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Abstract 
We note some future areas for work with cognitive models and agents that as Colbert (2007) notes, “so 
can you”. We present three approaches as something like design patterns, so they can be applied to 
other architectures and tasks. These areas are: (a) Interacting directly with the screen-as-world. It is 
now possible for models to interact with uninstrumented interfaces both on the machine that the model 
is running on as well as remote machines. Improved interaction can not only support a broader range of 
behavior but also make the interaction more accurately model human behavior on tasks that include 
interaction.  Just one implication is that this will force models to have more knowledge about 
interaction, an area that has been little modeled but essential for all tasks.  (b) Providing the cognitive 
architecture with more representation of the body.  In our example, we provide a physiological 
substrate to implement behavioral moderators' effects on cognition. Cognitive architectures can now be 
broader in the measurements they predict and correspond to. This approach provides a more complete 
and theoretically appropriate way to include new aspects of behavior including stressor effects and 
emotions in models. And (c) using machine learning techniques, particularly genetic algorithms (GAs), 
to fit models to data.  Because of the model complexity, this is equivalent to performing a multi-
variable non-linear stochastic multiple-output regression. Doing this by hand is completely inadequate.  
While there is a danger of overfitting using a GA, these fits can help provide a better understanding of 
the model and architecture, including how the architecture changes under moderators such stress. This 
paper also includes some notes on model maintenance and reporting.  

Acknowledgments 
Stephen Colbert’s (2007) I am America (and so can you!) provided inspiration for the title.  This report 
was supported by ONR (N00014-15-1-2275). It is based on a plenary presented at BRIMS 2018.  The 
work reported has been supported by a wide range of sponsors noted in the individual reports. Ritter 
would like to thank his collaborators, including the ACS Lab, Agent Oriented Systems (Lucas, Evertsz, 
Pedrotti), Jeanette Bennett, Jen Bittner, Robert Hester, Laura Klein, Drew Pruett, Robert St. Amant, 
Mike Schoelles, Courtney Whetzel, and folks at Charles River Analytics (Weyhrauch, Niehaus, Lynn). 
This report was improved by comments from Cesar Colchado, Joseph DiPalma, Raphael Rodriguez, 
David Schwartz, and two kind, helpful, anonymous reviewers.  Steve Crocker provided particularly 

1 Colbert (2007) provided inspiration for the title. 

R i t te r ,  F .  E . ,  Tehranch i ,  F . ,  Dancy ,  C .  L . ,  &  Kase ,  S .  E .  (2020) .  Some futu res  fo r  
cogn i t i ve  mode l i ng  and  a rch i tectu res :  Des ign  pat te rns  that  you  can  too .  
Computat iona l  and  Mathemat i ca l  O rgan izat ion  Theory ,  26 ,  278–306.



Computational and Mathematical Organization Theory (in press) 
 
 

 2 

helpful comments on what we thought was a clean manuscript.  Any errors, of course, remain the fault 
of the authors.   



Computational and Mathematical Organization Theory (in press) 
 
 

 3 

Introduction 
In this paper, we note some future areas for work with cognitive models created within cognitive 
architectures that may also be useful for AI agents.  These models and agents are important for 
cognitive science and also important for agent-based modeling and computational organizational 
theories because they provide broader cognitive social agents.  This report is based on a plenary talk at 
the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction 
and Behavior Representation in Modeling and Simulation (SBP-BRiMS) conference and has been 
slightly expanded and extended. This work helps fulfill the vision outlined in Newell (1990, Figures 
8.1 and 8.2).   

These future areas are ones that we have done work in, and we provide examples of what progress can 
be made in these areas.  In each area, the example can either be duplicated or modified.  The examples 
can be seen as a type of design pattern for work in that area.  (A design pattern is a re-usable form of a 
solution to a problem; this concept has been used in computer science, Gemma et al., 1995.)  The areas 
are ones that also appear in previous reviews (e.g., Pew & Mavor, 1998, 2007; Ritter et al., 2003), but 
now are further realized in these examples.   

The three areas are (a) Interacting directly with the screen-as-world. It is now possible for models to 
interact with uninstrumented interfaces both on the machine that the model is running on as well as 
remote machines. Improved interaction can not only support a wider range of behavior but also make 
the interaction more accurately model human behavior on tasks that include interaction.  Just one 
implication is that this will force models to have more knowledge about interaction, an area that has 
been little modeled, but is essential for all tasks. 

