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Providing User Models Direct Access to Interfaces:
An Exploratory Study of a Simple Interface

With Implications for HRI and HCI
Frank E. Ritter, Member, IEEE, Dirk Van Rooy, Robert St. Amant, and Kate Simpson

Abstract—Models of users are a way to understand and improve
the usability of computer interfaces. We present here a model in
ACT-R cognitive-modeling language that interacts with a publicly
available driving simulation as a simple analog for robot inter-
faces. The model interacts with the unmodified Java interface
by incorporating a novel use of bitmap parsing. The model’s
structure starts to describe the knowledge a human operator of
a robot must have. The model also indicates some of the aspects
of the task will be difficult for the operator. For example, the
model’s performance makes quantitative predictions about how
robot speed will influence navigation quality, correlating well to
human performance. While the model does not cover all aspects of
human–robot interaction, it illustrates how providing user models
access to an interface through its bitmap can lead to more accurate
and more widely applicable model users.

Index Terms—Graphical user interfaces, human–computer in-
teraction (HCI), human–robot interaction (HRI), image process-
ing, telerobotics, user interface human factors, user modeling.

I. INTRODUCTION

IN the future, some robots may become autonomous and
solve practical problems completely independent of human

supervision. However, such a level of independence has not yet
been achieved and is in some cases simply undesirable. Many
of the tasks that robots face today, such as exploration, recon-
naissance, and surveillance, will continue to require supervision
by humans [1].

Consider the domain of robot-assisted urban search and
rescue (USAR), which involves the detection and rescue of
victims from urban structures like collapsed buildings. It might
be optimal for the robot to exhibit a fair amount of autonomy in
some situations, for example, in navigating in a confined space
using its own sensors. Other situations, however, require human
intervention; for example, an operator may need to assist a
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robot in freeing itself because its sensors do not provide enough
information for autonomous recovery. Yet other situations,
such as providing medication for trapped survivors, requires
human control for legal reasons. These situations illustrate the
need for flexibility in the interaction between a robot and its
operator. The operator may dynamically shift between directly
controlling the robot, communicating with it, monitoring its
actions and sensors, and diagnosing its general behavior—a
demanding role, especially in the critical situations in which
human–robot interaction (HRI) is often called for [1], [2]. Thus,
understanding how operators use robots will remain a problem
for some time, and is of interest to robot developers [2]–[7].

Despite its importance, a general theory of HRI is not
yet available, although steps are being taken in this direction
[4]–[6]. There are a number of reasons for the lack of theory.
First, the task domains for many robot systems are complex. In
USAR, a representative domain, tasks can be so difficult that
neither humans nor robots can solve problems alone (e.g., [7]).

Second, human–robot task domains are diverse. The require-
ments for interaction with a robot chemist, a manufacturing
robot, and an entertainment robot, are very different from each
other. General principles for interaction with these different
kinds of robots and their tasks remain to be developed. The level
to which the use of robots will be integrated in society, it has
been argued, will be largely dependent on the robots’ ability
to communicate with humans in understandable and friendly
ways [8].

Third, many human–robot tasks are stressful to the operator,
as exemplified by USAR tasks [3]. Stress is known to influence
performance on tasks in general (e.g., [9]). Explaining how the
effectiveness of HRI degrades with stress and other factors will
be an important requirement for a theory of HRI.

Currently, because robots are not nearly as common as
commercial software packages, their controller software is usu-
ally not built by people trained in interface design. Usability
problems have already begun to surface, and will worsen with
time unless steps are taken to provide guidance to designers.

One way to provide guidance is to create a model operator.
We introduce a methodology in which a cognitive model repre-
senting a single user autonomously interacts with a simple robot
interface analog. Below, we describe a user model based on a
cognitive-modeling architecture and a dynamic simulation en-
vironment in which we have exercised the user model to explore
issues relevant to HRI. Our quantitative tool is in the form of a
simulated user that identifies some of the problems associated
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with robot interface use and gives insight into the issues that
make robot interfaces difficult to use. We also introduce a
solution to a serious impediment to work in this area, broadly
defined, how to provide user models access to interfaces. We
next report an experiment we have run to compare human
performance against model performance to validate the model
and to show where the model can be improved.

