
Behavior Research Methods, Instruments, and Computers
2005, 37 (1), 71-81

There are several facilities that researchers would like
to have when studying behavior. Nearly all the time, they
would like to record behavior. After that, they would like
to analyze it. These analyses can take standard forms,
such as computing means, but can also involve exploring
the data. In the case of sequential data, analysis includes
examining the sequence for patterns and aligning the se-
quence with predictions of that sequence. Sometimes,
these analyses are common and are carried out by others.
In this case, the analyses are often supported with exist-
ing computational tools. In other cases, the analyses are
relatively or completely novel.

We present a tool developed for working with human–
computer interface data and with protocol data relevant
to cognitive models. This tool, called Dismal, provides sup-
port for several common analyses and support for creat-
ing novel analyses.

Dismal is a spreadsheet that was designed to gather
and analyze behavioral data. Figure 1 provides an exam-

ple display. Dismal has three features of particular inter-
est to those studying behavior: (1) the ability to manipu-
late and align sequential data, (2) an open architecture
that allows users to expand it to meet their particular
needs, and (3) an instrumented and accessible interface
for studies of human–computer interaction (HCI).

Dismal extends the GNU Emacs editor (Free Software
Foundation, 1988), using GNU Emacs’ extension lan-
guage, Emacs Lisp. There is a large potential user com-
munity for Dismal, since GNU Emacs is a popular text
editor that is commonly installed on UNIX and Linux
systems. Dismal has been accepted for inclusion as part
of the GNU Emacs distribution, so it will be included au-
tomatically on many machines in the future. Dismal does
not rely much on operating system calls, so it is pretty
portable. Thus, users on PCs running Emacs under Win-
dows/* and under Linux and Macintoshes running Emacs
can all use Dismal if they have a recent version of Emacs
(19 or higher). Dismal has worked with versions of the
XEmacs version of Emacs, but there continue to be small
problems as XEmacs evolves differently from Emacs.
These problems have been pretty easy to f ix. Expert
users of Xemacs should be able to modify the source
code to make it run with their version.

Example uses of these capabilities are provided to il-
lustrate Dismal’s use in sequential data analysis, its use
for teaching and doing HCI design, and an application of
using keystroke logs and alias creation tools. Dismal also
illustrates some new features that designers of other
spreadsheets and related tools may wish to include in
their systems (and which some have). To introduce Dis-
mal, we describe its general capabilities before describ-
ing its particular features of interest.

GENERAL CAPABILITIES

Emacs supports editing different types of files by map-
ping the standard set of editor keystroke commands to a
contextualized set with a template, called a major mode.
These modes, implemented as a set of Emacs Lisp func-

1 Copyright 2005 Psychonomic Society, Inc.

Initial work was sponsored in part by a training grant from the Air
Force Office of Scientific Research, Bolling AFB, DC, and in part by
the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-
Patterson AFB, under Contract F33615-90-C-1465. David Fox wrote
the first version and worked jointly on the initial development when he
was at New York University. Dismal’s later development was partially
supported by the Economic and Social Science Research Council’s Cen-
tre for Research in Development, Instruction, and Training, by Grant
SPG 9018736 from the Joint Council Initiative in HCI and Cognitive
Science, by a grant from DERA, Contract 2024/004, by Lockheed Mar-
tin, and by the U.S. Office of Naval Research, Awards N000140110547
and N000140310248. Numerous users have contributed bug reports.
Erik Altmann, Stephen Eglen, Nigel Jenkins, David Lamkins, Sarah
Nichols, and Roberto Ong have contributed extensive additions. Angela
Barnhill, Andy Edmonds, Ying Guo, Vicenç Quera, and an anonymous
reviewer have provided useful comments. Correspondence concerning
this article should be addressed to F. E. Ritter, School of Information
Sciences and Technology, Pennsylvania State University, University
Park, PA 16802 (e-mail: frank.ritter@psu.edu).

Note—This article was accepted by the previous editor, 
Jonathan Vaughan.

Dismal: A spreadsheet for sequential data analysis
and HCI experimentation

FRANK E. RITTER and ALEXANDER B. WOOD
Pennsylvania State University, University Park, Pennsylvania

Dismal is a spreadsheet that works within GNU Emacs, a widely available programmable editor. Dis-
mal has three features of particular interest to those who study behavior: (1) the ability to manipulate
and align sequential data, (2) an open architecture that allows users to expand it to meet their partic-
ular needs, and (3) an instrumented and accessible interface for studies of human–computer inter-
action (HCI). Example uses of each of these capabilities are provided, including cognitive models that
have had their sequential behavior aligned with subject’s protocols, extensions useful for teaching and
doing HCI design, and studies in which keystroke logs from the timing package in Dismal have been used.

analysis

Unknown


user
Inserted Text



2 RITTER AND WOOD

tions, adapt the basic editing commands to suit what is
being edited. For example, the command, bound to a
keystroke, to move to the next paragraph (meta-control-f)
should mean different things, since the “paragraphs” are
different when text is edited and when a C program is
edited.

Dismal is implemented as one of these major modes.1
Dismal changes nearly all the commands, menus, and key
bindings to have Emacs work like a spreadsheet with a
given file. So, in the same manner that the user could
move forward a word with a key binding, he or she now
can move forward a spreadsheet cell.

Dismal includes most of the major functions that one
now expects from a spreadsheet, such as (1) the addition,
deletion, clearing, and pasting of cells, rows, columns,
and ranges, (2) formula entry and evaluation, (3) move-
ment within the spreadsheet with keystrokes and mouse
movements, and (4) the ability to format each cell’s dis-
play. The more global layout of spreadsheets and their
components are reconfigurable by adjusting the location,
width, and alignment of columns. As with any spread-
sheet, the ability to put formulas into cells and to create
new functions allows many analyses to be performed di-
rectly. For example, several functions have been added to
translate grades between letters and number equivalents.

Users can interact with the spreadsheet through key-
strokes, menus, and function calls. Commands are avail-
able on keystrokes, as well as on pull-down menus under
X Windows and a continuously available command line
menu (Ritter & Ong, 1994). The commands are imple-

mented as Emacs Lisp functions, so further extensions or
customizations can be created, such as the keystroke-
level model below, and a few users have done these types
of extensions.

