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Abstract. In this paper we consider what remains to create a unified theory of
cognition, updating Newell’s [1] report. We examine ACT-R as a new exemplar.
After quickly summarizing what has been covered, we create a new schematic
for ACT-R to add capabilities and mechanisms for a 5 to 10-year research plan.
This includes more meso-level features of cognition and high-level aspects of
cognition (that will inevitably increase the functionality while decreasing the us-
ability of ACT-R unless aspects can be turned off). We suggest integrating more
aspects of physiology and psychology as well as more social aspects. To accom-
plish this, we introduce six new functional modules. These additions enable the
architecture to account for physiological and emotional conditions, stable per-
sonal traits, value-based evaluations, experiential learning, and gradual behav-
ioral change. As a result, this extended ACT-R architecture offers a more com-
prehensive and flexible model of human cognition, bridging previously un-
derrepresented areas of psychology, physiology, and behavior.

Keywords: ACT-R, unified theories of cognition, cognitive architecture, com-
mon model of cognition, P-adic calculus, Mental space.

1 Introduction

ACT-R is the current broadest, best, and most tested architecture for human cognition
[2-4]. One of the latest versions of ACT-R [3] captures the essential cognitive mecha-
nisms involved in perception, memory retrieval, goal setting, action selection, and mo-
tor execution.

The current system leaves out a lot of psychology, physiology, kinesiology, and bi-
ology related to behavior. Some of these areas have been hard to study, but it would be
worthwhile to show how they can be integrated in a more serious way than Newell [1]
or Anderson [5] provides. This paper shows how many more areas can be represented
as extensions to ACT-R, and provides a blue print for the next more complete version
of ACT-R as an exemplar UTC.

We draw on our review of perception [6], Kotseruba and Tsotsos’ reviews of archi-
tectures [7,8], the common model of cognition [9], and discussions with a range of
psychologists and other -ologists. We start by reviewing the extensions grouped by ma-
jor area. Fig. 1 shows the revised architecture.
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Fig. 1. Expended ACT-R schematic. The new modules have green fill. Newly proposed mod-
ules not functionally engaged in the example scenario have dashed borders.

Several modules are not illustrated because the example task—a comparison of two
bus drivers performing typical driving tasks—focuses on a normal, non-extreme driv-
ing situation, where the agents operate under stable physiological and psychological
conditions. As a result, modules such as the PP, S, and DA remain inactive or exert
only baseline influence, and their dynamic mechanisms are not demonstrated in detail.
These modules are nonetheless included in the extended architecture to represent the
agent’s capacity for modeling stress, fatigue, long-term adaptation, and individual dif-
ferences, which may be important for simulating situations with heavy workload, sud-
den events, or long periods of task performance.

While the current version of ACT-R [3] incorporates essential modules for percep-
tion, memory retrieval, goal setting, production selection, and motor execution, certain
functional areas—such as internal cognitive states, long-term adaptation, and behav-
ioral history—remain beyond the scope of this architecture. Specifically, the architec-
ture does not include detailed modeling of low-level physiological processes, such as
hormonal, metabolic, or cardiovascular mechanisms, which would require integration
with complex physiological simulators like HumMod [10].

Furthermore, the classical ACT-R architecture only models vision, hearing, and
manual actions, and does not include other sensory systems [7]. As noted by Ritter and
Serdiuk [6], a relatively complete list of human senses includes up to 24 distinct sensory
modalities, encompassing both external (e.g., touch, temperature) and internal (e.g.,
hunger, fatigue, emotions) senses—all of which remain beyond the scope of the classi-
cal ACT-R model.

These limitations highlight the need to extend the classic ACT-R framework to better
account for these factors. To address these gaps, we propose an expanded architecture
that introduces several new modules specifically designed to capture these aspects of
cognition and behavior.

Figure 1 shows how the proposed modules can integrate into the current version of
the ACT-R architecture [3]. Table 1 provides a brief description of these new modules.



Table 1. New modules in the extended ACT-R architecture.

Module Function Notes / Interactions
X Stores stable individual characteristics: re- Influences P, G, Matching/Selection (Pro-
Psychophysio- L . . .
. action time, stress tolerance, impulsivity,  duction Cortex), PD, and M modules;
logical Profile

Mental Space

conformity.

Maintains a personal p-adic structure of
meanings and associations; categorizes
ideas as "interesting," "forbidden," or
"doubtful."

Integrates inputs from S, PP, MS, and

gradually updated by DA module.