We end with a list of observations about why this model
suggests HRI is difficult and a list of recommendations based
on this model for improving HRI. Our work indicates ways
to improve such interfaces and explicates initial aspects of
interaction that can serve as motivations for a general theory
of HRI.

II. USER MODEL

A cognitive model is a theory of human cognition realized
as a running computer program. It produces humanlike per-
formance in that it takes time to complete each task, commits
errors, deploys strategies, and learns. It provides a way of
applying cognitive psychology data and theory to HRI and
human–computer interaction (HCI) problems in real time and
in an interactive environment (e.g., [10]–[16]).

We have developed a model user consisting of the ACT-R
cognitive architecture [17] and a simulated-eyes-and-hands sys-
tem, SegMan [18]–[20]. SegMan allows the model to interact
with many types of interfaces because it recognizes objects
based on parsing the screen’s bitmap. This approach is more
general than modifying interfaces to work with models directly
or instrumenting interface toolkits [15], [21], [22]. We start the
explanation of the modeling system by describing the cognitive
architecture.

A. ACT-R Cognitive Architecture

The ACT-R cognitive architecture [17, information, includ-
ing a tutorial, is also available at act.psy.cmu.edu] implements
and integrates many regularities of human cognition, including
theories of cognition [17], visual attention [23], and motor
movement [10], [15]. It has been applied successfully to higher
level cognitive phenomena, such as modeling driving [12],
differences in working memory [24], and skill acquisition [25].
Recently it has been used successfully to explore a number of
interface issues including visual search on menu selection [15]
and the effect of interface design on strategy choice [14], [26].
We chose ACT-R because it is based on a theory of human
cognition, allows the prediction of behavior time, and can be
extended to include further aspects of human behavior, both by
adding task knowledge as well as modifying the architecture.

ACT-R makes a distinction between two types of long-term
knowledge, declarative and procedural. Declarative knowledge
is factual and holds information like “2 + 2 = 4.” The basic
units of declarative knowledge are chunks, which are schema-
like structures, effectively forming a propositional network.
Procedural knowledge consists of production rules that encode
skills and take the form of condition–action pairs. Production
rules apply to specific goals or subgoals, and mainly retrieve
and change declarative knowledge.

Besides the symbolic procedural and declarative compo-
nents, ACT-R also has a subsymbolic system that modifies the
use of the symbolic knowledge. Each symbolic construct, be it
a production or chunk, has subsymbolic parameters associated
with it that reflect its past use. In this way, the system keeps
track of the usefulness of the knowledge. The knowledge avail-
able in the declarative memory module is determined by the
probability that a particular piece of knowledge will be used in
a particular context.

An important aspect of models created in the ACT-R system
is that they predict human behavior including the timing of
actions. Each covert step of cognition (e.g., production firing,
retrieval from declarative memory) or overt action (mouse
click, moving attention) has a latency associated with it that is
based on psychological theories and data. For instance, firing a
production rule takes about 50 ms (modulated by other factors
such as practice), and the time needed to move a mouse to a lo-
cation on a computer screen is calculated using Fitts’ law [27].
In this way, the system provides a way to apply summaries
of human behavior from psychology to generate behavior as
predictions and for use in applications.

A schematic of the current implementation of the ACT-R
5.0 architecture which we used is shown in Fig. 1. At the
heart of the architecture is a production system that includes
a number of buffers. These buffers represent the information
that the system is currently acting on: The goal buffer contains
the present goal of the system; the declarative buffer contains
the declarative knowledge that is currently available; and the
perceptual and motor buffers indicate the state of the perceptual
and motor modules (busy or free, and their contents). The
communication between central cognition and the buffers is
performed by applying production rules.