FACILITIES FOR SEQUENTIAL
DATA ANALYSIS

Sequential data—that is, sequences of actions, utter-
ances, or other behaviors that have order—have been
used to study behavior in many areas. These areas in-
clude animal behavior, conversations and children’s lan-
guage acquisition (MacWhinney, 1991; MacWhinney &
Snow, 1990), HCI (Finlay & Harrison, 1990; Ritter &
Larkin, 1994; Sanderson, Scott, et al., 1994), and prob-
lem solving (Newell & Simon, 1972). There are several
reviews available (Clarke, 1990; Fielding & Lee, 1991;
Gottman & Roy, 1990; Hilbert & Redmiles, 2000; Ritter
& Larkin, 1994). Sequential data let us examine what oc-
curs and start to derive descriptions of behavior that are
more complex than simple reaction times. Patterns of be-
havior, including strategies, precursors, and causality,
can start to be explored with sequential data.

Sanderson and Fisher (1994) have noted that there are
several types of exploratory sequential data analysis
(ESDA). Some analyses arise when sequential data are
displayed and the temporal patterns are visible. More ad-
vanced analyses include looking for cycles, computing
transition matrices, and aligning two sequences. Hilbert
and Redmiles’s (2000) review of sequential data analy-

Figure 1. Dismal running within an X windows environment, showing sample data to
model predictions alignment, taken from Ritter and Bibby (2001, Episode 5).

Clarke,

1990;

Fielding

&

Lee,

1991;

Au:
Clarke, 1990 not in refs;
Fielding & Lee ok?




A SPREADSHEET FOR SEQUENTIAL DATA AND EXPERIMENTATION 3

sis techniques provides seven categories. Dismal in-
cludes support for their Sync & Search, Counts & Stats,
Transforms, and Sequence comparisons. Dismal can be
extended to include their Sequence detection and Se-
quence characterization. If extended in these ways, Dismal
might also be seen to provide their Integrated support.

Of particular interest to us, sequential data have also
been used to develop and test cognitive models in a va-
riety of domains, including, for example, problem solv-
ing (Newell & Simon, 1972; Ritter & Bibby, 2001) and
menu use (Byrne, 2001). Dismal was developed to work
directly with sequences of verbal and nonverbal proto-
cols to build and test models of cognition. It should also
support the analysis of other types of sequential data.

Dismal provides support for simple and complex ESDA
analysis, ranging from the simple analyses of computing
word counts, to searching for lines matching given pat-
terns, to semiautomatically assigning codes to segments,
to the more advanced analyses of automatically aligning
protocols (subjects’ verbal utterances or a series of actions)
with the sequential actions of an information-processing
cognitive model. These activities are parts of building and
testing cognitive models (Ritter, 2004; Ritter & Larkin,
1994), but they are also steps used in theory building and
testing in general. We will explain these capabilities in
more detail in the following sections, including the de-
sirability of a tabular display for such data.

Simple Measures and Simple Analyses 
of Sequences

Dismal’s tabular display supports simple, initial visual
inspection of sequential data. The tabular display of the
information sequences, their arrangement side-by-side,
and the ability to print out the correspondences support
ESDA. Most tools for manipulating protocols include
the ability to segment protocols appropriately and then to
assign codes to the segments as a step in model formation
(Ritter & Larkin, 1994). The general spreadsheet func-
tions support the preliminary step of resegmenting verbal
protocols by adding additional cells and breaking an ini-
tial segment of protocol text into segments, as appropriate.

Through a menu or keystroke command, a segment
can be assigned one of a set of codes. These codes can
be entered by the user as they code or loaded from a saved
file of previously used codes representing, for example,
an ACT–R or Soar model. When we have taken the codes
directly from a cognitive model in the Developmental
Soar Interface (Ritter & Larkin, 1994), the savings did
not seem to be large, because the codes have to be im-
ported only once. But interfacing this part of Dismal
with a task representation tool, such as CTTE (Paternò &
Santoro, 2002), remains an interesting possibility.

With the codes in hand, the sequences of behavior can
then be analyzed. The underlying spreadsheet provides
formulas for computing simple aggregate measures on
the coding. A database facility (somewhat similar to the
database facilities in Excel) is included in GNU Emacs,
including the ability to display all segments that do (or

do not) match a given pattern. Emacs supports the use of
regular expressions (Friedl, 2002) to describe patterns.

To support these analyses, Dismal introduces the idea
of metacolumns. This is necessary when the set of vari-
ables making up the theory’s predictions or the set of
data variables span more than one simple spreadsheet
column. For example, most analyses will use two columns
to hold the theory’s predictions—one to hold the pre-
dicted actions and one to hold their predicted times.
These two simple columns should stay together as cells
are added or aligned. To assist this process, Dismal al-
lows columns to be linked into metacolumns. During
alignment operations the simple columns making up the
metacolumns are manipulated together so that cells within
a metacolumn remain aligned. In the examples included
here, the columns on the right are the data columns, and
the columns on the left hold the components that make
up the model’s predictions (informally called a trace in
the cognitive-modeling community2), but this choice of
sides is arbitrary.

Figure 2 shows an example alignment of columns of
human behavior data and model performance. In the fig-
ure, columns A–H are grouped into one metacolumn (the
data), and I and J are grouped into a metacolumn hold-
ing the model’s predictions. This grouping is shown by
the boxes overlaid onto the figure highlighting the meta-
columns. The alignment algorithms explained in the next
section thus move columns A–H together and I and J to-
gether. A count of the codes in this alignment is included
in lines 17 and 20–26, where a function counts the codes
used in the alignment (from column G, “MTYPE”).

In this display, lines 0 through 44 are used as a header,
but like any other spreadsheet, these rows are not fixed
as header rows. Line 45 holds a ruler, which names the
columns. When the user scrolls, the contents of the ruler
row are redrawn as the top line of the display. This ruler
can be adjusted to any row or can be omitted.

As a spreadsheet, Dismal provides a tabular display of
these codes and correspondences between sets (columns)
of codes. The tabular display helps the analyst see how to
align the two columns (e.g., predicted codes and observed
codes) and to understand the alignment by providing the
context of each match (the sequence of items both before
and after it), along with a visual operation (scanning a
row) to identify the prediction and the data that are paired.
The tabular display also shows how much of the predicted
codes are matched and unmatched to the observed codes,
and it starts to show patterns across columns.

