
Drive the Bus: Extending JSegMan to Drive a Virtual Long-Range Bus
David M. Schwartz (dms7225@psu.edu)1

Farnaz Tehranchi (farnaz.tehranchi@psu.edu)2

Frank E. Ritter (frank.ritter@psu.edu)1

College of Information Sciences and Technology1

Department of Computer Science and Engineering2

Penn State, University Park, PA 16802 USA

Abstract
ACT-R has been used to study human-computer interaction. By
default, ACT-R models can only interact with interfaces written in
Common Lisp. JSegMan has allowed ACT-R models to interact
with external interfaces without modification. Currently, JSegMan
has been used in conjunction with ACT-R’s standard motor
module, which cannot model common behaviors such as holding
down keys, chording (pressing multiple keys at the same time), and
multihand actions (e.g., moving the mouse with the right hand
while pressing a button with the left). Extensions to ACT-R’s
motor module have been developed to address these issues and are
included with ACT-R. Like the original motor module, the
extensions can only interact with interfaces written in Common
Lisp. This paper describes modifications to update JSegMan to
work with ACT-R’s motor extensions and demonstrates its usage
by creating a model to play Desert Bus. Furthermore, the
implication of running a model over many hours is explored.

Keywords: Cognitive architectures; ACT-R; Motor control;
Chording.

Introduction
The embodied cognition-task-artifact triad states that behav-
ior in an interactive environment is mediated by three
factors: embodied cognition, the task a user is performing,
and the artifact they interact with. Byrne (2001) proposes
that using ACT-R (Anderson, 2007; Ritter, Tehranchi, &
Oury, 2018) can assist human-computer interaction studies
because ACT-R deals with the entire triad at once—the
architecture handles the limits of cognition, the model
encodes task knowledge, and an artifact is necessary to
provide stimuli to the model and handle its output (key
presses and mouse movements). However, ACT-R in its
current form can only interact with special or heavily
modified interfaces, making it difficult to study human-
computer interaction.

JSegMan (Tehranchi & Ritter, 2018a, 2018b) offers a
method of interacting with an interface external to ACT-R
without modification. It detects visual features from a
screenshot of the computer’s display to provide ACT-R with
stimuli. In addition, it allows a model’s motor movements to
control a computer’s peripherals. However, this new level of
interaction is limited to the default functionality of ACT-R’s
motor module and thus is limited in the behavior it can
model.

By default, ACT-R is only capable of supporting serial
motor action. Multiple motor commands can be queued
together to simulate quick typing, but the architecture must
process each keypress separately. This prevents the architec-
ture from being able to press multiple keys at once, thereby
making it impossible to type certain symbols (e.g., open and
close parentheses because they require the shift key), use
keyboard shortcuts, and play many video games. These
issues were raised and addressed by during the development
of a model to play space fortress (Bothell 2010). However,
JSegMan has yet to incorporate the extended functionality.
To determine how JSegMan must change, we created a
model to play a simple game, Desert Bus.

Our experience in developing the model has led to several
proposals on how to grow JSegMan. First, JSegMan should
add commands (e.g., press and release) that mimic those
available in the extended ACT-R motor module. Second,
JSegMan can reduce its overhead (and improve model accu-
racy in dynamic task environments) by using ACT-R’s
remote procedural call interface. This work also raises ques-
tions about long-term behavior in cognitive architectures.

Background
This section discusses ACT-R’s structure and various
methods researchers have used to have it interact with exter-
nal interfaces. Also, the game used as a task is described.

ACT-R
The ACT-R cognitive architecture (Anderson, 2007; Ritter,
Tehranchi, & Oury, 2018) implements the fixed features of
cognition as modules. The primary function of the architec-
ture is controlled by the declarative and procedural modules.
The declarative module manages factual memory (e.g.,
George Washington was the first president of the United
States) encoded as chunks while the procedural module
handles memory about performing actions (e.g., to turn on a
computer, you have to press the start button), encoded as
productions. The facts in declarative memory, actions in
procedural memory, and stimuli the model sees determines
how it behaves. What the model sees and how it acts within
its environment are controlled by the perceptual and motor
systems (spread across four modules), respectively. How-
ever, ACT-R has issues interacting with external interfaces

Proceedings of the 18th International Conference on Cognitive Modeling (ICCM 2020). 241-246.

and simulations (Schwartz & Dancy 2019; Schwartz &
Ritter 2019).