Production rules are condition–action pairs: The first part
of a production rule, the condition side, typically tests if
certain declarative knowledge (in the form of a chunk) is
present in a given buffer. The second part, the action side, then
sends a request to a buffer to change the current goal, retrieve
knowledge from a buffer such as declarative memory, or per-
form some action. The production system and buffers run in
parallel, but each component is itself serial. The shaded areas
indicate the novel functionality provided by SegMan that over-
rides the original perceptual–motor functionality of ACT-R 5
(ACT-R/PM), which is indicated by the dashed lines.

The SegMan vision and motor modules (explained below)
allow the model to “look” at an interface and manipulate objects
in that interface. The vision module builds a representation of
the display in which each object is represented by a feature.
Productions sent to the visual buffer can direct attention to
an object on the screen and can create a chunk in declarative
memory representing that object and its screen location. The
production system can then send commands, initiated by a pro-
duction rule, to the motor module that manipulate these objects.
Central cognition and the various buffers run in parallel, but the
perceptual and motor modules are serial (with a few rare ex-
ceptions) and can only contain one chunk of information. Thus,
the production system might retrieve a chunk from declarative
memory, while the vision module moves visual attention and
the motor module moves the mouse.
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Fig. 1. SegMan+ACT-R 5 system.

B. Extending ACT-R 5 With Segman

ACT-R 5 interacts with interfaces using ACT-R/PM, its
perceptual and motor components which includes tools for
creating interfaces and annotating existing interfaces created in
Macintosh Common Lisp (MCL) so that models can see and
interact with objects in the interface. This allows most models
to interact in some way with most interfaces that are written in
MCL and lets all models interact with all interfaces written with
the special tools included with ACT-R/PM.

We extended ACT-R/PM to provide it with direct access
to any interface under Windows, thus removing dependencies
on interface creation tools. This was done by including the
SegMan suite (www.csc.ncsu.edu/faculty/stamant/cognitive-
modeling.html). SegMan takes pixel-level input from the screen
(i.e., the screen bitmap), runs the bitmap through image-
processing algorithms, and builds a structured representation
of the screen. This representation is then passed to ACT-R.
ACT-R/PM can then moderate what is visible and how long it
takes to see and recognize objects.

SegMan can also generate mouse and keyboard inputs. This
functionality is integrated with the ACT-R/PM theory of motor
output. Including SegMan extends ACT-R/PM to pass output to
any Windows interface.

These simulated eyes and hands have been used to explore
interfaces [20], [28] and to dial on-screen telephone displays
written in Tcl/Tk [16] and images found on the Internet [18]. In
each of these cases, the model used the interface directly—the
modeler did not have to modify the interface to allow the model
to interact with it.

C. The Task

We chose a driving task as a simple example of an HRI task
to test our approach. Models of driving (e.g., [12], [29]–[31])
have many similarities with HRI, particularly teleoperation,
a common HRI task [32] (this choice of type of task as a
simple analog task to explore human–robot interfaces was
based on discussions with two prominent robotics researchers,

Fig. 2. A snapshot of the 3D Driver environment.

R. Murphy and L. Parker). While this task is not as complex
as full robot interaction, progress with it is a subset of progress
on HRI.

The driving environment, 3D Driver, a Java program, was
downloaded from www.theebest.com/games/3ddriver/3ddriver.
shtml. No changes were made to it to accommodate the model,
but we did modify it to record behavior (acs.ist.psu.edu/driver-
model). Fig. 2 shows an example display.

This task provides a first-person view as task perspective
and the environment changes dynamically in response to the
actions of the user and task environment, as is the case for
many human–robot systems. It is, we acknowledge, a simplified
version of a robot interface, but it allows us to illustrate our
approach. The simulation we are using is comparable to many
robot interfaces in that it relies heavily on perceptual–motor
skills and involves decision making under time pressure and
interaction with a dynamically changing environment.