This tabular display, with the field names shown as
column headings, provides a compact way to display
large amounts of data. It allows more data to be dis-
played on the screen than a database approach can pro-
vide. The tabular display reflects the underlying matrix
organization of the data into rows of segments that each
include several fields displayed as columns. Automatic
alignment programs and semiautomatic tools thus have
a uniform and appropriate data structure holding the seg-
ments and protocols to be manipulated.

to be

manipulated.

Au:
ok?




4 RITTER AND WOOD

Complex Protocol Coding: Alignment of
Predicted and Actual Actions

An advanced form of sequence analysis is to use a
process model (e.g., Newell & Simon, 1972) to predict
the sequence of actions in behavior. The model is tested
by interpreting and aligning a sequence of behaviors
with respect to a model’s sequential actions that serve as
predictions. This can be an important component of cog-
nitive model testing (Ritter, 2004; Ritter & Larkin, 1994).
The sequences do not have to come from cognitive mod-
els such as ACT–R or Soar; a broad range of theories can
be used to generate these sequences.

The Types of Segment Alignments
The types of codes for possible alignments between

behavior data and model predictions are shown in Table 1.
Versions of these codes are also used in Figures 1 and 2
in the column labeled MTYPE (for match type). The ex-
ample alignment in Figure 1 includes all of the ways in
which Dismal can display how the model’s predictions
are matched by the data. Alignment here thus means not-
ing which model actions (predictions) match to the human

protocol and which model actions do not match and dis-
playing this correspondence. The alignment of model
overt actions to human actions can be straightforward.
In this case, identical actions are aligned (allowing for
possibly different names from two different systems
through the use of paired regular expressions to repre-
sent matches across the columns). Alignment of the mod-
el’s mental processes to human verbal protocols requires
more interpretation but is supported by an extensive the-
ory of how verbal utterances correspond to mental states
(Ericsson & Simon, 1993). This alignment can be done
automatically, semiautomatically, by hand, or through a
combination of these approaches. Figure 2 shows a Dis-
mal display with the sequential data and model predic-
tions aligned.

Formulas can then directly support many low-level
analyses of the alignment, including summary statistics,
such as counting the matches and their types and counting
the number and types of operators matched. All of the
simple model/data measures presented in Ritter (1993),
such as goodness = hits � false-alarms, are directly sup-
ported in Dismal. Additional measures of sequence sim-

Figure 2. Example display of a model trace aligned with data (taken from the Vars episode of Browser-Soar;
Peck & John, 1992). As labeled in row 45, the left-hand columns including “T” (time of the subject’s actions)
through “MDC” (matched decision cycle) are one metacolumn (columns A–H), and the columns labeled “DC”
and “Soar trace” on the right (I and J) are another metacolumn. The codes used in column G are explained below
in Table 1. The dashed lines are added to this figure to indicate the metacolumns and do not appear on the screen.

Au:
not in refs


Ericsson

&

Simon,

1993).



A SPREADSHEET FOR SEQUENTIAL DATA AND EXPERIMENTATION 5

ilarities, including those reviewed in Waterman (1995),
such as the number of model actions matched and the
number of words in a protocol, have been or could be
added as formulas or special functions.

There is one type of correspondence that is awkward
to represent in Dismal: a subject action that is matched
by multiple model actions. The current representation
assumes that what matches a given data segment is a sin-
gle action of the model. This lack of representation serves
as a useful constraint; segments that match more than
one model action probably are not segments. Either the
model is more fine-grained than the data, or the segment
should be considered for resegmenting.

Aligning segments by hand. Dismal provides two
functions for aligning the metacolumns by hand. The
most powerful function aligns two user-selected rows.
The analyst can also insert blank rows into each meta-
column individually, which allows offsetting metacolumns
while maintaining alignment within each metacolumn.

Aligning unambiguous segments automatically.
Aligning predictions with data by hand is tedious and
error prone, so some assistance is warranted. Complete
and automatic alignment is beyond current natural lan-
guage parsing technology. However, other data streams
are relatively unambiguous. Dismal provides a simple
alignment algorithm that can automatically align model
actions with unambiguous protocol segments (Ritter,
1992; Ritter & Larkin, 1994). The automatic alignment
can be supplemented and corrected with manual align-
ment commands. For example, mouse clicks support au-
tomatic alignment with a sequence of process models’
predictions.

The algorithm used by Dismal to compute the alignment
is based on Card’s algorithm (Card, Moran, & Newell,
1983, appendix to chapter 5). Card’s algorithm is a ver-
sion of the maximum common subsequence (MCS) algo-
rithm (also sometimes called the longest common subse-
quence; Hirschberg, 1975; Wagner & Fisher, 1974). In
addition to computing the maximum subsequence length
and the maximum matched subsequence itself, Dismal’s
algorithm also aligns the two metacolumns based on this
MCS. The Card2 algorithm in Dismal includes three fur-
ther additions to Card’s original algorithm.

(1) Matches that start at the beginning of the subject
protocol and model action sequence are preferred. There
may be several possible “best” alignments (all of the
same length). Because we are interested not just in how
much could be aligned, but in using the alignment to
understand how the alignment between the predicted se-
quence and the actual sequence can be improved, which
possible match set gets chosen is of interest.

Most theories in this area—for example, ACT–R and
Soar models—will generate the sequences, starting at
the beginning, as a series of actions. Aligning from the
beginning of a data sequence thus matches the theory at
the beginning of performance, and when the two se-
quences mismatch, it is clearer where to start to improve
the match by modifying the theory—typically, by ex-
tending or correcting the cognitive model’s knowledge.
Card2 satisfies the requirement of starting the match at
the beginning of the two sequences by using the subse-
quence that starts closest to the beginning of the two input
sequences.

For example, consider aligning the two simple strings
DUC and DUDUDU. Card2 would return an edit list
(referenced by position) that would call for aligning the
first Ds of each sequence together. This results in align-
ing the initial predictions, which is a more stable align-
ment if changes to the sequences can come at the rear.
For example, if additional D tokens were later added to
the shorter list, the alignment will change less.