ACT-R/PM
ACT-R’s current perceptual and motor systems are based on
ACT-R/PM (Byrne, 2001). The system assumes the model
is viewing and interacting with a computer. ACT-R/PM
adds four modules to the architecture: vision, motor, speech,
and audition. ACT-R/PM’s perceptual and motor modules
have been merged into ACT-R and come as part of the
standard release. This section will only discuss the vision
and motor modules as the others are not pertinent to this
project.

The vision module handles what an ACT-R model can
see. It represents the screen as a collection of features that
represent text, images, lines, buttons, etc. Features are
mapped to chunks that represent where and what an object
is. The visual-location buffer controls the where system and
allows a model to query for an object’s location. Once a
feature is found, the model can shift its attention to it and
encode the object via the what system controlled by the
visual buffer. This creates a detailed chunk for the model to
use.

The motor system provides support for using a virtual
keyboard and mouse. It represents a user with two hands
and allows procedural memories in a model to move the
hands, mouse, and punch/peck mouse buttons and keys. The
duration of hand and finger movements are estimated via
Fitts’ Law.

It is important to note that ACT-R/PM only works with
special interfaces. ACT-R/PM was originally written in
Macintosh Common Lisp (MCL) and only extracts features
from interfaces created in a particular set of tools included
with ACT-R/PM. ACT-R/PM has been partially
generalized, allowing it to pull features from the ACT-R
Graphical User Interface, across various Lisp
implementations. However, the root of the problem
remains—the interface still needs to be written in a
compatible Lisp variant using the predefined structures.

Shortcomings of and Extensions to the Motor System.
Two issues are present in ACT-R’s motor system. First,
ACT-R’s motor system cannot perform concurrent inputs
that are common in everyday computer usage. This issue is
caused by state management within the motor module. The
module has three states: preparation, processor, and
execution. New motor commands can be queued when the
preparation state is free. However, only one action can be
executed at a time as the execution state handles commands
serially. Furthermore, these states control actions for both
hands; therefore, performing an action with one hand
prevents the model from using the other. This implies that
ACT-R cannot model video games that require the user to
use both hands concurrently.

Second, the motor module does not support holding down
keys. The motor module supports punches and pecks, each
of which presses and then releases a given key. Together,
these issues limit the types of interaction ACT-R can model.

These limitations prevent ACT-R models from pressing
multiple keys at once—meaning the regular behavior users
exhibit when typing capital letters and using keyboard
shortcuts cannot be modeled. A common workaround is to
assume that the model has an extended keyboard with
buttons that represent chords. Thus, to give an ACT-R
model the ability to use copy and paste shortcuts, dedicated
buttons would be added to ACT-R’s virtual keyboard to
input Control-c and Control-v chords, respectively.

These weaknesses were exposed and remedied during the
development of a model to play Space Fortress (Bothell
2010). Separate execution states were added per hand,
allowing ACT-R to use both hands in parallel. Several
motor commands were added to facilitate holding down and
releasing keys such as hold-peck, hold-punch, hold-key, and
release. The extended system signals both presses and
releases, so new handlers were added to devices to enable
them to detect key and mouse button releases. Finally, a
new module, called motor-extension, was added that has
two buffers that can query the activity of each hand.

Network Interfaces
Another method of getting ACT-R to interact with an
external interface is via a network interface. The JSON
Network Interface (JNI) (Hope, Schoelles, & Gray, 2014)
allows visual objects and motor movements to be shared
over a network connection. The interface generates chunks
for the visual objects on screen, packs them into a JSON
record, and sends it to an ACT-R model. A special module
unpacks the packet and adds the information to the visicon
(the list of visual features currently on screen), allowing
ACT-R to work with the visual information as normal.
Similarly, motor commands in ACT-R generate a packet
that is sent to the interface, which can be used to update the
interface’s state.

