is an implementation of a unified
theory of cognition.11 As such, ACT-R includes distinct
modules for perceptual processing (visual and auditory),
motor behavior, memory, and skill acquisition. It is exactly

FIGURE 1. Adaptive training framework.
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this breakdown that we intend to leverage in identifying the
emphasis on cognitive and psychomotor elements within
skills. The human data were used to test potential interven-
tions for the third training level based on objective measures
(kinematics and electromyography [EMG]).

We then implemented the third level of optimal training
schedules for the cognitive and psychomotor tasks to be
learned. Our adaptive VR trainer will incorporate a cogni-
tive model of skill acquisition and retention. We based it on
previous work on the user modeling of learning,12 combining
a hierarchical representation of surgical skills, where more
complex skills and tasks are represented at higher levels,
and training is driven by an estimate of individual skills and
ability, as well as the dependence of the task on individual pro-
cessing channels (e.g., cognitive, perceptual, and psychomotor).
The model would tailor the training session to the level of
complexity appropriate for the trainee at that moment in time
and to predict and prescribe the course of training needed to
produce a desired future level of competence, based on both
demonstrated competence expected decay.

The Skill Retention Theory
As mentioned before, we can investigate surgical perfor-
mance by considering skill acquisition and decay. A consen-
sus understanding has been proposed, which specifies that
there are continuous stages of learning.13–16 Many theories
propose a three-stage process of learning: (a) the first stage
for acquiring declarative knowledge to perform a procedural
task, (b) the second stage for consolidating the acquired
knowledge, and (c) the final stage for tuning the knowledge
toward overlearning. Based on this understanding, Figure 2

shows the three different stages of learning and forgetting,
providing important insights about how forgetting would be
different for the learners at each stage.17

The First Stage: Declarative

In the first stage of learning, skill acquisition occurs and sim-
ple training focused on skill acquisition may be adequate.
For this first stage of learning and forgetting, knowledge in
declarative memory degrades with lack of use, perhaps cata-
strophically as indicated by X’s in Figure 2, leading to the
inability to perform the task. In this stage, learning and
forgetting are explained by the activation mechanism in
ACT-R. With lack of use, the strength of declarative memory
declines. Decreased memory strength leads to response time
increasing and accuracy decreasing. In addition, the ACT-R
theory explains that increases in working memory load
leads to decrements of retrieval performance from memory
based on the activation mechanism.18 Thus, performance with
this level of knowledge decreases with increased working
memory load.

The Second Stage: Associative

In the second stage of learning, task knowledge is represented
with a mix of declarative and procedural memory. With lack
of use, the declarative knowledge can be forgotten, leading
to missed steps. Procedural memory, on the other hand, is
basically immune to decay. Forgetting slopes in this stage
could vary by subtasks because mixed knowledge decays
at different rates. In the first and second stage, catastrophic
memory failure can occur because the declarative knowledge
is not fully activated. In this mixed stage, training should be

FIGURE 2. A theory of skill retention, showing the three stages of learning and forgetting. The solid line indicates a learning curve and the dashed line
indicates a forgetting curve from each corresponding stage. At each stage, the learning and forgetting rates are different.
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provided to keep declarative knowledge active and also to
support further proceduralization.

The Third Stage: Procedural

In the third stage of learning, task knowledge is available
in both declarative and procedural forms, but procedural
knowledge predominantly drives performance. Practice will
compile knowledge into procedural knowledge. We describe
this type of task knowledge to be proceduralized skill. With
lack of use, declarative knowledge may be degraded. Never-
theless, learners can still perform the task—if all the knowl-
edge is proceduralized and thus not forgotten with time. Less
well-known skills that are infrequently used, like recovery
from unusual errors, may be degraded. This type of skill
would require knowledge retrieval from declarative memory
unless task knowledge is proceduralized. In this final stage,
or to reach this final stage, practice for proceduralization
should be provided. It also suggests that training should occur
until trainees reach the crossing thresholds, noted as dashed
horizontal lines for the stage thresholds in Figure 2.