(2) The match process is based on regular expres-
sions, not just constants. In the original MCS task, the
comparison between the two information streams is that
of strict equality across identical alphabets—that is, are
the tokens the same tokens across the sequences? Here, the
two information streams will often contain different sets
of names (alphabets) for the tokens in each streams. The
comparison step in Card2 has been modified to do a more
flexible comparison based on pairs of regular expres-
sions (Friedl, 2002)—for example, the pattern “mouse-
move” in the model column matches “M(*)” in the data
column, where * represents “matches anything.” This is
a relatively small but important addition that allows se-
quences that use different names for the same tokens to
be aligned. These differences appear to arise quite often
when one works with cognitive models and sequential
data. The basic functionality of matching regular expres-
sions is provided by GNU Emacs. An example of this
match pair is shown in line 111 in Figure 2. Lines 114,

Table 1
Types of Correspondences That Are Used in Data to Model

Predictions Alignments in Dismal

An uncodable subject action, one that cannot be interpreted with re-
spect to the model, is shown on line 81 (as numbered on the left-hand
side)—a verbal utterance that is too short to code. Waterman (1995)
might describe this type of mismatch as strings taken from a different
alphabet, since the datum is not intended to be brought into correspon-
dence to a model action, and the model should not be penalized for not
matching this datum.

Uncoded model actions are shown in lines 46–51, 69, and so on.
They are indicated by lines of model trace without corresponding sub-
ject actions. Waterman (1995) would label this a deletion.

Hits are shown in lines 69, 80, 82, and so on. The match is indicated
in columns E–H. Column E notes the type of the match of the segment
(ST), which in this case is mouse movement inferred, or “mi.” The type
of correspondence (column G, labeled MTYPE) is of a matched mouse
movement. The simulation cycle that is matched by the mouse move-
ment is shown in Column H as the matched decision cycle (MDC). Wa-
terman (1995) would label this an identity.

A miss is shown on line 82. The subject has clicked the mouse, and
there is no corresponding action in the model’s trace. Waterman (1995)
would label this an insertion.

A pair of actions that are crossed in time is shown in lines 75 and 80.
The corresponding behaviors cannot be directly aligned while keeping
them in order, so the matched decision cycle column is used as a refer-
ence for the subject action matched, and there is some reason to believe
there is some correspondence. Waterman (1995) calls this an inversion.

Note—All line numbers refer to Figure 2.

Ritter,

1992;

Au:
not in refs


contain

Au:
ok?




6 RITTER AND WOOD

115, 144, and 145 in Figure 2 show similar pairs of 
correspondences (“D” and “press-button,” and “U” and 
“release-button”) that represent identical elements but
are presented differently in the model and the data
columns.

The matching process also is a location in which to in-
corporate a natural language matching process. With
regular expressions, the analyst can start to compare key-
words from expressions with verbal utterances in a sim-
ple way. The model’s predictions represent the actions
and knowledge structures that one expects to find in the
subject’s actions and verbal utterances. Because there al-
ready exists a strong model of what will be said and
done, the knowledge structures (the model’s predictions)
for a general parse are available, creating a restricted sit-
uation for natural language parsing. The scope of the
natural language parsing problem, as well as our experi-
ence, makes it clear that a simple keyword parser will not
be adequate for interpreting the data with respect to the
predictions completely automatically in this restricted
form. Even if the parse is only approximate, however, it
will make the alignment easier to perform. Although au-
tomatic alignment was not done for the alignment in Fig-
ure 2, a correspondence between “which *” and “generate-
eval-criterion” would be an example of using a regular
expression to do automatic alignment. Also, codes could
be applied by an analyst to the verbal utterances, and
these then could be automatically aligned with the pre-
dicted sequence.

(3) The last duplicated item in a matched subsequence
is preferred. Human behavior often has multiple actions
that are matched by only one model code, as is shown in
Table 2. We prefer to have the last possible item in a se-
ries of equal tokens to be used in the alignment. For ex-
ample, when the Browser-Soar (Peck & John, 1992) data
illustrated in Figure 2 are analyzed, the earlier Ms
(mouse movements) represent mistaken or preliminary
applications of the M (mouse move) operator, whereas
the final movement tends to more closely represent the
subject’s behavior. For example, in matching “TM--CT”
to “TMMMCT,” there are two possible “best” sequences,
as is shown in Table 2.

The overall alignment is clearer if the subalignment in
Table 2B is preferred, and the timing correspondences
will be more accurate and usable as well. For example,
mouse moves will be a common problem, for there may
be multiple mouse moves before a click. The alignment
is clearer if the user’s last mouse move is aligned to the
model’s “move-mouse.”

Example Sequential Analyses
The autoalignment facility in Dismal has been used to

align human behavior protocols with model action se-
quences. Figure 1 shows its application to the Diag-Soar
cognitive model (Ritter & Bibby, 2001). The mouse ac-
tions in the second column were automatically aligned
with the mouse moves in the model actions column on
the far right (labeled “Trace”). The verbal utterances

were then aligned by hand. Figure 2 shows (in a slightly
modified form) its first application to the Browser-Soar
cognitive model (Ritter & Larkin, 1994). In these two ex-
amples, cognitive models written in Soar (Laird, Newell,
& Rosenbloom, 1987) have been used to generate the
predicted sequences.

The model in Figure 2 had a large number of external
actions (mouse moves and clicks), which allowed the au-
tomatic alignment algorithm to do most of the final align-
ment. The model in Figure 1 had far fewer external ac-
tions. Although the alignment algorithm was useful for
the analysis in Figure 1, the analyst performed much of
the final alignment by pairing up segments by hand.

FACILITIES FOR EXTENSIONS

When the previously explained analyses prove to be
inadequate or incomplete, Dismal can be extended using
Emacs Lisp. Users can write their own custom com-
mands—for example, to count the occurrences of se-
quences in a column. Users also can change the way cells
are displayed, the way numbers are represented, or how
cells are updated. Emacs Lisp is an interpreted language
for which there is a primer (Chassell, 2001) and a man-
ual (Lewis, Laliberte, Gnu Manual Group, Stallman, &
Lewis, 2000), both of which are available on line. Emacs
Lisp also includes a powerful compiler.