Modulates D, Retrieval, G, PD, and Pro-
duction (Matching/Selection) modules;
updated by BHM

Receives data from S, PP, MS, and BHM

Personalized BHM modules to select the next action; modules; indirectly influenced by DA
Decision directly modulates PR to bias action selec- module via updates to the PP; modulates
tion according to personalized criteria. Production (Matching/Selection).
X X L Receives data from S and BHM modules;
Dynamic Gradually adjusts stable traits in the PP . .
. influences all modules via updated profile
Adaptation module based on long-term patterns.
parameters.
Represents the agent’s temporary internal ~ Affects P, G, Production (Matching/Se-
State state: stress, fatigue, emotional arousal, lection), and T modules; informs DA
alertness. module.
. . . Biases Production (Matching/Selection)
Behavioral Records past actions and outcomes, build- .
. . . . and G modules; updates MS; informs DA
History ing a behavioral experience base.

module.

2 P-Adic Representation of Mental Space

For the formal representation of information at the human sensory inputs and its cog-
nitive processing, we will use p-adic hierarchical trees, proposed by Khrennikov
[11,12], as a mathematical model of a mental space. According to Khrennikov [12],
thinking systems operate with /-sequences, which the author called /-states. The set of
I-states, Xj, has the structure of an m-adic tree and forms the mental space Z,,,: X; = Z,,,.
Hierarchical families of /-states form /-objects, which are proposed to be called "asso-
ciations" (bundles of branches with a common root). Families of associations form
higher-level I-objects, which are called "ideas."

Two [I-states, x and y, in the mental space will be closer the longer their common root
is. This topology is described by the metric p,,. Khrennikov [12] represents the mental
space as an ultrametric space.

Let m > 1 be a fixed natural number. Then, the ultrametric can be represented as
[12]:

(M

where |[. |, is the so-called m-adic norm (analogous to the modulus for real numbers).

Pm(%,Y) = |X = Y|m,



The norm is defined as follows. Let x = (aq, a4, ..., a, ...). The point x =
(ag, aq,ay, ..., a,, ...) in the space Zx can be identified with a natural number:

X=aya,..0;..=ay+am+ -+ am* )

Then, p,(x,¥) = ﬁ, ifaj = 0,j =0,..,k—1, and a; # 0. In other words, to
find the distance between x and y, it is necessary to find the first position k where x and
v have different digits.

In addition, Khrennikov’s architecture includes databases of interesting, forbidden,

and doubtful ideas, reflecting the experience of a particular person [12]. We will use
them in the MS module.

3 Simulation of Agent Decision-Making in Extended ACT-R

Let us examine the operation of several aspects of the extended ACT-R architecture
using the example of two agents—bus drivers. To assess the psychological character-
istics of drivers, we can use a battery of well-known psychological tests, theories and
tools.

For example, as a result of testing, the following characteristics were obtained.
Driver 1 (Ivan) demonstrates an average reaction time of 250 ms, high stress tolerance,
high risk propensity, low conformity (not inclined to follow rules), and medium impul-
sivity. He enjoys driving fast, and violations do not cause him internal stress. Driver 2
(Alex) shows an average reaction time of 350 ms, medium stress tolerance, low risk
propensity, high conformity, and low impulsivity. He prefers to follow rules and enjoys
calm and safe driving. (Behavioral histories for both drivers are presented later in Table
7.)

Table 2 provides a fragment of the description of perceived objects in the P module
(Visual) using 5-adic numbers.

For example, Ivan and Alex are approaching an intersection where the traffic light
is not regulating traffic in the usual mode, but is flashing yellow. At the crosswalk in
front of them is a pedestrian who is going to cross the road. At the same time, the traffic
at the intersection is quite intense—the space is occupied by about 50-80% of cars, but
the traffic is not blocked.

According to Table 2, the P module represents objects as follows: Traffic Light (ob-
ject 1) — 22403; Pedestrian (object 2) — 22300; Markings (crosswalk) (object 3) —
22000; Cars at the intersection (object 4) — 22200.

The p-adic coding in the MS module is presented in Table 3. According to Table 3,
the value m=5 (as the largest). An example list of ideas for agents in the MS module is
presented in Table 4.

Let us consider how the MS module generates interpreted p-codes.

Step 1. Identifying situational features. Based on the information about the four input
objects, the M module extracts the following (Table 5). Thus, we have final mental p-
code: 120232.



Table 2. P-adic code table for perceived objects.