To identify the possible solution to optimize the military
medical skills acquisition and retention, the purpose of this
project is to develop a methodology using our adaptive VR
trainer to study surgical skill decay and test an intervention
based on the integration of cognitive models of surgical skill
decay within our adaptive training framework. This testing
framework can predict the decay effect and maximize the
training experience by monitoring the occurrence of mis-
takes during skill acquisition and retention.

METHODS
We collected data from 5 novices and 4 medical trainees.
Each participant performed two basic surgical tasks (Figs. 3A
and 3B), 5 times in three sessions: at baseline, 1 week after
baseline, and 1 month after baseline. Kinematic data includ-
ing time to task completion, total distance traveled, and aver-
age speed of both hands were recorded. Muscle effort of four
muscles (upper trapezius, anterior deltoid, flexor carpi radialis,
and extensor digitorum) was monitored using a wireless
Trigno EMG system (Delsys, Boston, Massachusetts). Using
methods from our previous studies,19,20 raw EMG signals
were recorded with a sampling rate of 2,000 Hz using EMG
works acquisition software based on the manufacturer’s rec-
ommendation, and were processed with a band-pass filter
of 20–300 Hz and smoothed by a root-mean-square tech-
nique with a 150 ms moving window to compute the root-
mean-square EMG data. To reduce the intersubject variation,
the maximal voluntary contraction (MVC) was obtained from
each muscle to normalize EMG signals.21 The EMG data are
presented as the percentage of MVC (%MVC).

RESULTS
All participants were able to complete the task. We examined
their performance in terms of kinematics and EMG.

Kinematics
On the PT task, participants completed tasks during the first
session in 153.3 seconds on average, whereas the tasks dur-
ing subsequent sessions were completed more quickly in
132.1 and 123.4 seconds, respectively. Similarly, collapsing
across sessions, trial 1 was completed in 153.4 seconds while
subsequent trials within the session were completed more
rapidly (Fig. 4). The NP task showed a similar pattern, with
participants completing the baseline session trials in 120.5 sec-
onds on average, and more quickly in 96.1 and 91.7 seconds
in subsequent sessions (Fig. 5).

Given the expectation that completion time during learn-
ing follows a power law, a statistical analysis was conducted
using the log of completion time (LogTime). For task PT,
we performed a regression of session and trial on LogTime,
producing an R2 of 0.13 (degrees of freedom [df] = 121).
For the PT task, session 3 (at 4 weeks) was significantly
faster than prior sessions ( p < 0.01), whereas trials 3 and 4
were significantly faster than trials 1, 2, and 5 ( p < 0.05).
Similarly, for task NP, we performed a regression of session
and trial on LogTime, producing an R2 of 0.16 (df = 125).
Unlike the PT task, for the NP task, both sessions 2 and 3

FIGURE 3. Virtual training tasks: (A) Peg transfer task and (B) Needle
passing task.
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(at 1 week and 4 weeks) were significantly faster than prior
sessions (p < 0.05 and p < 0.01, respectively). Further, for the
PT task, trials 3, 4, and 5 were significantly faster than trials
1 and 2 ( p < 0.05, p < 0.01, and p < 0.01, respectively).

We fit a preliminary predictive performance model to these
data using the power law of learning and forgetting to make
predictions, using the regression model of session and trial on
LogTime for comparison. The initial model for the PT task

produces an R2 of 0.72 and a coefficient of variation of
0.09, indicating the model accounts for the majority of the
variance in the human data. The preliminary model of the
NP task produces an R2 of 0.78 and a coefficient of variation
of 0.15, similarly indicating that the model predicts the major-
ity of the variance in the human performance data. Graphs of
the model predictions are presented in Figures 6 and 7.

Qualitatively, the NP and PT task models predict the
appropriate range of variation, with both models predicting
the greatest speedup during the first session and decay in
learning across sessions that effectively rewind this learning.
Further, they capture the appropriate range of performances
with the PT model spanning 171 to 114 seconds, and the NP
model ranging from 142 to 90 seconds, in line with the
human performance.