D. The Driving User Model in ACT-R and Segman

Our system, Driver User Model in ACT-R and SegMan
(DUMAS, pronounced “doo ‘maa”), drives a car in the 3D
Driver simulation. DUMAS incorporates ACT-R’s assumptions
about how cognition works and interacts with perception and
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motor movement. Using SegMan incorporates that system’s
capabilities to see and interact with displays without instru-
menting the display to support the model. DUMAS, although
primitive, provides an initial computational information-
processing user model of HRI that interacts with an unmodified
interface. The model, like human users, starts the program by
clicking the mouse on its window, accelerates by pushing the
“A” key, brakes by pushing the “Z” key, and steers by using the
left and right arrow keys.

The perceptual processing strategies in the model are
based on observations from the literature on human driving,
as is common for other driving models [12]. Land and
Horwood’s [33] study of driving behavior describes a “double
model” of steering, in which a region of the visual field rela-
tively far away from the driver (about 4◦ below the horizon)
provides information about road curvature, while a closer re-
gion (7◦ below the horizon) provides position-in-lane informa-
tion. Attention to the visual field at an intermediate distance,
5.5◦ below the horizon, provides a balance of this information,
resulting in the best performance.

The model computes position-in-lane information by detect-
ing the edges of the road and the stripes down the center of the
road. The stripes are combined into a smoothed curve to provide
the left boundary of the lane, while the right edge of the road
directly gives the right lane boundary. The model computes the
midpoint between these two curves at 5.5◦ below the horizon.
This point, offset by a small amount to account for the left-
hand driving position of the car, is treated as the goal. If the
center of the visual field (the default focal point) is to the right
of this point, the model must steer to the right, otherwise, to
the left.

Perceptual processing in the model has limitations. For
example, it is not entirely robust—determining the center of
the lane can break down if the road curves too fast. It also
only returns some of the information that it has extracted. For
example, it can determine road curvature from more distant
points, as is done in models of human driving [34]; however,
this has not led to improved performance in this simulation
environment.

A useful aspect of ACT-R models is that they can generate
a protocol of behavioral output, illustrating how separate parts
of a complex behavior like driving unfold over time. Table I
illustrates this with an example run of the model, starting with
the “Go” production and ending with a crash. We chose an
unusually short run for illustrative purposes. As you can see,
the protocol indicates what behavior (e.g., steering, cruising) is
taking place at specific points in time. These predictions can
be compared to the sequential behavior of human subjects as a
further validation of the model, or to gain further insight into a
complex behavior such as navigation.

III. RESULTS

To test our model and to understand its performance and
correspondence to human behavior, we compared the model’s
performance with human performance data gathered on the
same task and interface. We ran the model with the driving
simulator set at three speeds to see the effect of speed on

TABLE I
TRACE OF THE DUMAS MODEL USING THE 3-D DRIVING INTERFACE

performance, and we used multiple runs at each speed because
the ACT-R architecture includes stochastic elements.

A. The Model’s Predictions

The model performed the driving task at three different
simulated speeds: 25, 45, and 65 mi/h. There were ten runs
at each speed. Lane deviation (the distance from the optimal
driving position, measured in degrees) and total driving time
before crashing (as noted by the simulation) were recorded.
Lane deviation is commonly used in driving studies to measure
the influence of a variety of factors such as multitasking [12]
and drug use [35]. Table II shows the results for the model.

B. Human Data

Twenty-four undergraduate and graduate students at Penn
State (11 women, 13 men, mean age 22.5) volunteered for the
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TABLE II
MEAN LANE DEVIATION AND TIME TO CRASH AS A

FUNCTION OF SPEED FOR THE DUMAS MODEL

TABLE III
MEAN LANE DEVIATION AND TIME TO CRASH AS A

FUNCTION OF SPEED FOR HUMAN SUBJECTS

Fig. 3. Average lane deviation for the model and subjects as a function of
speed.

study. Subjects drove at three different simulated speeds
(25, 45, and 65 mi/h) until they crashed. The speed order varied
randomly for each subject to eliminate ordering effects.

A version of the DUMAS model (called mini-DUMAS) ran
concurrently in the background, undetectable to the subject
except that it controlled the speed. As the subject drove, mini-
DUMAS computed the lane deviation and time to crash but
did not act on these perceptions. This is an example of using a
model to compute user performance in real time. The subjects’
results are shown in Table III.