Emacs includes a library of extensions, to serve as ex-
amples, with the editor, as well as further ones on line
(see, e.g., www.emacswiki.org). These extensions in-
clude terminal emulators, shell (process) control pro-
grams, debuggers, and even games. Emacs’ software ar-
chitecture makes it a straightforward task to tie these
packages together. This permits systems using Dismal to
be written in the native Emacs Lisp code or to be called
as an associated UNIX process.

Since the source code is provided, Dismal can be used
as a testbed for evaluating various interface designs. This
has been done as part of student projects. Two students in
Lisp programming classes at the University of Notting-
ham have provided useful extensions to Dismal as class
projects, and students at the University of New Brunswick
have done similar work. Dismal users have created their
own packages to compute flight expenses, control ma-
chine tools, and draw graphs from the spreadsheet data.

A useful approach toward improving interface design
is to incorporate known HCI theory in design tools. As a

Table 2
Possible Best Alignments

TM--CT
TMMMCT

(a) Aligned from back in matched subsequence (lower envelope, 
Waterman, 1995)

T--MCT
TMMMCT

(b) Aligned from beginning in matched subsequences (upper enve-
lope, Waterman, 1995)

actions

mouse

moves

and

clicks),

Au:
ok?


prove

to

be

Au:
ok?




A SPREADSHEET FOR SEQUENTIAL DATA AND EXPERIMENTATION 7

step toward this, we have created a tool incorporating
several known psychological results (i.e., alias genera-
tion rules and the keystroke-level model). The tool, sim-
ple additions to Dismal, helps to create theoretically mo-
tivated aliases for command line interfaces and to compute
the expected savings. This tool is similar to user inter-
face design tools such as Glean (Kieras, Wood, Abotel,
& Hornof, 1995) and CTTE (Paternò & Santoro, 2002),
but implemented in a spreadsheet. We will review our
tool here to illustrate how Dismal can be extended.

An Example Extension for Creating an HCI
Design Tool

The ideas behind the alias creation tool could, in fact,
be applied to any command set, but the command set ini-
tially optimized with this tool was Soar (Laird et al.,
1987). Soar has previously been command line driven,
and over 50 commands are available in Soar Version 7
(Congdon & Laird, 1995). A more complete description
of this analysis is available (Nichols & Ritter, 1995).

There are a couple of reasons to create aliases for the
Soar command line. Although there is a graphical inter-
face, the command line interface remains an important
part of Soar, since some members of the Soar commu-
nity prefer a command line. Also, some Soar users can-
not use the graphic interface, due to hardware limita-
tions, or prefer not to because of program speed and size
concerns. Soar was (and is) used within our local envi-
ronment. It is worthwhile enhancing the system for both
local users and the Soar community worldwide. There is
also the potential to get command use frequency infor-
mation and usability feedback from the local users. The
most important reason is that providing aliases will im-
prove the usability of Soar. Some of the commands that
exist within Soar are quite long; this suggests that users
could benefit greatly from the introduction of aliases.

The HCI theories were implemented by creating two
Emacs Lisp functions that are now part of Dismal. The
first function (make-alias) used the rules noted below to
automatically generate command aliases. The second
(key-val) took a command and calculated the number of
mental operators and keystrokes used in the execution of
the command. It then used the estimated typing speed to
calculate a time prediction.

The Alias Generation Function
An aliases-generating function was created incorpo-

rating available alias generation guidelines (Ehrenreich &
Porcu, 1982; John & Newell, 1987; Payne & Green, 1986;
Watts, 1984), primarily using truncation and minimum-
to-distinguish. These guidelines have been shown to be
the most efficient form of abbreviation (John & Newell,
1987), partly due to the ability of having consistency in
the resulting command set (Ehrenreich & Porcu, 1982).

The characteristics of the command language itself
were also considered—particularly, that many of the
commands consisted of several words. Therefore, we
added the following additional guidelines in order to cre-

ate a consistent alias set: (1) Include in the alias the first
letter of each word in the case of multiword commands,
and (2) if the length of the command is five letters or
less, a one-letter alias may be provided if clashes do not
occur as a result of the new abbreviation. In general, this
means that already short, already abbreviated commands
(e.g., “pwd”) do not get shortened to one letter but short
one-word commands (e.g., “watch”) do get abbreviated
to a single letter.

The alias generation function takes as an argument an-
other cell, and it returns an alias. Clashes are kept on a
global list that can be inspected. The automatic function
generated 80% of the final aliases for the Soar command
set, where the rules could be strictly adhered to.

The Time Predictor Functions
Functions are provided to predict the time to execute

the aliases and the original command set according to the
keystroke-level model (Card et al., 1983). These func-
tions could be further extended to apply to other input
modalities, such as speech.

The keystroke-level model (Card et al., 1983) was
used as a measure of design efficiency, since it predicts
the time taken for a set of commands or aliases to be ex-
ecuted on the basis of subtask speeds and frequency of
tasks. It is a useful and practical simplification of GOMS
(goals, operators, methods, and selection) analysis at the
level of individual keystrokes, when the user’s inter-
action sequence can be specified in detail, as it could be
in this case. The keystroke-level model has been shown
to be useful as an engineering design model (e.g., Card
et al., 1983; Haunold & Kuhn, 1994).

Our current model can be adjusted for typing speed.
The inclusion of mental operators is governed by heuris-
tics specified by Card et al. (1983)—specifically, Rule 2
in their Figure 8.2. An important question to consider is
how the aliases might impose a burden on memory and
mental operator time. The keystroke-level model makes
several suggestions about how the aliases should be gen-
erated consonant with the generation guidelines noted
here. If a rule set is used to generate the aliases, once the
initial (very small) rule set has been learned, only a sin-
gle mental operator is required to enter a command alias,
and that behavior can become automated more quickly—
rather than having to learn by rote each alias, a rule can
be applied (Card et al., 1983).

Estimations of Task Frequency
The keystroke-level model uses task frequency to com-

pute the total time it takes to do a set of tasks. Command
frequency data, necessary for computing time savings
and useful for arbitrating alias clashes, can be difficult to
obtain. An initial analysis of approximately 2 h of natu-
ralistic subject data, provided by Altmann, was performed
to compute these frequencies. Perusal of additional tran-
scripts suggested that command usage is highly depen-
dent on the task. There were large individual differences.
In order to generate meaningful frequency data, enor-

Altmann,

Au:
ref?