(b) Providing the cognitive architecture with more representation of the body.  In our example, we 
provide a physiological substrate to implement behavioral moderators' effects on cognition. Cognitive 
architectures can now be broader in the measurements they predict, the mechanisms they include, and 
effects they correspond to. This approach provides a more complete and theoretically appropriate way 
to include new aspects of behavior including stressor effects and emotions in models.  

(c) Using machine learning techniques to fit the model to data.  Because of model complexity, this 
fitting process is equivalent to performing a multi-variable non-linear stochastic multiple-output 
regression. Doing this complex alignment by hand seems completely inadequate.  While there is a 
danger of overfitting, these fits, particularly across multiple fits, can help provide a better 
understanding of the model, including how the architecture changes under stress or other moderators 
and how people vary.  We will present how we used a genetic algorithm to do this.   

These approaches are presented essentially as design patterns, so they can be applied to other 
architectures in addition to the ones we used.  Overall, these approaches provide areas for improving 
models drastically if they are widely applied.  They also will make our jobs harder, in that we will have 
to take account of a wider range of human behavior. In addition to the high-level view throughout the 
paper there will be some low-level advice about modeling.   

Before describing each of these areas, we start with a very brief overview of cognitive architectures for 
readers not familiar with them and to ground what we mean by cognitive architecture.    

Cognitive Models and Architectures 
Cognitive models are simulations that predict human cognition and provide possible explanations of 
human cognition or an application for practical use.  Cognitive architectures are infrastructures that 
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provide a fixed set of computational mechanisms that represent the fixed mechanisms of cognition used 
to generate behavior for all tasks (Newell, 1990). As a fixed set they provide a way for combining and 
applying cognitive science theory.  Cognitive architectures are essentially programming languages 
specifically designed for modeling cognition, such as Soar (Laird, 2012; Newell, 1990) or ACT-R 
(Anderson, 2007; Anderson et al., 2004; Ritter, Tehranchi, & Oury, 2019).  When knowledge is added 
to a cognitive architecture, essentially providing a program, a cognitive model is created.   

Thus, cognitive modeling can be seen as a form of task analysis and, as such, is congenial to many 
areas and aspects of human factors. The primary purpose of cognitive models is to summarize and 
explain human cognition. By summarize, we mean: to explain a wide range of regularities of human 
behavior within a single theory.  Cognitive models outside of cognitive architectures encode different 
aspects of human cognition with singular, one-use computer programs not necessarily intended for 
composition or reuse.  

A user model within a cognitive architecture is thus a combination of (a) task knowledge and (b) a 
cognitive architecture with its fixed mechanisms to apply the task knowledge to generate behavior.  
Running these models simulates human cognition and predicts human performance based on 
information processing. Cognitive architectures have been both a research tool for theory building and 
an engineering tool for applying the theory. As an engineering tool they provide a way to use 
simulations of humans in applications, such as example users, realistic opponents in games, or 
teammates.  

These architectures may also include interaction with the world, either as a function or with theoretical 
intent.  They may attempt to include affect or emotions, and there is continuing work to extend the 
architectures to include more mechanisms (e.g., hearing, physiology, temporal and spatial reasoning).   

ACT-R is an example cognitive architecture.  It has two basic types of knowledge, declarative and 
procedural. Declarative knowledge (called “chunks” in ACT-R) contains facts, images, locations, or 
sounds. Procedural knowledge (production rules) represents behavioral aspects of performance with 
goals, operators, methods, and selection rules. ACT-R runs a pattern matching process that finds 
production rules with conditions that match the current state of the system (conditions are the so-called 
left-hand side, LHS, of production rules). When the conditions match the actions of the matching 
production rule will be fired or applied (so-called right-hand side, RHS). Productions can make a 
request to an ACT-R buffer and then that buffer's module will perform that function. For example, it 
may place a chunk into another buffer. The combined model, knowledge+architecture, can be tested by 
comparing the resulting model’s performance, such as time to perform the task, accuracy on the task, 
and the order of task actions, with the results of people doing the same task. 

With this summary in hand for readers not familiar with cognitive models and architectures, we now 
turn to the three approaches that can be extended. 

Better Interaction with the World 
Ritter et al. (2001) and others (e.g., Gray, 2002; Gray, 2007) have argued previously that models need 
access to a world to perform interactive tasks.  Models have often performed an abstracted version of 
the task or having access to the whole world at once.  For simple problems like the Tower of Hanoi, 
this may be sufficient.  For complex tasks requiring where the state of the world must be scanned and 
learned or that varies with actions, where active vision (Findlay & Gilchrist, 2003; Gray, 2008) is 
required, it is far less appropriate. A similar problem arises when action is abstracted too far.   