C. Comparison of Human Performance
to the Model’s Predictions

As speed increased, lane deviation increased and time to
crash decreased for both the model and human subjects. Com-
parisons are shown in Figs. 3 and 4. The human data correlates
with the model’s predictions r2 = 0.998 on lane deviation and
r2 = 0.989 on time to crash. These comparisons show that
DUMAS’s performance is similar to our subjects. Humans
slightly outperformed the model; however the model simulates
human performance well enough to draw conclusions from.

Fig. 4. Average time to crash for the model and subjects as a function of
speed.

IV. DISCUSSION

DUMAS, although preliminary, illustrates many of the as-
pects of a theory of HRI. The use of a cognitive architecture
includes many regularities of human behavior. Validating the
application of DUMAS to a simple analog of many HRI tasks
with human data allows identifying several issues that are
relevant to robot interface design and use. While more advanced
models will no doubt find further problems, the issues presented
here will remain—these issues will not become easier when
performing more complex tasks with more complex interfaces.

1) Visual Orientation: Visual input is undoubtedly the most
important source of information in driving or teleoperation.
Nevertheless, the human visual system seems badly equipped
for a task like driving. We only see sharply in a small center
of the visual field (the fovea); acuity drops significantly to-
wards the periphery. As a result, eye movements (saccades),
are needed to construct an integrated field of vision for larger
scenes. To accomplish this, a driver needs a theory of where to
look and what visual features are important.

In its current form, DUMAS’s problems staying on the road
arise from how it handles visual input. At the moment, the
model takes snapshots of the whole visual scene to determine its
actions. It detects changes by recording the locations of specific
points in the visual field and then measuring the distance they
move from one snapshot to the next. It turns out that this is not
a good way to handle visual flow. Suppose that at time t the
model analyzes the road, records the data for estimating visual
flow, and determines that steering one direction or another is
appropriate. At time t + 1, a steering command is issued, and
the simulated car moves in that direction. At time t + 1 or later,
the road is again analyzed so that flow can be computed, but
at this point the action of the model resulted in changes in the
visual field, independent of changes that would have occurred
otherwise. This contribution needs to be accounted for, or the
car would end up braking every time it steers. Thus, because
DUMAS has difficulties with perception and is sensitive to
the update rate and complexity of the display, it predicts that
perception of this interface is something that makes this task
difficult for humans, particularly until they learn where to look.

The domain of visual orientation is probably the place where
collaboration between human and robot will be most intense.
Robots continue to be poor at high-level perceptual functions,
such as object recognition and situation assessment [2], [36],
which means the human operator will still play an important
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Fig. 5. Lane deviation and total driving time of the driving model as a function
of standard or worried condition.

role. However, USAR applications have illustrated that it is
often not an easy task for even a human operator to infer
complex features in certain environments. For instance, when
maneuvering through a small and dark shaft, it is difficult for
both humans and machines to discern features. As a result, it
becomes hard to perform tasks like identifying victims [37].
This suggests two areas worth exploring: a) how the human
operator can remove ambiguities that arise from the limited
visual capabilities of robots by providing information that
enables the machine system to adapt to the situation at hand, for
example, what the targets are; and b) how machine algorithms
can make the displays richer to help human interpretation, for
example, by providing information that the machine vision sys-
tem can compute, such as distance to an object, some measure
of object size, and frame of reference with respect to the robot.

2) Speed Control and Steering: The model has to decide
which speed would be appropriate based on information com-
ing from the visual system. This means the user model has to
have a theory that determines optimal speed in a given situation.
Thus, the process of controlling speed will be determined to a
great extent by the constraints of other parts of the system.