Code Positions in p-adic number
0 1 2 3 4
Distance of Object Object type Object subtype Specific category
perception bright- (e.g., for signs and (e.g. for regulatory)
ness/visibil- traffic light)
ity
0 very close very low road mark- transverse markings | Crosswalk
ings
1 close low sign 0 - regulatory 0 - STOP
1 - YIELD
2 - Do Not Enter
3 - No Parking
4 - SPEED LIMIT
1 - warning
2 - guide
3 - information
2 medium normal car
3 far high pedestrian
4 traffic light 0 — for car 0-red
1 - steady yellow
2 - green
3 - flashing yellow
4 — absent/off
1 — for pedestrian
Table 3. P-adic coding in the Mental Space module.
Position Purpose Examples of values
0 Motivation / intention 0 =risk, 1 = caution, 2 = social responsibility
1 Action strategy 0 = aggressive, 1 = passive, 2 = optimized
2 Situation context 0 = intersection, 1 = highway, 2 = parking
3 Obstacle / road user 0 =none, 1 = car on side, 2 = pedestrian, 3 = child
4 Type of signal / traffic light 0 =red, 1 = steady yellow, 2 = green, 3 = flashing yellow 4
= absent/off
5 Space occupancy 0 = empty, 1 = <50%, 2 = 50-80%, 3 = busy




Table 4. List of ideas for agents.

Category of | P- code Explanation
idea

Ivan (likes to take risks)

000030 Drive through a flashing yellow light, without obstacles, when the road is
empty

020031 Quickly assess the situation and take a risk on a flashing light, with minimal
traffic

001142 Aggressively overtake on the highway with moderate traffic, despite a car on
the side and a traffic light that is off

120012 Slow down, but if possible, slip through on a yellow light, with moderate
traffic

010031 Slow down a little out of politeness on a flashing light, with few cars

Interesting

Doubtful

100000 Coming to a complete stop before a red light, even if everything is clear -
Forbidden wastes time
212223 Give way to a pedestrian in a parking lot when the traffic light is green (for
cars) and the space is busy

Alex (careful)
120112 Slow down and yield at an intersection if there is a car at the side and the
signal is yellow
Interesting 220232 Let pass if there is a pedestrian and the yellow light is flashing

222042 Park carefully if there are no obstacles and the traffic light is off

110012 Try to pass on yellow with caution in moderate congestion
Doubtful - - - -
211142 Overtake slowly on highway with car on side and traffic light off
000030 Passing on a flashing light without stopping, even if it's empty
Forbidden
212223 Aggressively overtaking on the highway when the light is green, without
checking traffic
Table S. Identified situational features.
Position Parameter Output based on objects
0 Motivation 1 (caution) or 2 (social responsibility) — because of the pe-
destrian and other cars
1 Strategy 2 (optimized) — you need to balance attention: both on the
pedestrian and on the cars
2 Context 0 (intersection) — Object 4 points to the intersection
3 Obstacle 2 (pedestrian) — Object 2
4 Traffic light 3 (flashing yellow) - based on Object 1
5 Space occupancy 2 (50-80%) - Based on Object 4: Cars at intersection

Step 2. Comparison of the final mental p-code (120232) with the idea databases of
Ivan and Alex (Table 4) using 5-adic ultrametrics. Calculations using formula (1)
showed that the minimum distance for the current situation is determined to Ivan's
doubtful idea 120012 and Alex's interesting idea 120112: p = 0.008. These ideas will
be the result of the M'S module's work. All other ideas (except for another doubtful idea



for Alex) differ already in the first position (action type), which gives a greater distance:
p=1.

The solution chosen by the MS module may be influenced by the life experience of
the agents, represented as records in the BHM module. The structure of records in this
module is presented in Table 6.

Table 6. The structure of records in the BHM module.

Situation Code Action Result Fij fij
Ivan
120012 slow down safe passage +0.9 6
120112 slow down smooth coordination +0.6 3
100000 stop unnecessary delay +0.2 2
120012 stop short hesitation +0.3 1
120012 g0 pedestrian startled -0.7 3
001142 g0 successful overtake +0.8 4
Alex
120112 slow down safe passage +0.8 4
120012 slow down minor delay +0.5 2
120112 stop pedestrian safe +1.0 3
120012 stop hesitation, no harm +0.4 1
120112 g0 risky, no incident -0.3 1

The BHM module operating algorithm is as follows.

Step 1. Filter BHM data by p-code: Select only those records where situa-
tion_code matches the p-code from MS. If there is no data at all for a given p-code:

* We look for the closest similar p-codes (e.g., differing by one bit).

* Or we use the default value (for example, “stop” in an unfamiliar situation).

» Or we start the fallback mode: the new action is tested and written to the BHM
with a low weight.

Step 2. Aggregation of data for each action: For each action &, calculate the aggre-
gate reliability estimate:

_ Timarixfi
D, = Shafi 3)

where r; — reward, f; — frequency.

However, to handle conflict situations, when one action has a high reward but a low
frequency, and the other action has the opposite, formula (3) can be modified:

i rixfi
D, = (5 x log(1+ T £, 4)

This approach increases the importance of reliable, frequently observed actions,
while little-tested but highly rated actions will be inferior to consistently good ones.