8 RITTER AND WOOD

mous amounts of keystroke logs would be required (we
estimate that this would be on the order of hundreds of
hours, on the basis of the pilot data).

In an attempt to generate useful frequencies more
quickly, four expert Soar users, all with more than 3 years
experience working with Soar, were asked to provide fre-
quency estimates for their own use of the original com-
mand set. These were easy to provide, although they cor-
relate only modestly well (mean pairwise correlation of
.49).

Testing the Predictions Using Dismal
Figure 3 shows the estimated time savings based on

the time to perform the original command set and the
alias set, balanced for each expert’s estimated frequency
distribution. The maximum height of a bar was 100%,
which would be the time to enter the original commands
based on the expert’s estimate of the usage of each com-
mand in the command set. When the keystroke values of
the commands and aliases were calculated and weighted
using a flat uniform command distribution (i.e., assum-
ing that all commands were used equally often), it was
found that the aliases provided a 55% saving in time over
the original command set. As is shown in Figure 3, the
estimated time savings for the alias set ranged between
38% and 53% across the experts’ distributions.

This approach to generating aliases could be imple-
mented within any programming language, but we pre-
fer a spreadsheet to perform this analysis. This visual
presentation and the use of functions to compute and
display the expected times make the process easy to fol-
low and provide updates automatically to the designer.
We found that expert users can quickly provide useful
and reasonably consistent estimates and that the time
savings predictions were robust across their predictions

and when compared with a flat command frequency
distribution.

The Effect of Aliases on Time and Errors
No user types perfectly, and decreasing command length

may also decrease user errors. The simplest prediction is
that simple typing errors are related to the number of
keystrokes, no matter what the user’s typing accuracy or
speed. For an example set of commands novices would
use to learn Soar, this alias set reduced the number of
keystrokes by 68%.

With the keystroke logger in Dismal, we recorded the
keystrokes of users. In an unpublished study of 20 sub-
jects, we found that even while learning the Soar com-
mand line interface through use, novices employing this
alias set had a 62% reduction in typing time and a 48%
reduction in errors, as compared with novices employing
the original command set (Ritter & Bishop, 1997).

A further analysis with this approach suggests that au-
tomatic command completion, although more useful
than no support, would be inferior to this alias set. Com-
mand completion would not reduce the keystrokes in this
set of commands as much as the aliases do and would
not decrease the mental operators at all.

Overall, this tool appears to be a robust and inexpen-
sive way of applying simple HCI theories to design to re-
duce command execution time. Aliases can be constructed
and tested very easily, and, with the use of an HCI tool,
the principles behind the forms of command aliases can
be applied routinely and uniformly. Savings estimates
can also be documented directly and used to guide de-
sign when it is necessary or desirable. The use of a sys-
tem in which guidelines are employed to generate aliases
means that the alias forms are easy to learn and can gen-
erally be predicted. The local Soar user group has found
the alias set to be generally useful, and the aliases have
also been distributed to the Soar community at large.
Aliases improve the interface at quite modest cost. There
appears to be no reason not to take this efficiency gain.

FACILITIES FOR HCI EXPERIMENTATION

Dismal supports experimentation on itself. Dismal is
instrumented; it is possible to automatically record each
user action and the time it occurred. We have found that
undergraduates are able to use Dismal in a 5-week prac-
tical module to gather realistic user data and test HCI
theories (e.g., the keystroke model of Card et al., 1983).
Installation of this part of Dismal is more difficult and
requires compiling a C program. The UNIX installation
process does this automatically, but this is not generally
available on the PC or Mac versions but should be pos-
sible in the future.

The data representation of Dismal’s logging feature,
shown in Table 3, is similar to other logging programs
(e.g., Westerman et al., 1996). The data columns include
a timestamp in seconds and milliseconds, the keystroke,
and the keystroke command binding. Analysis tools are

Figure 3. Comparison of predicted benefits of generated
aliases for different command frequency distributions. The
original command set is represented by 100%.

Installation

Au:
ok?




A SPREADSHEET FOR SEQUENTIAL DATA AND EXPERIMENTATION 9

included to find and aggregate the commands between
carriage returns. The open architecture of Emacs would
allow these logs to be played back, but we have not cre-
ated such a facility.

The resulting data can be used several ways. It can be
simply aggregated to compute time on task and to note
what commands are executed. This level analysis is re-
lated to exploratory sequential data analysis (Hilbert &
Redmiles, 2000; Sanderson & Fisher, 1994). The result-
ing data could also be compared and aligned with a mod-
el’s predictions or with other users’ behavior when the
alignment tools included in Dismal are employed (Ritter
& Larkin, 1994).

This facility allows time data to be gathered on other
interfaces that can be run within an Emacs shell. This fa-
cility has been employed to gather data on using Emacs
for programming (Altmann & John, 1999).

Dismal is also useful for exploring HCI design, par-
ticularly as student projects. Since the source code is
provided, Dismal can be used itself as a testbed for eval-
uating various interface designs, and comparisons can be
based on actual user data. Two students in Lisp pro-
gramming classes at the University of Nottingham have
provided useful extensions to Dismal’s interface as class
projects.

AVAILABILITY

Dismal and its source code are available at no cost. It
is copylefted,3 which basically means if you pass Dis-
mal on, you must include its source code. Dismal is
available through a variety of sources. The most conve-
nient is via FTP. Its most recent version is available through
www.gnu.org/software/dismal/dismal.html. It is also
available by posting one 3.5-in. high-density diskette or
a blank CD and your address to Frank Ritter, School of
Information Sciences and Technology, Penn State Uni-
versity, University Park, PA 16802. If you would like to
be put on the Dismal users’ e-mail list, please send an
e-mail to frank.ritter@psu.edu.

A README file accompanies the tar, gzipped file,
providing installation instructions. The individual in-
stalling Dismal does not have to know GNU Emacs or
Emacs Lisp but should be somewhat familiar with UNIX
and the local file system. Macintosh or Windows users
will need an untar application. Users already familiar
with Emacs will be the most productive. Previous ver-
sions of Dismal have been ported to work with XEmacs,
an offshoot of GNU Emacs. However, it is unlikely to
work with variants of Emacs other or older than Ver-
sion 19.