An interesting and unexpected parallel that appeared between
our simple driving task demonstration and USAR applications
is that of course corrections. In the driving task, situations
would occur in which an early version of the model would
overreact to a change in the environment, usually a curve, and
would brake to a complete halt. Subsequently, the model would
go into a recurring sequence of overcorrections, turning too
far in each direction as it attempted to straighten, and the run
either had to be terminated or the model had to be helped by the
analyst. The same has been seen to occur in USAR applications
when the operator turns too far towards a desired location
and then has to correct, leading to a series of oscillations,
performing the same type of repetitive cycle of overcorrections
with a robot [37].

A constraint that typically arises in teleoperated navigation is
that of communications time lag, which can occur as a result of
navigating quickly. In USAR, the time between operating the
controls and the robot actually reacting can create an additional
time lag. The impact of time lags could be added to our system,
and would lead to poorer performance. This effect of time lag
on control tasks has been found in HRI systems [37, p. 12]
and is seen as a general problem in human factors [38]. For
example, Fig. 5 shows how performance decreases when the
model worries, including a validated worry component from
another project [39]. Time lags would have a similar effect.

3) Multitasking: Most process models of driving use very
efficient and continuous processes to perceive the environment
and control the car (e.g., [40]). In contrast, our implementation
uses a discrete updating mechanism, reflecting the production
rule nature of the ACT-R model. This has important conse-
quences. First, our model does not produce optimal behavior
but rather tries to simulate human behavior. Specifically, its
performance is determined by the speed and accuracy with
which it can react and adapt to the environment. Second, our
model allows assessing the influence of a secondary task, in
other words, the effects of multitasking (this measure is also
of interest to those studying driving [12] and working robot
teams [5], [6]). If the model has to divide its attention between
two tasks, it is likely that each of those tasks will suffer, and
this is consistent with previous work attempting to measure the
effect of neglecting a robot because of a secondary task [5].
Specifically, the time between updates increases, leading to
poorer performance. We have only preliminary results, but
Fig. 5 shows how a secondary task (of simply having a simple
rule fire to represent active worry) appears to disrupt perfor-
mance as badly as a 20-mi/h speed increase in the range we
have used. Extensions of this model could support an analysis
of how many robots can be driven at the same time, or, more
specifically, predict how performance quantitatively degrades
with increases in workload and stress.

Some interaction aspects have not yet been directly ad-
dressed in this work, but can be in the future. These are:

4) Navigation: Our driving simulation has a direct inter-
face—the operator directs the car using the keyboard looking
at a simulated world. This perspective is often referred to as
inside-out driving or piloting, because the operator feels as if
he is inside the robot or vehicle and looking out. (This can be
contrasted with a plan-view or God’s-eye-view display.) This
interface is a common method for vehicle or robot teleopera-
tion [1]. A problem that arises with direct interfaces is that
they provide poor contextual cues, which lead to less situation
awareness. Work here could be extended by incorporating a
model of spatial reasoning (e.g., [41]), and investigating how
map building by the user is related to aspects of the user
interface and characteristics of the user (expert or novice, high
or low working-memory capacity, and so on).

5) The Influence of the User Interface on Performance: The
present approach is now suited to explore how changes in the
interface will affect performance. The model can provide quan-
titative predictions of the effects of interface changes. As such,
the user model starts to indicate at what point robot autonomy
could effectively compensate for human-operator constraints. It
also becomes possible to study how individual differences (e.g.,
attention, visual, and motor capabilities) of the human operator
can influence performance on different interfaces, that is, how
to support different kinds and levels of operators. Work like
this on optimizing cell phone menu design has found that 30%
improvements in keying time are possible [18].

6) The Level of Expertise of the User: By varying the task
knowledge in the user model, one could vary the skill of the
operator and see how this affects performance. Knowledge can
also affect the design of the interface as well, as one would
like experts to have great flexibility and control, while novices
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should be guarded from making large and costly mistakes. The
application of the current user model can predict aspects of the
relationship between user interface designs and performance in
a direct and quantitative way.

V. CONCLUSION

Based on the results of this simple model, we can see several
general lessons for the area of HRI design. We first note the
limitations of this model and then examine the implications of
what we have learned. The lessons were prepared with USAR
in mind.