New versions of ACT-R (7.6+) have incorporated similar
functionality. They are based on a remote procedure call
(RPC) system that allows multiple clients to request actions
from a server running ACT-R. Therefore, an interface can
connect to the server and send visual chunks for models to
use. Additionally, the interface can watch for motor
commands and act based on them.

Both JNI and ACT-R’s RPC system assume an interface
can be modified. The task interface must have several
features added to it. First, it must manage the connection to
either JNI or ACT-R’s RPC server. Second, it must be able
to convert visual information into visual location and
encoded object chunks. Third, it must be able to simulate
inputs based on those received from JNI or ACT-R. These
modifications can be nontrivial and take time away from the
core reason for using ACT-R, to study human cognition in a
task.

Segmentation and Manipulation
Another method of providing interaction to external
interfaces is by parsing the screen and manipulating inputs.
Therefore, this approach aims to alleviate the issues present

in ACT-R/PM and network interfaces by allowing the
model to “see” what is on the screen and actually interact
with it. SegMan adopted this approach (St. Amant, Riedl,
Ritter, & Reifers, 2005). SegMan created visual features by
taking a screenshot of the display and separating the pixels
into groups based on color and location. Patterns were used
to combine groups that met modeler specified criteria.
Finally, patterns and groups could be parsed to identify
visual features such as images, buttons, and text. In
addition, SegMan could simulate mouse movement, clicks,
and key presses by interacting with the operating system.

SegMan was written in C and worked with Microsoft
Windows 95/98/2000/XP. In addition, it was designed to be
a general programmable interface, and thus worked with
several architectures including ACT-R, Soar, and EPIC.
Unfortunately, the system was not maintained and over time
became less usable.

JSegMan (Tehranchi & Ritter, 2018a, 2018b) is a modern
implementation based on the segmentation and
manipulation approach. JSegMan works separately from
ACT-R, feeding visual information to it and capturing
desired motor commands from it. The vision system works
by taking a screenshot of the computer’s display and
detecting features requested by a model. Models are
augmented to have memories of what an object (e.g., a
button) looks like. These memories store images to search
for in an interface. Finding a feature is handled by template
matching—a computer vision algorithm that separates the
screen into patches and compares each patch to a template
(or desired image) pixel by pixel. The patch with the highest
similarity to the requested memory image is returned.

Motor control is handled by interacting with the operating
system. A signal representing a model’s interaction (e.g., a
punch or peck) is sent to JSegMan, which relays the
corresponding action to the operating system.

JSegMan has shown that older models must be modified
to work with real interfaces. A model designed to perform
the Dismal spreadsheet task (Kim & Ritter, 2015) was
modified to use JSegMan (Ritter, Tehranchi, Dancy, &
Kase, in press; Tehranchi & Ritter, 2018a). The Dismal task
asks subjects to compute values in a spreadsheet given a
fixed set of instructions; Emacs was used to display and
modify the spreadsheet. Forcing the model to really interact
with the interface revealed deficiencies in the model’s logic.
After fixing them, the modified models performed better
than the originals.

Desert Bus
The video game Desert Bus was used as a task during this
study. Desert Bus was created by Dinosaur Games and
published by Gearbox Software; it is available for free and
runs on Windows machines. It was developed for a charity
event. The game is based off an unreleased game of the
same name designed by Penn and Teller in 1998.

Desert Bus has the player drive a bus on a straight road
through the desert connecting Tucson, AZ and Las Vegas,
NV. The trip takes approximately eight hours to complete

one-way, at which point the player earns one point and is
instructed to turn around and drive back. This process
continues endlessly. All the while, the bus drifts slightly to
the right. If the bus drives off the road, it is towed back to
the beginning (in real-time), the trip odometer, and points
are reset. The game cannot be paused. The player controls
the bus with the WASD keys; W is used to accelerate, A and
D turn left and right respectively, and S applies the brakes.
The player can also look around with the mouse and click to
open the door to the bus and turn on/off the radio. Figure 1
shows the player’s view from inside the bus.