COMPARISON WITH SIMILAR TOOLS

As compared with Excel or other commercial tools,
Dismal includes some new commands not supported in
other spreadsheets, such as automatic alignment of two
sequences, the data-coding commands, and tools for re-
moving blank rows automatically. But the major differ-
ence between Dismal and similar tools is that Dismal’s
source code is in the GNU-Emacs distribution, making
Dismal available and extendable. Others have found de-
veloping macros and full extensions to Dismal straight-
forward, and it has been integrated with software for de-
veloping and testing cognitive models (Ritter & Larkin,
1994).

Some of Dismal’s initial design and iconography for
sequence alignment comes from Trace&Transcribe (John,
1994) and MacShapa (Sanderson, McNeese, & Zaff,
1994; Sanderson, Scott, et al., 1994). Dismal goes sig-
nificantly further than Trace&Transcribe, a tool for align-
ing protocols, in its representations and in the tools it
provides for interpreting and aligning the transcribed
protocol data with respect to the predictions. Dismal
does not include as many exploratory sequential data
analysis tools as MacShapa, although its alignment algo-
rithm has been added to the MacShapa analysis program.

Dismal includes a logging package that can time users,
including users of other Emacs-based tools. This is not
usually provided with similar software. In most other
ways, however, Dismal is a relatively modest spread-
sheet. It is slower, less robust, and lacks some of the
built-in features of other spreadsheets.

SUMMARY

We have described a spreadsheet that is useful in sev-
eral ways for gathering and working with a variety of
types of behavioral data. Dismal can gather keystroke
logs of users. These logs or other measures can be ma-
nipulated within a spreadsheet. Of particular note are the
capabilities for coding and aligning sequences. This has
particularly been used for aligning model actions with
data, but it works with any two sequences. When a com-
plete description of correspondences can be provided,
such as keystrokes by the subject and the model, the two

Table 3
Example Keystroke Logs Generated by the Timing Package

User: s12
Creation-date: Mon Feb 10 13:20:52 1997
System: upsyc.psyc.nott.ac.uk
Start-buffer: *scratch*
80855.017 ^M minibuffer-complete-and-exit
80878.006 S self-insert-command
80879.615 o self-insert-command
80891.763 a self-insert-command
80892.497 t self-insert-command
80892.646 ^? delete-backward-chars
80906.405 r self-insert-command
80962.430 ^M comint-send-input
80965.701 i self-insert-command
80965.800 n self-insert-command
...



10 RITTER AND WOOD

sequences can be automatically aligned. When the com-
parison is less clear, such as between a subject’s verbal
utterances and representations in the model, semiauto-
matic commands allow an analyst to align items. To-
gether, these commands substantially reduce the work of
testing cognitive models with protocols by up to a factor
of five (Ritter & Larkin, 1994), allowing such analyses
to be performed more often and with more insight.

These analyses can be extended using Emacs Lisp and
the Dismal source code. Further experiments can be cre-
ated, or the tool extended more globally. Users have done
this by adding menus and speed optimizations. These
changes could be studied using users’ keystroke logs,
closing the loop. Examples of these capabilities have
been provided. A set of functions for creating aliases and
predicting their effect with the keystroke-level model
(Card et al., 1983) was included as an example. The ex-
ample predictions were tested by running subjects with
the timing package available in Dismal, closing the loop
of theory creation and theory testing.

In the future, Dismal will need to be improved further.
Missing features include rather general features, such as
the ability to split a buffer in two, better math functions,
and the ability to manipulate cells directly with the mouse.

Dismal has continued to develop over the last 10 years
because it serves several real needs in research, teaching,
and administration. Further users and uses will strengthen
it.

REFERENCES

Altmann, E. M., & John, B. E. (1999). Episodic indexing: A model of
memory for attention events. Cognitive Science, 23, 117-156.

Byrne, M. D. (2001). ACT–R/PM and menu selection: Applying a cog-
nitive architecture to HCI. International Journal of Human–
Computer Studies, 55, 41-84.

Card, S., Moran, T., & Newell, A. (1983). The psychology of human–
computer interaction. Hillsdale, NJ: Erlbaum.

Chassell, R. J. (2001). An introduction to programming in Emacs Lisp
(2nd ed.). Cambridge, MA: Free Software Foundation. Retrieved
May 2, 2004, from www.gnu.org/software/emacs/emacs-lisp-intro/.

Clarke, D. D., & Crossland, J. (1985). Action systems: An introduc-
tion to the analysis of complex behaviour. London: Methuen.

Congdon, C. B., & Laird, J. E. (1995). The Soar user’s manual, Ver-
sion 7. Ann Arbor: University of Michigan, Electrical Engineering
and Computer Science Department.

Ehrenreich, S. L., & Porcu, T. (1982). Abbreviations for automated
systems: Teaching operators the rules. In A. Badre & B. Shneiderman
(Eds.), Directions in human/computer interaction (pp. 111-136).
Norwood, NJ: Ablex.

Fielding, N. G., & Lee, R. M. (EDS.) (1991). Using computers in qual-
itative research. London: Sage.

Finlay, J., & Harrison, M. (1990). Pattern recognition and interaction
models. In D. G. D. Diaper, G. Cockton, & B. Shakel (Eds.), Human–
computer interaction–INTERACT’90 (pp. 149-154). Amsterdam: 
Elsevier.

Free Software Foundation (1988). GNU Emacs. Cambridge, MA:
Author.

Friedl, J. E. F. (2002). Mastering regular expressions. Sebastopol, CA:
O’Reilly.

Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for
behavioral researchers. Cambridge: Cambridge University Press.

Haunold, P., & Kuhn, W. (1994). A keystroke level analysis of a
graphics application: Manual map digitizing. In B. Adelson, S. Du-

mais, & S. Olson (Eds.), Proceedings of the CHI’94 Conference on
Human Factors in Computer Systems (pp. 337-343). Boston: ACM.

Hilbert, D. M., & Redmiles, D. F. (2000). Extracting usability informa-
tion from user interface events. ACM Computing Surveys, 32, 384-421.

