
Appeared as: Ritter, F. E., & Wallach, D. P. (1998). Models of two-person games in ACT-R and
Soar. In Proceedings of the Second European Conference on Cognitive Modelling. 202-203.
Nottingham: Nottingham University Press.

1 2 June 2001

Models of Two-person Games
in ACT-R and SOAR

Frank E. Ritter Dieter P. Wallach
University of Nottingham Saarland University

Nottingham NG7 2RD, UK 66041 Saarbrücken, Germany
frank.ritter@nottingham.ac.uk dwallach@cops.uni-sb.de

We were interested in understanding and comparing
how ACT-R (Anderson & Lebière, in prep.) and
SOAR (Newell, 1990) could each model a given
dataset. We analyze and compare two models in
their ability to account for a classical 2 person
game, including the effort necessary to create and
run them. In comparing the models and their results
we provide two sample models and start to explore
the potential role of abstract models and different
types of data.

Game description. In two player, 2x2 games
each player can choose one of two alternatives in
each round. The players are rewarded according to a
payoff matrix. The prisoner's dilemma is an exam-
ple of such a 2 person game.

We used data from a classical experiment (Suppes &
Atkinson, 1960) of how people learn when they
play a normal form, two player 2x2 game with a
nontrivial unique mixed strategy equilibrium. Table
1 shows the payoff matrix used in the experiment
that we model here. This matrix has a unique mixed
strategy equilibrium point, that is, a stable set of
strategies, when Player 1 chooses option A1 with
probability 1/3 and player 2 chooses option A2
with probability 5/6. Figure 1 shows the empirical
choice frequencies of option A for player 1 (A1) and
player 2 (A2) aggregated in 5 blocks with 40 rounds
each, of 20 pairs of participants playing the game
for 200 rounds (Erev & Roth, 1998).

ACT-R model. Figure 2 shows the structure of
the ACT-R model used to account for this data. For
a full description of the ACT-R model see Bracht,
Wallach and Lebière (1998). The model consists of
two simple productions for each player representing
the options available:
Rule1: If Player 1 chooses => choose Option A.
Rule2: If Player 1 chooses => choose Option B.

In every round, both of these productions are appli-
cable for each player modeled. ACT-R’s subsym-
bolic cost learning mechanism learns the relative
payoff of each production rule and updates their ex-
pected gain based on the outcome of the round. In
general, ACT-R selects the production rule with the

Player 2
Option A Option B

Player 1 Option A 2, 4 6, 0

Option B 3, 3 1, 5

Table 1. Payoff matrix used by the models here.

Figure 1. The evolution of strategies in the
subjects on the Table 1 payoff matrix

Figure 2. Description of the ACT-R model.

highest expected gain. Two architectural parameters
were used to fit the model to the data (expected gain
noise and number of previous production applica-
tions). The model with the same parameter settings
has also been applied successfully to data from three
other experiments taken from Erev and Roth (1998).

SOAR model. The easiest way to explore a SOAR
model of this task is to create an abstract model. An

abstract model is based on an information process-
ing model or architecture. It predicts what a running
model would do, without implementing the internal
behaviors (e.g. Langley, 1996; Ohlsson & Jewett,
1994).

An abstract model of the simplest SOAR model
could start with a single operator representing each
choice. Each round, an operator is randomly chosen
to apply. After each round, the expected values of
each of the four payoffs occurring can be computed
for each player. Operators that do better than the
average payoff can be duplicated through a reflec-
tion-like process (not specified, but similar to the
process in Bass et al., 1995). Various other ways of
duplicating operators are possible (e.g. duplicate
operators as many times as their payoff). In SOAR
these processes are determined not by the architec-
ture but by knowledge. It is fairly straightforward to
implemented a program to compute the expected
population of operators on each round. The results
of this program are shown in Figure 3. While this
model is not currently based on a running Soar
model, creating such a model should be straightfor-
ward. Deriving its predictions is much simpler as an
abstract model, for programming an interface to
record multiple rounds and games would be less
straightforward.

Figure 3. The evolution of strategies in the two
models on the Table 1 matrix.

Comparisons

Model fit. As Figure 1 shows, the ACT-R model
captures the general tendencies in the empirical data
quite nicely. In addition to this short term predic-
tion, the model converges asymptotically to the
equilibrium of classical game theory in the long
term (after >1500 rounds). The initial Soar model,
on the other hand, does not match the subject data
(short term) nearly as well, but instead appears to
quickly converge to near the equilibrium.
Effort. Both models took about the same time to
implement (4-5 hours), including the ability to

automatically run and trace the model. Both models
can run 200 rounds of 20 subject pairs in under 30s.
Abstract models. The Soar model would not be
as easy to run if it was implemented in Soar produc-
tions. It would not be straightforward to implement
an abstract version of the ACT-R model based on
its current mechanism, but it is easy to create an
abstract model of the operator population model in
ACT-R (as a rule population), or an ACT-R model
directly based on this principle. The difficulty of
creating abstract models within each architecture
varies by task, but appears to be generally easier in
SOAR. Creating full models appears, however, to be
more difficult. In this task, the SOAR architecture
appears to have less to say than ACT-R because it
lacks architectural mechanisms to account for the
learning observed here. While the Soar model does
not match nearly as well (yet), it allows the space
of possible models to be explored quite quickly
(about 5 min. per model).

Conclusions

These results are very interesting, for they start to
suggest possible trade-offs in modeling; between
abstract and information processing models, and
between architectures. This work also emphasizes
the role of usability as a necessary precondition for
explorations of this kind.

REFERENCES
Anderson, J. R. & Lebière, C. (in prep.). T h e

atomic components of thought. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Bass, E. J., Baxter, G. D., & Ritter, F. E. (1995).
Using cognitive models to control simulations of
complex systems. AISB Quarterly, 93, 18-25.

Bracht, J., Wallach, D. & Lebière, C. (1998). On
the need and performance of cognitive game theo-
ry: ACT-R in experimental games with unique
mixed strategy equilibria. To appear in The
Economic Science Association (ESA) Annual
Conference.

Erev, I. & Roth, A. (1998, in press). Predicting
how people play games: Reinforcement learning
in experimental games with unique, mixed strat-
egy equilibria. American Economic Review.

Langley, P. (1996). An abstract computational
model of learning selective sensing skills. In
Proceedings of the 18th Annual Conference of the
Cognitive Science Society. 385-390. Hillsdale,
NJ: Lawrence Earlbaum Associates.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Ohlsson, S. (1995). Abstract computer models:
Towards a new method for theorizing about adap-
tive agents. In Machine Learning: ECML-95.
Berlin: Springer-Verlag.

Suppes, P. & Atkinson, R. C. (1960). Markov
learning models for multiperson interactions.
Stanford, CA: Stanford University Press.