Figure 1. The player’s view from inside the bus.

Model
Figure 2 shows a flowchart of the model’s decision cycle.
The model begins by holding down the W key to accelerate.
After that, it enters a looping decision cycle where it looks
for the yellow dividing line in the center of the road (Land
& Horwood, 1995; Land & Lee, 1994) and uses its position
to determine if the bus should be realigned. A realignment
will occur if the line has drifted past 857 pixels; this is the
initial position of the dividing line at the start of the game.
The A key is pressed to turn the steering wheel and realign
the bus. If no adjustment needs to be made, the model fires a
production that symbolizes the decision to drive forward
(without adjusting steering) and then restarts the decision
cycle. As the game occurs in real-time, the ACT-R model
also runs in real-time.

The model takes advantage of the fact that the bus will
only drift to the right (causing the dividing line to move to
the left). Thus, the model only has to worry about moving
left or forward. A more robust model would also consider
moving to the right to make up for overcompensating for the
drift and ending up on the wrong side of the road. Our
model does not worry about this because no other vehicles
appear in the game.

JSegMan handles finding visual targets and simulating
keyboard inputs for the model. Visual searches are
requested at the start of the decision cycle, so the model will
always know where the dividing line has drifted since the
prior decision. Following the example of the Dismal model,
an ACT-R device was used to detect key presses and signal
JSegMan on the behavior to emulate. JSegMan does not
have a persistent connection to ACT-R. Instead, a JSegMan

process must be started (and run to completion) for each
action. Data is passed to JSegMan via command-line
arguments. Data is received from it by parsing its output
stream. Furthermore, when JSegMan is running, the ACT-R
model is paused.

Figure 2. Flowchart of the model. Boxes with a solid
border do not make use of JSegMan whereas boxes with a

dashed border do. The model starts by driving forward.
Then, it looks for the dividing line in the road and realigns

the bus (by moving left) if the line has drifted far away.

The model only looks for the center dividing line, so it
only has one template for JSegMan to look for, depicted in
Figure 3. Templates in JSegMan are images, thus a
screenshot of the game was used to generate the template.

Figure 3. Visual template used for the dividing line. The
template was extracted from a screenshot of the game.

Finally, the model only handles driving. The player begins
the game outside of the bus and must turn around and punch
a timecard before entering the vehicle. To keep the model
simple, we have a player punch the timecard, enter the bus,
and then we start the model. Including these steps are

obvious future tasks. Nevertheless, while undertaking the
drive from Arizona to Nevada, it will be one of the longest
running ACT-R models.

Demonstration Observations
Unfortunately, in its current state, the model is only able to
drive for about a mile before being towed back to the
beginning. The model always successfully makes one
adjustment. However, the adjustment made is too large; it
takes the bus from the extreme right edge of the road to the
extreme left of the opposite lane. After that, the model will
continue driving forward until the bus drifts back into the
center of the road (between the two lanes). Then the model
attempts to make another adjustment and over adjusts,
driving off the road to the left.

The model fails to drive for more than a mile for a
multitude of reasons. First, the template for the dividing line
gets mismatched. The model only uses one template to
identify the location of the divider. However, this template
is not always satisfactory. As the bus drifts left and right
across the road, the angle of the dividing line changes.
When the bus is to the right of the divider, the angle is
similar to that of the template and matches are more likely
to be correct. However, when the bus over adjusts and ends
up on the left of the divider, the template does not match as
well. Furthermore, ACT-R is unaware of the quality of a
match. JSegMan is used to find objects and features on the
display. However, JSegMan does not return any information
about the quality of a match, but a matching request will
always return a position. Thus, a feature will always be
found even if it is not present, meaning ACT-R does not
know when it should avoid putting the feature in the
visicon.