Hirschberg, D. S. (1975). A linear space algorithm for computing
maximal common subsequences. CACM, 18, 341-343.

John, B. E. (1994). A database for analyzing “think-aloud” protocols
and their associated cognitive models (No. CMU-HCII-94-101).
Pittsburgh: Carnegie-Mellon University Human–Computer Inter-
action Institute.

John, B. E., & Newell, A. (1987). Predicting the time to recall com-
puter command abbreviations. In J. M. Carroll & P. P. Tanner (Eds.),
Proceedings of the CHI’87 Conference on Human Factors in Com-
puter Systems (pp. 33-40). New York: ACM.

Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A. (1995). GLEAN:
A computer-based tool for rapid GOMS model usability evaluation
of user interface designs. In Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST’95) (pp. 91-100).
New York: ACM.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An ar-
chitecture for general intelligence. Artificial Intelligence, 33, 1-64.

Lewis, B., Laliberte, D., Gnu Manual Group, Stallman, R. M., &
Lewis, B. (2000). GNU Emacs Lisp reference manual: For EMACS
Version 21. Cambridge, MA: Free Software Foundation. Retrieved
May 2, 2004, from www.gnu.org/software/emacs/elisp-manual/.

MacWhinney, B. (1991). The CHILDES project: Tools for analyzing
talk. Hillsdale, NJ: Erlbaum.

MacWhinney, B., & Snow, C. (1990). The Child Language Data Ex-
change System: An update. Journal of Child Language, 17, 457-472.

Newell, A., & Simon, H. A. (1972). Human problem solving. Engle-
wood Cliffs, NJ: Prentice-Hall.

Nichols, S., & Ritter, F. E. (1995). A theoretically motivated tool for
automatically generating command aliases. In Proceedings of the
CHI’95 Conference on Human Factors in Computer Systems (pp. 393-
400). New York: ACM.

Paternò, F., & Santoro, C. (2002). One model, many interfaces. In
C. Kolski & J. Vanderdonckt (Eds.), Computer-aided design of user
interfaces III: Proceedings of the 4th International Conference on
Computer-Aided Design of User Interfaces CADUI’2002 (pp. 143-
154). Dordrecht: Kluwer.

Payne, S. J., & Green, T. R. G. (1986). Task-action grammars: A
model of the mental representation of task languages. Human–
Computer Interaction, 2, 93-133.

Peck, V. A., & John, B. E. (1992). Browser-Soar: A computational
model of a highly interactive task. In P. Bauersfeld, J. Bennett, &
G. Lynch (Eds.), Proceedings of the CHI ’92 Conference on Human
Factors in Computing Systems (pp. 165-172). New York: ACM.

Ritter, F. E. (1993). TBPA: A methodology and software environ-
ment for testing process models’ sequential predictions with proto-
cols (Tech. Rep. CMU-CS-93-101). Pittsburgh: Carnegie-Mellon
University, School of Computer Science. Available at reports-
archive.adm.cs.cmu.edu/anon/1994/CMU-CS-94-102.ps.

Ritter, F. E. (in press). Choosing and getting started with a cognitive
architecture to test and use human–machine interfaces. MMI-Interaktiv-
Journal, 7, 17-37. 

Ritter, F. E., & Bibby, P. (2001). Modeling how and when learning
happens in a simple fault-finding task. In Proceedings of ICCM 2001
Fourth International Conference on Cognitive Modeling (pp. 187-
192). Mahwah, NJ: Erlbaum.

Ritter, F. E., & Bishop, M. (1997). The effect of abbreviation on time and
errors: Even novices can profit from aliases. Unpublished manuscript.

Ritter, F. E., & Larkin, J. H. (1994). Using process models to sum-
marize sequences of human actions. Human–Computer Interaction,
9, 345-383.

Ritter, F. E., & Ong, R. (1994). The simple-menu package, Release
1.2. Now part of Dismal.

Sanderson, P. M., & Fisher, C. A. (1994). Exploratory sequential data
analysis: Foundations. Human–Computer Interaction, 9, 251-317.

Sanderson, P. M., McNeese, M. D., & Zaff, B. S. (1994). Handling
complex real-world data with two cognitive engineering tools: CO-

Clarke,

D.

D.,

&

Crossland,

J.

1985).

Au:
not cited


Pittsburgh:

Au:
ok?


Proceedings

Au:
editors?


Proceedings

Au:
editors?




A SPREADSHEET FOR SEQUENTIAL DATA AND EXPERIMENTATION 11

GENT and MacSHAPA. Behavior Research Methods, Instruments,
& Computers, 26, 117-124.

Sanderson, P. M., Scott, J., Johnston, T., Mainzer, J., Watan-
abe, L., & James, J. (1994). MacSHAPA and the enterprise of ex-
ploratory sequential data analysis (ESDA). International Journal of
Human–Computer Studies, 41, 633-681.

Sankoff, D., & Kruskal, J. B. (EDS.) (1983). Time warps, string edits,
and macromolecules: The theory and practice of sequence compari-
son. Reading, MA: Addison-Wesley. 

Wagner, R. A., & Fisher, M. J. (1974). The string-to-string correction
problem. Journal of the Association for Computing Machinery, 21,
168-172.

Waterman, M. S. (1995). Introduction to computational biology:
Maps, sequences and genomes. London: Chapman & Hall.

Watts, R. A. (1984). Introducing interactive computing. Manchester:
NCC Publications.

Westerman, S. J., Hambly, S., Alder, C., Wyatt-Millington, C. W.,
Shrayane, N. M., Crawshaw, C. M., & Hockey, G. R. J. (1996). In-
vestigating the human–computer interface using the Datalogger. Be-
havior Research Methods, Instruments, & Computers, 28, 603-606.

NOTES

1. This gives rise to its name, DIS Mode Ain’t Lotus, coined by David
Fox, its initial developer.

2. The model’s actions are often referred to as a trace. This is in con-
trast to the use of trace as an alternative way of representing an align-
ment of two sequences in Sankoff and Kruskal (1983).

3. For more information, see www.gnu.org/copyleft /copyleft.html.

(Manuscript received December 27, 2001;
revision accepted for publication April 25, 2004.)