Figure 1 shows an approach to providing cognitive models access to the same interfaces that a user 
sees.  This extends how human hands and eyes interact with a User Interface Management System 
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(UIMS), to provide a Cognitive Model Interface Management System (CMIMS) to allow a cognitive 
model to interact with an interface.  

  
 
Figure 1. How a cognitive model interacts with the interface through a cognitive model interface 

management system, similar to a user interface management system. (Revised from figure in 
Ritter, Baxter, Jones, & Young, 2000.) 

There are several ways to create a CMIMS. (a) You can instrument the task system. In this approach, 
the model connects to the system so that the model can pass commands to the task and be passed 
information about the task’s state—the model’s eyes and hands may or may not see what the user sees 
and can do.  This is useful if you have access to the system internals, and do not care about the 
cognitive plausibility of the connection (or perhaps its details). Agents that are used in military 
simulations are often examples of this (e.g., Tambe et al., 1995). The cognitive plausibility of the 
connection in these situations is often not important. For this approach, Ong (1994) created MONGSU 
as a general solution to the problem of connecting ACT-R to a wide-range of task environments. His 
work proposed the idea of communicating between two processes through a UNIX socket. However, 
establishing the socket connection requires an additional application and advanced knowledge of 
programming.  

Hope et al. (2014) presented a simplified interaction scenario between cognitive models and task 
environments through a JSON network interface. To use this connection, a new ACT-R device module 
(JNI module) for handling the communication must be added to the cognitive model. This method has 
been tested in different environments, such as the REACT-R module that uses the JNI module to 
connect ACT-R with a Unity 3D simulation (Salt, Wise, Sennersten, & Lindley, 2016). Yet, the current 
JNI API version does not support all the ACT-R motor and visual functions and does not have an 
independent interface. Thus, this approach is more useful for advanced users and where the interest is 
not in the interaction per se, but in having a behavior generator or in aspects of the behavior such as 
learning or reaction to the behavior by other agents.  

(b) You can modify the graphics library that the system uses to draw the interface and have the 
modified version pass information to the model.  This enables interfaces that use a graphics library like 
Swing to be able to pass information to and from a model about what is on a display. Bass, Baxter, and 
Ritter (1995) created the first models using this approach in Garnet and Tcl/Tk.  The approach of 
modifying the interface or working in an interface language has also been implemented in ACT-R/PM 
(Byrne & Anderson, 1998). ACT-R/PM allows ACT-R models to interact with interfaces built within a 
special Common Lisp window.  

Another successful version of this method is Salvucci’s (2006) Cognitive Code, an extension of ACT-R 
that provides access to external environments. He also introduced a new implementation of ACT-R in 
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Java that can be used as a library in other ACT-R projects (Salvucci, 2009, 2013). Here, the ACT-R 
motor and vision module have been hard-coded, not configurable, and limited to a Java applet in the 
Cognitive Code.  Antetype  (http://www.antetype.com) also appears to work in this way 
communicating with a user interface design tool (Wallach, Fackert, & Vladimir  Albach, 2019).  
However, there are drawbacks to this approach.  It becomes difficult to create an eye and hand for each 
graphics library, not all interfaces use a modifiable graphics library, and some models need to interact 
with an interface that is not implemented in a way that it is modifiable in this way.  

(c) Build a whole new task that the model can interact with. This approach is additional work, but has 
been done on numerous occasions (e.g., Dancy & Ritter, 2017a; Taatgen, 2002).   

And (d) interact based on what is displayed on the screen and pass actions into the operating system.  
This final approach is the most general and works for all interfaces.  This is the approach that SegMan 
uses. SegMan was initially developed by St. Amant, and was extended through use by Ritter and his 
colleagues working with St. Amant and his students (Ritter, Van Rooy, St. Amant, & Simpson, 2006; 
St. Amant, Horton, & Ritter, 2007; St. Amant & Riedl, 2001; St. Amant, Riedl, Ritter, & Reifers, 
2005).  

SegMan is based on general vision algorithms and a theory of how an interface may be an easier world 
for models to interact with than other environments (St. Amant, 2000).  For example, interfaces are 
more regular than other environments and often have a small number of objects to recognize.  Figure 2 
shows how SegMan, where it provides the simulated eyes and hands, connects the ACT-R cognitive 
architecture to interfaces of computer environments.  We have primarily used SegMan with ACT-R but 
this approach and SegMan would work with any cognitive architecture.   

SegMan works by segmenting the screen to find different segments, pixel groups, and structures it 
knows about (e.g., buttons) and applying multiple vision algorithms to find different types of objects.  
It gets the pixel map from the operating system, and mouse and keystrokes are created by passing them 
to the operating system’s input queue.   