In theory, using multiple patterns could remedy the issue.
Patterns of the divider at different angles would be a proxy
for where the bus is, allowing the model to determine if an
adjustment is necessary. However, this process would take
too long. Currently, it takes 6.01 seconds on average
(n=100) to match the divider template. Furthermore, this is
about the time it takes for the bus to drift from the center of
the road to the rightmost edge; therefore, if the model
attempted to match a second template, it would drive off the
road before having the chance to make an adjustment.

Additionally, the over adjustment is an artifact created by
the overhead of running external processes. JSegMan does
not have support for holding keys or presses of arbitrary
lengths. To make up for this, a Java program was
constructed to simulate key press and release events (to
mimic the signals sent by ACT-R) and is invoked just like
JSegMan. This program was used to determine what the
effects would be of incorporating press and release
commands into JSegMan. To simulate a full key press and
release this program would have to be run twice, the former
sending the press signal while the latter sent the release.
According to the model, an adjustment involves a rapid
peck lasting for 0.08 seconds. However, on average (n=100)
this mechanism takes 2.79 seconds to simulate an input.

Furthermore, the input seen by the operating system is
longer than 0.08 seconds because of the time spent creating
the release process. Using the newest version of ACT-R
would help alleviate some issues (notably those for key
presses/releases) by reducing overhead. Newer versions of
ACT-R are remote procedure call based. If JSegMan is
modified to be a client to ACT-R’s event dispatcher, it will
not need to be restarted, reducing overhead to the time it
takes to send several packets (representing the command to
execute). This change will require JSegMan to rely less on
the device, as newer versions of ACT-R try to avoid using
it. However, this should not be an issue as JSegMan will
also be able to query the event dispatcher, thus it can watch
for events generated by the motor module instead of the
device.

Discussion and Future Work

There are some limitations to this model. It does not
perform the whole task, and cannot yet drive very far. These
limitations suggest changes to JSegMan and its interaction
with ACT-R. Specifically, JSegMan should return infor-
mation about the quality of a match and should use a persis-
tent connection to ACT-R (especially when being used in
dynamic environments) to reduce overhead. Finally,
JSegMan should incorporate commands that enable models
to hold down keys for arbitrary (or indefinite) lengths of
time. Implementing these changes will allow JSegMan to be
used in modeling more complex tasks. During our work, we
also discovered several other interesting topics that can be
studied with a model that can drive a Desert Bus.

Vigilance
The version of Desert Bus we used is multiplayer, allowing
other players to enter the bus as passengers. Players can
interact with one another by talking or throwing scraps of
paper. Thus, cognitive resources are diverted away from
driving. Helton and Russel (2011), showed that subjects
perform worse at a target detection task when
simultaneously performing a spatial or verbal working
memory task. Therefore, in the future, the model can be
augmented to lose vigilance while driving and interacting
with passengers.

Giving Up and Physiologic Effects
Desert Bus is more a game of endurance than skill. The trip,
one-way, takes about eight hours to complete and there is no
end to the game; the goal is to see how far you can go. A
model can play the game forever, but this is unrealistic for a
person. A model can be created that weighs external
influences and duties against playing and determines when
to stop.

Additionally, the model can become more realistic by
incorporating physiology with ACT-R/Φ (Dancy, 2013).
Players can become hungry, thirsty, and/or sleep deprived
while playing, causing their performance to suffer to the
point that the bus runs off the road or forces the player to

stop. Traditional driving models do not drive for long, so
they can ignore these influences. However, ours can
theoretically run forever. Adding a physiologic component
to the model can reveal interactions between cognition and
physiology and leads to a more robust theory of prolonged
work and quitting.

Conclusion
With the advent of SegMan and JSegMan, ACT-R gained
the capability to truly interact with a wide range of
uninstrumented interfaces. ACT-R’s motor module has
evolved to enable modeling of many behaviors users may
exhibit. JSegMan should evolve to make use of the
extensions to ACT-R’s motor module to allow models to
interact with external interfaces with the same behavior as
users.

Using Desert Bus as a task, we began exploring how to
improve JSegMan and what implications our proposals had
for modeling and the design of JSegMan in general. While
our model did not successfully play the game for long, it
yielded useful insights.