Step 3. Once the MS module selects the most cognitively proximal idea, the BHM
module is queried to evaluate the reliability of potential actions associated with this
mental representation. Selecting the action with maximum D.: Select a* =
arg max,D,. If D, < @, (where 8 is a threshold coefficient, for example, 8 = 0.5),
then signal uncertainty in the action (possibly contact with G module or clarify the
strategy with the MS). An example of Ivan and Alex's experience records is presented
in Table 7.

The results of calculating the reliability of actions D, according to formula (4) are
presented in Table 8.

Table 7. Example of BHM’s records for agents.

Component Output based on objects

situation code p-adic number (as in MS module) describing the situation
action code action code (e.g. speed up, slow down, stop)

result outcome of an action (safely / accident / delay / success, etc.)

reward or feedback humerical evaluation of the result of an action (e.g. from -1 to +1)

frequency the number of times this behavior was observed in a similar situation

Table 8. The results of calculating the reliability of actions.

Situation Code Action Fij fij Contribution D,
Ivan
120012 slow down +0.9 6 5.4 1.842
120112 slow down +0.6 3 1.8
100000 stop +0.2 2 0.4 0.323
120012 stop +0.3 1 0,3
120012 g0 -0.7 3 -2.1 0.327
001142 2o +0.8 4 +3.2
Alex
120112 slow down +0.8 4 32 1.362
120012 slow down +0.5 2 1.0
120112 stop +1.0 3 3.0 1.368
120012 stop +0.4 1 0.4
120112 2o -0.3 1 -0.3 -0.208

According to the data in Table 8, the action "slow down" will be chosen for Ivan,
supported by MS module and reinforced by BHM confidence (D. = 1.842). Alex hesi-
tates between "stop" and "slow down": both options are well supported. However,
"stop" has a slightly higher score (D, = 1.368) and can be chosen as a safer option. As
the reliability values exceed the internal decision threshold 6, this causes the activation



of the corresponding procedural rules in the PR module. Thus, ideas 120012 (Ivan) and
120112 (Alex) selected by the MS module are confirmed.

This causes the activation of the corresponding rules in PR module. For example, for
Ivan (Figure 2):

IF situation_code = 120012
AND reliability(D_slow down) > 6

THEN action = slow down

Fig. 2. Example of a production rule for situation 120012.

Interpretation of the rule (Figure 2):

* situation _code = 120012: p-adic interpretation of the current situation (de-
rived from the Perceptual modules and processed by the MS module).

* reliability(D_slow_down) > 6: is the result of the analysis performed by
the BHM module, reflecting accumulated experience.

* THEN: the motor action is executed.

Once the procedural rule has been activated and the action "slow down" is selected,
the M module is responsible for translating this decision into executable motor com-
mands.

This representation can be overlaid upon ACT-R’s declarative memory system, in
the same way that other memory systems such as holistic memories have been created.

4 Conclusion

We can now imagine a much more complete computational model of human behav-
ior—one that incorporates many more aspects than Newell or Anderson originally pro-
posed. The extended ACT-R architecture introduced in this paper demonstrates how
additional modules can formalize numerous concepts from psychology that have long
been acknowledged but rarely represented in cognitive architectures. These include per-
sonal style, personality traits, stress resilience, impulsivity, risk sensitivity, long-term
behavioral adaptation, and the subjective interpretation of experience.

By integrating these elements, the model paves the way toward simulating not only
general human cognition, but also how different individuals think, feel, adapt, and de-
cide under varying circumstances. This enables a richer representation of behavior
across time, context, and task demands. We also propose a way to start to implement
some of these concepts.

Importantly, the proposed extensions maintain compatibility with the modular, test-
able principles of ACT-R, while allowing researchers to incorporate latent psycholog-
ical variables that previously remained outside its scope. This invites further work on
experimental validation, refinement of mental-space encoding, and integration with
models of physiology, affect, and personality, moving us closer to a truly unified theory
of situated human cognition.
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One important methodological limitation of the proposed approach concerns the p-
adic representation of mental space. In such representations, digits in the higher posi-
tions (closer to the root) dominate the calculated distance, making the system overly
sensitive to differences in early features while ignoring distinctions in less significant
positions. This property may distort the relative importance of perceptual or semantic
features depending on their encoding position. To address this limitation within the
extended ACT-R framework, the PD module can apply additional weighting or nor-
malization procedures to adjust the influence of features depending on context or task
demands, effectively compensating for position dominance in the p-adic metric.

Another limitation is that these extended capabilities provide a fuller representation
but will also make ACT-R more complex. Usability will have to be kept in mind.

Future work includes extending the architecture to model extreme or stress-inducing
scenarios, incorporating broader sensory systems as suggested by Ritter and Serdiuk
[6], and developing physiological simulators for more accurate representation of inter-
nal agent states.
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