 
Figure 2. Simulated eyes and hands mediate ACT-R’s interaction with the world.  

SegMan provided eyes and hands to several models and was used to interact with a wide range of 
interfaces (Ritter, Kukreja, & St. Amant, 2007; St. Amant & Riedl, 2001; St. Amant et al., 2005). It 
was never fully completed but was used by several models, including ones that drove simulated cars 
(Ritter et al., 2006), robots (Ritter, Kukreja, et al., 2007), and a variety of online systems including 
driving games, robot operation, and other screen-based interfaces, including one designed not to be 
used by agents (St. Amant & Riedl, 2001; St. Amant et al., 2005).  Examples are shown in Figure 3 
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where (a) an ACT-R model drives in an uninstrumented Java-based driving game (Ritter et al., 2006), 
(b) an ACT-R model drives a robot (Ritter, Kukreja, et al., 2007), and (c) an agent plays an online 
casino’s practice roulette table to test a theory of gambling (St. Amant et al., 2005).  

   

(a) Driving in a simple Java game, (b) Driving a robot 

 

 
(c) Playing an offshore casino’s practice roulette. 

 
Figure 3.  Example applications of SegMan.  

Current Version, JSegMan 
The latest version of this approach, JSegMan, updates SegMan.  JSegMan creates a way to interact 
with all interfaces using an extended Java library (Robot package) to input motor commands 
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(keystrokes, mouse moves, and mouse clicks), and an open source library to help with image 
processing (Sikuli package) based on OpenCV.   

Visual patterns are small images that represent visual objects in cognitive architectures⎯visual chunks 
in ACT-R. JSegMan parses the screen and uses the Template Matching method to find the target, the 
visual pattern, and area. Template Matching is a pattern-matching algorithm that compares a template 
(small image) against the overlapped image regions (the computer screen) pixel by pixel; the area that 
has the maximum matching score is the target area. JSegMan can identify pre-defined visual patterns, 
which are defined in a similar way as memory chunks (Tehranchi & Ritter, 2018).  

As the most recent and perhaps most extensive example of using a simulated eye and hand to interact 
with an interface, we extended an existing large ACT-R model (Paik, Kim, Ritter, & Reitter, 2015) to 
perform the Dismal spreadsheet task. The Dismal task has 14, non-iterated subtasks and takes about 20 
min. to perform the first time (Kim & Ritter, 2015). The model has initially 617 rules in fully expert 
mode.  In novice mode, it has 29 rules and 1,152 declarative memory task elements.  Figure 4 shows 
the unmodified task on the left-hand side of the figure that the model interacts with, and the running 
ACT-R+JSegMan model on the right-hand side.  

This model makes several contributions.  JSegMan allows the model to not just model doing the task, 
but to actually perform the task.  That is, it actually does the complete, uninstrumented task in real 
time.  It performs a large, 20 min., non-iterated task with 14 subtasks.  By non-iterated, we mean that 
each subtask is not repeated (unlike repeating a decision for multiple, similar stimuli).  In implementing 
the task, we adjusted 162 declarative chunks in the original Dismal model by adding a new slot for 
visual objects. In addition, to model eye movements, we added 52 new visual objects and visual 
locations. When we ran the resulting model we found one missing click in the original model. Also, 
most of the key press requests to the motor module required a hand/finger adjustment.  These 
differences were visible because the results in the interface did not match the expected output.  
Matching behavior in an interface can be an important way to validate models in the future.   

The use of JSegMan also provided a better fit to the human data.  Table 1 shows that the model with 
JSegMan predicted the response times more accurately while, importantly, using the same, unmodified 
interface that the human subjects used. The correlation improvement is probably not a reliable increase, 
but the difference in MSE appears to be (Tehranchi & Ritter, 2018).   

  
Figure 4. On the left side, the Dismal spreadsheet task.  On the right  

side, the trace of ACT-R+JSegMan.   
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Table 1: The mean (SD) task completion time in seconds for the four learning sessions for the 
original Dismal mouse-interface task for humans, an ACT-R model (Paik et al., 2015) and the 
ACT-R model with JSegMan (Tehranchi & Ritter, 2018), as well as the correlations (R2) and 

MSE between the human data and the models. 