Acknowledgements
We would like to thank Jacob Oury and Matt Norris. Oury
provided feedback on the paper. Norris found the remake of
Desert Bus. We also thank everyone who attended the
Virtual International Symposium on Cognitive
Architectures for providing feedback on the project, particu-
larly Dan Bothell and John Anderson. Work on this project
was support by a fellowship to the first author from
SMART, and a grant from ONR (N00014-15-1-2275)
partially supported the second and third.

References
Anderson, J. R. (2007). How can the human mind exist in

the physical universe? New York, NY: Oxford
University Press.

Bothell, D. (2010). Modeling Space Fortress: CMU Effort
[PowerPoint slides]. Seventeenth Annual [ACT-R]
Workshop and Summer School. Retrieved from
http://act-r.psy.cmu.edu/wordpress/wp-
content/themes/ACT-
R/workshops/2010/talks/ICCM_SF.ppt

Byrne, M. D. (2001). ACT-R / PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies, 55(1), 41–84.
https://doi.org/10.1006/ijhc.2001.0469

Dancy, C.L (2013) ACT-RΦ; A cognitive architecture with
physiology and affect. Biologically Inspired Cognitive
Architectures, 6(1), 40-45.

Helton, W. S., & Russell, P. N. (2011). Working memory
load and the vigilance decrement. Experimental Brain
Research, 212(3), 429–437.
https://doi.org/10.1007/s00221-011-2749-1

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014).
Simplifying the interaction between cognitive models

and task environments with the JSON Network
Interface. Behavior Research Methods, 46(4), 1007-
1012.

Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997).
Predictive engineering models based on the EPIC
architecture for a multimodal high-performance human-
computer interaction task. Transactions on Computer-
Human Interaction, 4(3), 230-275.

Kim, J. W., & Ritter, F. E. (2015). Learning, forgetting, and
relearning for keystroke- and mouse-driven tasks:
Relearning is important. Human-Computer Interaction,
30(1), 1-33.

Laird, J. E. (2012). The Soar cognitive architecture.
Cambridge, MA: MIT Press.

Land, M. F., & Horwood, J. (1995). Which parts of the road
guide steering? Nature, 377(6547), 339-340.

Land, M. F., & Lee, D. N. (1994). Where we look when we
steer. Nature, 369(6483), 742-744.

Ritter, F. E., Tehranchi, F., Dancy, C. L., & Kase, S. E. (in
press). Some futures for cognitive modeling and
architectures: Design patterns that you can too.
Computational and Mathematical Organization Theory.

Ritter, F. E., Tehranchi, F., & Oury, J. D. (2018). ACT�R:
A cognitive architecture for modeling cognition. Wiley
Interdisciplinary Reviews: Cognitive Science, 10(3),
e1488.

Schwartz, D. M. & Dancy, C. L. (2019). Building
environments for simulation and experimentation in
Malmo. Twenty-Sixth Annual ACT-R Workshop.

Schwartz, D. M., & Ritter, F. E. (2019). Lessons from
connecting Skirmish Sim and ACT-R/Phi (Tech. Report
No. ACS 2019-3). Applied Cognitive Science Lab,
College of Information Sciences and Technology, Penn
State.

St. Amant, R., Riedl, M. O., Ritter, F. E., & Reifers, A.
(2005). Image processing in cognitive models with
SegMan. In Proceedings of HCI International '05,
Volume 4 - Theories Models and Processes in HCI.
Paper # 1869. Mahwah, NJ: Erlbaum.

Tehranchi, F., & Ritter, F. E. (2018a). Modeling visual
search in interactive graphic interfaces: Adding visual
pattern matching algorithms to ACT-R. 16th
International Conference on Cognitive Modeling, 162–
167.

Tehranchi, F., & Ritter, F. E. (2018b). Using Java to provide
cognitive models with a universal way to interact with
graphic interfaces. International Conference on Social
Computing, Behavioral-Cultural Modeling and
Prediction and Behavior Representation in Modeling
and Simulation, Paper LB_15. Washington DC, USA.