EMG
The EMG data were further analyzed within task by con-
verting EMG data (%MVC) to a z-score measure, thereby
controlling for individual differences in overall muscle acti-
vation. The EMG z-scores were averaged to provide an
overall indication of muscle activation during task perfor-
mance. Because of the normalization transformation, the
z-score means for tasks PT and NP are both 0, enabling the
collapsing of the two tasks. We performed a regression anal-
ysis of session and trial on the z-score of the EMG muscle
activation, and found that session 3 (week 4) was character-
ized by statistically significantly less muscle activation ( p <
0.001, df = 255) than sessions 1 and 2 (weeks 0 and 1).

FIGURE 4. Time to task completion for the peg transfer (PT) task across
trials (mean ± standard errors) (RT, reaction time).

FIGURE 5. Times to task completion for needle passing (NP) task across
trial (mean ± standard errors) (RT, reaction time).

FIGURE 6. Performance model predictions for the peg transfer (PT) task
(RT, reaction time).
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Further, trials 3, 4, and 5 had significantly less muscle acti-
vation than trials 1 and 2 ( p < 0.05, df = 255).

DISCUSSION
In the course of working through practice sessions on the NP
and PT tasks, participants clearly demonstrated both learning
and forgetting, demonstrating statistically significant patterns.
Participants exhibited speedup during skill acquisition and
decay of that acquired skill during periods of disuse. Par-
ticipants also showed less decay due to disuse as the skill
became more practiced. Although the pattern of reaction time
could be expected to fit a logarithmic regression model, our
efforts to fit such a model only resulted in an R2 of 0.16 and
0.13, thus failing to account for the majority of the variance
in participant completion times.

These patterns were much more successfully predicted
through a model employing the Power Laws of Learning and
Forgetting, encapsulated within the ACT-R cognitive architec-
ture. This modeling, although preliminary, captures the major-
ity of the variance available in the data set, with an R2 of
0.72 for the PT task, and an R2 of 0.78 for the NP task. Thus,
the ACT-R based model captured substantially more variance
than a logarithmic regression model.

The data appear to suggest that there is also a fatigue
effect at work, and participants slow down after three or four
trials of either the PT or NP task, though this pattern did
not reach statistical significance within the small sample
we evaluated. Although we have previously modeled such
slowdowns,22 we have not yet attempted to apply a fatigue
component to our modeling work. We would, however,

expect to capture even more of the variance in the human
performance through such a mechanism.

The EMG analysis confirms that the muscle activation
required for the task was decreasing, and thus the procedural
aspects of the task were becoming simpler. That is, the low-
level motor learning appeared to be durable, but the task
performance still shows decrements that are not accounted
for by the durability of the motor skill. Our theory, however,
accounts for the forgetting that takes place at the declarative
and procedural levels as well, and predicts this time course
of change over skill disuse.

Our future work will use further data analysis at the motor,
declarative, and procedural levels to make holistic perfor-
mance predictions. These research efforts will eventually help
to address the maintenance of surgical skills, especially for
experienced surgeons, and combat surgery. More importantly,
the use of our adaptive VR trainer could measure medical
skills in military medical personnel, minimize errors, schedule
training, and potentially control the duration and expense of
military medical training.

While preliminary, this work demonstrates the ability to
accurately predict the acquisition and decay of surgical skill
within a VR training system by leveraging the laws of learn-
ing and forgetting embedded within a cognitive architecture.
Thus, this study serves as a validation for both the VR plat-
form and the cognitive modeling paradigm. Given these
components, we expect to be able to plan surgical training
remediation with the aim of making the best use of available
training time and avoiding costly mistakes because of skills
that fall into disuse.

CONCLUSIONS
Based on the learning theory and this and similar results, our
adaptive VR training system can improve the capability to
interactively assess the level of skills learning and decay,
optimize skill relearning across levels of surgical experience,
and positively impact skill maintenance. Our training system
could eventually reduce patient injury and morbidity by pro-
viding trainees with the reexperience they need before oper-
ating in a new theater.
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