Day Human 
(N=30) 

Original 
ACT-R 
Model 

(N=100) 

ACT-R 
Model with 
JSegMan 

Hands+Eyes 
(N=30) 

1 1366 (60.8) 1326 (12.1) 1339 (11.7) 
2 894 (26.6)  891 (6.1) 894 (6.5) 
3 727 (25.5)  693 (4.5)  704 (5.0) 
4 659 (22.7)  594 (5.8)  614 (4.4) 

R2  .997 .9984 
MSE  1745 820 

 

Summary: Interaction with the World 
There are several approaches used by modelers to interact with the world.  Previous systems illustrating 
these approaches provided lessons for our work.  The most satisfying approach in the end, we believe, 
will be interacting with the user’s interface to parse the screen bitmap and generating keystroke and 
mouse move actions to the operating system.  

Environmental interaction will remain an interesting task for models because it is a core aspect of 
human behavior on nearly all tasks. A colleague who should remain anonymous once commented that 
you do not need to create a general way for models to interact with a task because if you do not “It only 
takes 25% of every project”2.  If this aspect of behavior is created for each model-interface pair, it is 
not a fixed mechanism, and thus interaction for this model is not architectural. A general way to 
interact is worth providing to make interaction part of the architecture. Creating a fixed set of 
mechanisms and reusing them as part of cognitive architectures is thus not just good science in that we 
have a fixed architecture and can use it to summarize findings, it is also good engineering because the 
system is reusable and widely applicable.   

By providing a reusable way to interact with tasks, we will receive better fits to human data and better 
summaries of human data because we are modeling more of the task.  We will be able to see errors, 
mistakes, and slips more easily (as we did in moving the Dismal model to interact directly with the 
task) (e.g., Gray, 2000), and should be able to see and model error correction strategies. We should also 
be able to unify more of human modeling, including vision, visual search, visual recognition, and even 
finding the mouse (Gray, 2008).  We will see better applications, from models to test interfaces to 
models that can act as teammates or assist users, because they can see what the user sees, using the 
system to compute what is visible (Ritter, 2019).  This approach provides a whole new world for 
models, even the world itself through web browsers and video cameras.   

                                                
2 Just to be clear, this seems like a horrible tax to pay.  
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Moderators of Cognition 
After modelers started to work with fixed sets of mechanisms to be shared across models—
architectures (Newell, 1990)—the question arose about how did the mechanisms change?  The 
mechanisms might change as children grow into adults (Jones, Ritter, & Wood, 2000).  The 
mechanisms might also change their processing behavior due to behavioral moderators such as stress, 
fatigue, sleep deprivation, drugs such as caffeine and nicotine, or emotions.  This raised the question 
about how to represent these changes.  

Ritter (1993) in a workshop paper for Sloman’s workshop on representing emotions in cognition noted 
that these effects might arise in three ways: (a) simple knowledge about emotions, where the agent 
reasons about emotions, (b) thoughts that effect physiology (e.g., becoming scared at a noise because of 
what it might represent), and (c) physiology changes that lead to changes in the mechanisms of 
cognition (e.g., being hungry or consuming caffeine and having this modify processing).  The second 
two are more interesting to those interested in how cognition changes due to moderators.  

Modeling Moderators with Overlays 
The first approach we took to modeling moderators was to modify the parameters of ACT-R to 
represent changes due to moderators (Ritter, Reifers, Klein, & Schoelles, 2007).  For example, we 
represented arousal by increasing the processing speed, and represented sleep fatigue by decreasing 
processing speed and increasing working memory decay.  We used this approach to summarize the 
effect of caffeine on cognition (G. P. Morgan, Ritter, Stine, & Klein, 2006), and this work also led to 
creating a phone app (Ritter & Yeh, 2011) to display the pharmacokinetics and pharmacodynamics of 
caffeine  that has had over 100k downloads (caffeinezone.net).  We also used this approach to model 
the effects of moderators in architectures, two of which we use to illustrate what it can do.  But, with 
further work, we moved from representing moderators as fixed, changes to architecture parameters 
throughout a run of a model to dynamic modifying parameters during the run of a model to represent 
state changes caused by the model’s thinking, body, and the environment.  

We used overlays within the Cognitive Jack (CoJACK) project to create moderated behavior.  Jack is 
the Java Agent Construction Kit (Busetta, Rönnquist, Hodgson, & Lucas, 1999).  We added aspects of 
ACT-R’s memory equations and some aspects of Soar’s trace (Norling & Ritter, 2004) to modify an 
agent architecture to be more cognitive. We did this as an exploration of usability because one review 
suggested that it would be easier to build a new architecture than to make Soar easy to use (Shakir, 
2002).   