A. Limitations of DUMAS

These results are limited in several ways. The limitations
arise because the current version of the model does not interact
with a very complex interface and does not do very complex
tasks. HRI has grown to include many types of interfaces and
many types of tasks. The results reported here are thus only
a subset of what makes robot interfaces difficult to use. The
difficulties this model has, such as difficulties seeing, will exist
for more complex interfaces, but that there will be further diffi-
culties discovered as this approach goes forward. For example,
this model only uses one sensing mode (vision) and does not
examine situations in which users can see robots. The issues
noted in Section IV will still apply when using additional
sensing modes, particularly if these additional sensing modes
are displayed to the operator through a visual interface, but our
results of problems and pitfalls will be a subset of the larger
problems.

This model is also of a single user. It would have to be
extended to explore the problems that more complex interaction
and mixed teams would create, such as a robot as a co-worker
or of multiple users working with the same robot. Also, a role
in a team other than operator may typically not include visual
feedback from the robot’s viewpoint but may involve observing
the robot directly (e.g., [37]).

The model has less to say about more complex tasks, such
as those relying on multiple sensors and those with mixed-
initiative control, which we know are important aspects of
HRI. For example, to examine the use of multiple sensors, we
would have to include knowledge about how to choose between
the appropriate sensor modes to use for a given task, or how
to use the information from multiple modes. Nonetheless, we
can note some of the important problems that models, and thus
operators, have to address that we can see at this point.

Clearly, an obvious place for improvement and a next step is
to have the model interact with a more realistic interface from
a robot or a robot simulation. Examples of such simulations
include Cornell’s RoboFlag [42], the standard RoboCup [43],
and simulation of the NIST USAR testbed [44], [45].

B. Robot Interfaces are Hard to Use Because They Contain
Many Difficult Tasks

The model explored here suggested that it is not an artifact
or coincidence that current robot interfaces are difficult to use.

Several of the tasks are quite difficult for this model and
will be for users generally. The difficulties range from the
perceptual issues that must be addressed, to the relatively high-
level cognition and problem solving in new situations that must
be supported, and the sensitivity of the task to response time, as
well as the several kinds and large amount of knowledge that is
required. These difficulties of the model are not artifacts, rather
they are consistent with what is known in psychology and HCI.

The model of vision that interprets the bitmap makes direct
suggestions that a reason the task is difficult is because the
vision-recognition problem of the real-world bitmaps is diffi-
cult. This result suggests that changes that help operators see
the world better, such as better display hardware and augmented
reality, would make robot interfaces easier to use.

Robot interfaces are typically complex interfaces. The model
can predict how the usability of robot interfaces are restricted by
many factors, including the quality of the display, communica-
tion issues such as bandwidth and response lag, the processing
speed of the user relative to the robot they are manipulating, the
knowledge and processing in the robot and user, and the user’s
eye–hand coordination. There are thus many ways to improve
interaction, but good interaction will require getting most or all
of these factors correct.

Improving an interface that relies on this many factors is
difficult without tools to help keep track of these factors and
their relationships. Keeping track of these factors in complex
environments, such as operating multiple robots, understanding
how their control structures will be robust to perturbations,
understanding tradeoffs in designs, and predicting how many
robots an operator can easily manipulate, will be particularly
difficult.

C. Changes to Robot Interfaces Can be Important

The results of the model suggest changes to robot interfaces
can lead to large changes in the user’s performance with the
interface. Applications of the model suggest that changes to an
interface can reduce the time to perform a task and can reduce
errors. The model also shows that even changes that only lead
to better perception of the interface and decreased worry (as
implemented as a secondary task) by the user would be helpful.

D. Models Can Use HRI Interfaces Directly

Having the model use SegMan to interact using the inter-
face’s bitmap means that models can interact with a much
wider range of interfaces, including other robot interfaces.
Other interfaces that run under the Windows operating system
can be examined directly. For example, this approach has been
used by models to interact with Minesweeper, and multiple
telephone interfaces [16], [18], which are shown in Fig. 6.
Models using SegMan can also now interact in simple ways
with the Evolution Robotics’ interface shown in Fig. 7, which is
similar but much simpler than the teleoperation of real vehicles
such as Dragon Runner [46] or USAR robots [1]–[3].