Figure 5 shows a schematic of how CoJACK uses moderators.  The basic Jack architecture is a Belief-
Desires-Intentions (BDI) architecture (Busetta, Howden, Rönnquist, & Hodgson, 1999). CoJACK 
might be better understood as an architecture that tries to apply plans to its knowledge and beliefs.  The 
programmer creates plans, relatively large structures (which helps make CoJACK usable) that the 
architecture attempts to start to apply (or instantiate in that literature) based on what is in working 
memory.  Working memory is made up of what previous plans have put there, instantiated plans, and 
what the agent has learned from the world.  As more actions become possible in the plans (they have 
conditional subtasks in them), they produce further behavior. The timing and the errors in these steps in 
CoJACK are based on memory and other timing and error equations taken from ACT-R (Norling & 
Ritter, 2004).   
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Figure 5.  Schematic of CoJACK and how it uses moderators.  

We created several overlays to the architecture to represent the effects of caffeine, and the effect of 
challenging (which might be seen as confident) and threatening (which might be seen as fear) task 
appraisals (Ritter et al., 2012).  These changes lead to different behavior in a tank game.   

Figure 6 shows another environment we put moderated agents into (Evertsz, Pedrotti, Busetta, Acar, & 
Ritter, 2009). In this world, the agents had varied levels and causes of fear and motivation.  These 
agents exhibited a wider range of behavior than previous agents, including acting in a variable way 
when walking, based on their surroundings.   

 
Figure 6.  A VBS2 simulation of walking through a market area.  

Modeling Grossman’s Theory of Participation 
We also used an overlay approach to implement Grossman’s (1996) formula for participation (J. H. 
Morgan, Morgan, & Ritter, 2010; J. H. Morgan, Morgan, Ritter, & Poncelin de Raucourt, 2009).  
Grossman’s formula originally just noted several factors that influenced participation in battle. This 
equation is shown in Eq 1.  The factors are the participant’s group size (larger leads to more 
participation), group composition (including how close the group is to the participant physically and 
socially, closer leads to higher participation), social distance from the opponent (further social distance 
leads to greater participation), the distance to the target (further away leads to more participation), 
mutual support (greater group cohesion leads to more participation), how close and clear the 
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participant’s commander is (closer and clearer leads to greater participation), and target attractiveness 
(closer task alignment with the participants internal motivations leads to greater participation) and that 
some personality types are more likely to participate (tendencies).  

(Equation 1)      Participation = (group size) x (group composition) x (social distance) x  
      (spatial distance) x (mutual support) x (demands of authority) x  
      (target attractiveness) x (tendencies) 

We implemented this as a logistic formula to provide participation prediction probabilities between 0 
and 1 for simple agents in a tank game with fixed team sizes (we did not include social distance or 
target attractiveness because they did not change, and did not include tendencies) (J. H. Morgan et al., 
2010).  We used the resulting values to moderate when agents participated in a tank game.   

The results of using this equation are shown in Figure 7.  The agents that are moderated in this way 
vary in how they participate in ways that other agents typically do not, including running away.   

 
Figure 7.  The probability of participating over the course of a game.   

These projects in two architectures show that applying overlays to cognitive architectures is useful for 
modeling the effect of single moderators.  These overlays allow a modeler to explore how an individual 
moderator may affect behavior in various contexts.   

There are problems with this approach, though. The combination of individually developed overlays 
can be very difficult. For example, the overlays in CoJACK give different behavior depending on the 
order that they are loaded, and do not otherwise provide a theoretically grounded way to combine the 
effects of multiple moderators. The use of the participation equation leads to moderated behavior but 
does not provide a principled way to moderate how it interacts with other moderators.  A better, more 
generalizable approach appeared to be to model the underlying physiology.  
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Modeling Moderators with Physiology: ACT-R/Φ 
A more sophisticated way to approach modeling moderators of cognition is to represent overlays within 
models of physiology. This provides a more straightforward and tractable way to combine moderators 
because many of the moderators that are modeled are, at some level, modulating physiological 
processes, which can then have bottom-up effects on cognitive processes.   

By including systematic models of physiology (based on many equations) instead of more simple 
overlays (essentially, one equation), an architectural perspective can be more directly used when 
including multiple moderators. Thus, using computational models of physiology allows one to explore 
how bottom-up (i.e., physiology to cognition) and top-down (i.e., cognition to physiology) influences 
may interact with moderators.  With more encompassing models of physiology (e.g., see Hester et al., 
2011, for a discussion of models of physiology) one can explore how two moderators may affect 
different physiological processes initially, but cause downstream effects to moderate the same 
physiological variables, which then affect cognition. 

One such example of combining a systematic model of physiology with a cognitive architecture is that 
of ACT-R/Φ (“act-are-phi”, Dancy, Ritter, & Berry, 2012; Dancy, Ritter, Berry, & Klein, 2015). It is a 
combination of ACT-R and a model of physiology, thus, phi from the Greek word physiology.  This 
hybrid system combines ACT-R with HumMod (Hester et al., 2011).  As a way to understand 
HumMod we have created a HumMod manual (Brener et al., 2019). Initially ACT-R/Φ was used to 
simulate the effects of stress on mental arithmetic but it has also been used to simulate other 
interactions between physiological systems and cognitive processes (Dancy, 2019; Dancy & Kim, 
2018; Dancy, Ritter, & Gunzelmann, 2015; Kim, Dancy, & Sottilare, 2018).  

In work with mental arithmetic, Dancy et al. (2015) used ACT-R/Φ to further explore potential within-
task state changes. Using these simulations, they demonstrate how one may use this type of model and 
architecture (with dynamic physio-cognitive interactions) to understand how a model’s state at any 
given point in time may result in different task performance if such a state was kept constant.   

Figure 8 shows the results from using an ACT-R/Φ model to supply parameters for an ACT-R model 
that does serial subtraction.  The ACT-R/Φ model does four 4-minute blocks of repeatedly subtracting 
7 or 13 from a running total. During each second of the model simulation runs (N=200), the value of 
the declarative memory noise parameter (which is modulated by changes in the simulated physiology) 
was recorded. We then used each of these recorded declarative memory noise parameter values to run a 
cognitive model in ACT-R (i.e., with physiology turned off) that had static parameters while the 
simulation ran. Over multiple runs (N=200) of each “static” ACT-R model, the mean and standard 
deviation in performance were computed. This allowed us to understand how physiology affected the 
models second-by-second performance during the task, including how stress from previous blocks 
compounds in later blocks to modulate performance.  
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Figure 8.  An example of how one can use ACT-R/Φ  to understand the effects of dynamic physio-
cognitive states on behavior and performance. The black line is the mean task performance, 

given the physio-cognitive state of the model at that point in time (e.g., roughly half-way through 
the block 1, the ACT-R/Φ  model showed a declarative memory noise value of 0.53, which would 

result in it performing nearly 80% of the serial subtractions correct). The red area above and 
below the black line represents the standard deviation of that model’s performance. For more 

explanation of this model, simulation, and figure, see Dancy et al. (2015).   
[This figure will be supplied separately to maintain quality] 

Dancy, Ritter, and Gunzelmann (2015) compare using ACT-R/Φ with a version of ACT-R combined 
with a more specific mathematical model of sleep fatigue to simulate the effects of sleep deprivation on 
behavior during the psychomotor vigilance task.  Dancy and Kim (2018) further expand upon that work 
to simulate the effects of slow-breathing on physiology and cognition.  Both use bottom-up 
physiological changes to cause changes to cognitive processes, and thus behavior in the models (albeit 
through different initial perturbations of physiological systems). 

These physio-cognitive interactions also have implications for how we may treat affective or emotional 
behavior (e.g., Dancy, 2013; Dancy & Ritter, 2017b; Larue et al., 2018). For example, the 
physiological representations in ACT-R/Φ have allowed the development of a tractable physio-
cognitive process model that simulates the effects of physiological changes (e.g., hunger or thirst) on 
choice (Dancy & Kaulakis, 2013). In addition, the architecture has been used to explore other 
interactions between affective and cognitive processes, and their effects on decision-making (Dancy & 
Schwartz, 2017).   

Though this architecture still has many possible connections between physiological, affective, and 
cognitive systems that can be implemented, it represents a useful start to integrating more robust and 
encompassing models to develop process models and simulations of physio-affective-cognitive 
interactions. The architecture allows for more tractable representations in process models of human 
behavior and initial exploration of scenarios and physio-cognitive states that may otherwise be too 
dangerous or unethical to explore experimentally. 

Summary: Modeling Moderators 
There are several ways one may choose to model and simulate the effects of moderators on behavior. 
We have given some examples of ways that architectures have been used in concert with more focused 
models to simulate particular moderators using overlays and ways an architecture can be used with a 
more general model of physiology to simulate how the same moderators influence cognition over time 
(ACT-R/Φ), but in ways that are perhaps more generalizable.  Both ways have their own advantages 
and disadvantages, and their use will likely depend upon the use-case (e.g., do you need to use a lighter 
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model that will use less computational time and memory, or do you want a model that can represent 
more moderators simultaneously). 