Creating the model within a cognitive architecture provides
several further advantages when creating a large model. It
provides a source of additional model components, as there
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Fig. 6. Three example phone interfaces that SegMan+ACT-R/PM models
interact with [16].

Fig. 7. The Evolution Robotic’s interface that SegMan+ACT-R/PM inter-
acts with.

are many people creating models of human behavior using
the ACT-R architecture (act.psy.cmu.edu/papers.html provides
a list). There are several models we can already point to as
being useful for studying interfaces in general and HRI in
particular that could be included. These include Freed’s (ex-
plained in [16]) and St. Amant’s [18] models of telephone
dialing (for button pushing and visual search in an interface),
and Salvucci’s [12] model of telephone dialing while driving
(for multitasking). Young’s [47] and St. Amant’s [2] models
of interface exploration may be extendable to include search
in the environment, a common task for USAR robots. This is
theoretically pleasing because it offers an additional audience
of the models, other users, and scientists to test the models
in formal and informal ways through reuse. There are enough
models that for some projects we have been able to build
upon and combine existing models rather than create the model
entirely from scratch.

Working within a common cognitive-modeling architecture
provides resources from the architecture for people interested
in understanding the model as well. For ACT-R, this includes
an online tutorial, programming interfaces, a mailing list to get
help with technical problems, and a manual.

E. User Models Can Provide Insights to Robot
Interface Design

The model presented here shows that models of users can
already provide insights and summaries useful for creating
better robot interfaces. The various levels of the model provide
suggestions for improving the interface we studied, and by
analogy provides suggestions for many USAR robot interfaces.

This approach of creating a model user results in a descrip-
tion of human behavior that may be useful for teaching to
interface designers. To a certain extent, this knowledge of users
and of how to support them with interfaces can be passed to
designers through books on HCI (and soon, HRI). Model users
like the one presented here may provide better summaries of
users by providing a system-level summary of users, which
may be more interesting, manipulatable, and informative to HRI
designers because it is more concrete. The model’s design can
be examined (and explained in teaching materials) by students
and designers, forming the basis for their mental model of users.

The model’s parameters can be varied to represent individ-
ual difference in the robot operator, such as working-memory
capacity and knowledge. The impact of these differences on
performance can be examined. These preliminary analyses
predict how individual differences in users will be important.
Differences in interfaces, broadly defined, can also start to
be examined without running subjects. For example, these
results suggest that the speed of the robot can influence its
drivability, with increased speed not always helpful. Finally,
reuse contributed to creating the model as we were able to take
insights and sometimes code from other models [12], [39].

F. Recommendations for Future User Models

In addition to the limitations of the model noted, there
are several recommendations for further work that are now
apparent.

1) Reusable Simulated Eyes and Hands Should Continue to
be Developed: The simulated eyes and hands used in this work
open up the application of user models to test robot interfaces
and computer interfaces generally. These simulated eyes and
hands also provide a way for user models to interact with other
pieces of software, significantly increasing the range of tasks
that are feasible for user models to perform. Similar reuse can
be obtained using this approach to apply agents to interfaces;
indeed, the simulated eyes and hands were originally built to
support agents’ abilities to interact with interfaces [28].

2) Libraries of Models: One of the ways to encourage this
work and to make it more feasible is to create libraries of
behaviors for reuse. That is, it would be useful to create a series
of models that perform typical tasks done with robot interfaces,
and to create them in such a way that they are modular and
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reusable. These libraries should be created in the same spirit
that graphics and statistical libraries are created.

As these user models become easier to create, they will be
able to more routinely provide feedback directly to interface
designers. In the meantime, example models like this can
summarize behavior with robot interfaces, noting what makes
their interfaces difficult to use so that designers can study these
problems and avoid them.
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