Both approaches will likely require a continued move towards more instances of experiments that 
collect more diverse datasets (e.g., including more physiology variables with cognitive performance), 
but this is particularly true for using systems like ACT-R/Φ.  Though verification of mechanisms can 
occur by using existing data from separate sources, ACT-R/Φ becomes a more powerful architecture 
and the modeling more straightforward when there are both physiological and behavioral data. These 
data may allow one to verify that models and mechanisms mediating models are behaving reasonably. 
If these data do not exist, ACT-R/Φ and related systems can tell us what data may be useful to collect 
in the future and may point to new areas of inquiry that relate to these complex and dynamic physio-
affective-cognitive interactions. Such systems can give us encouragement to look beyond what we can 
see underneath the proverbial street-lamp. 

While the architecture does well to model and simulate some physio-cognitive behaviors, ACT-R/Φ 
will need to be expanded upon in the future to represent more moderators. This will likely have to 
happen both in the connections between ACT-R and HumMod and within the HumMod model itself. 
Good examples of this evolution are represented in observing the expansion in the physiological model 
(HumMod) and connections seen between the initial work on simulating stress effects on declarative 
memory (Dancy et al., 2012) and more recent work on understanding how physio-cognitive changes 
from behavior like slow-breathing may mediate behavior (Dancy & Kim, 2018; Kim et al., 2018). We 
will also have to include more cognitive task appraisals such as those EMA used (Gratch & Marsella, 
2004).   

Understanding the Fit Between Model and Data 
Better 
The final topic is better understanding models’ fit to data.  Fitting a cognitive model to data is the same 
task as fitting a stochastic multivariable non-linear multi-value optimization function.  The function is 
also often stochastic because models typically include noise in their processes, so they must be run 
multiple times to obtain a stable prediction and to understand the model.  The function to be fit is 
multivariable because there are multiple parameters and model aspects to modify to adjust the fit.  The 
fit is non-linear in that how the fit varies with parameters is not linear on most parameters and 
definitely not linear with their interactions.  The task is multi-value because there are multiple aspects 
of data to be fit, including, for example, timing and errors. In addition, some parameters are also binary 
or categorical parameters, which further complicates the fitting process. Thus, most cognitive model 
fitting is more complex than a logistic regression (Pampel, 2000), and therefore, is not a problem to be 
solved using manual optimization techniques or even hill climbing (Kase, 2008).  Even exploring the 
functions that the models represent are best done with high-performance computing (Moore, 2011).  

Due to the complexity of this process, we argue that an automated approach should perform model 
fitting. We start this section by noting the effects of stochasticity on model understanding, and then we 
present an example showing how automatic model fitting can be done.  

Running Models until They Provide Stable Predictions 
A question we addressed on the way to improving the fit of our model was accessing the fits.  With a 
stochastic model, when you have (or think you have) a set of parameters that seem reasonable, you are 
left with the question of how many times to run a model to obtain stable performance? Ritter et al. 
(2011) examined this question using a model of subtraction in ACT-R.   
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Figure 9 shows that as the number of model runs increases for this model of subtraction the mean 
adjusts to a more stable value.  At Trial 15 and on for this model the mean is relatively stable.  At the 
same time, the standard deviation appears to stabilize.  
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Figure 9.  How the mean number of subtraction attempts varies with additional runs in a model 

of subtraction.   

Figure 10 shows how the standard deviation and the standard error of the mean vary with additional 
runs.  The changes in standard deviations are more visible in this graph.  For this model, the standard 
deviation continues to stabilize over 100 runs.  A standard error of the mean can be computed at Trial 3 
and basically continually drops from a few runs after that. As Figures 9 and 10 show, this model’s 
performance is noisy, that multiple runs can help understand its behavior, and human or simple 
optimization algorithms will have difficulty fitting it to data (Kase, 2008).  Ritter et al. (2011) conclude 
that models should not be run a set number of times, but run until the models are understood (although 
they do provide heuristics for the number of runs).  
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Figure 10.  How the number of subtraction attempts and the cumulative standard deviation and 

for the standard error of the mean (SEM) varies with additional runs.   

Fitting a Complex Model to Stressed and Unstressed 
Users 
One automated approach that has been used for model fitting for complex functions is Genetic 
Algorithms (GAs), a type of machine learning. GAs are a subset of evolutionary algorithms that are 
broadly classified as meta-heuristic search algorithms imitating aspects of biological evolution. GAs 
represent an intelligent exploitation of a random search used to solve optimization problems by 
applying bio-inspired operators such as mutation, crossover, and selection to generations of genotypes. 
GAs are robust search algorithms, unlike conventional AI systems that can break if the inputs change 
slightly or in the presence of noise. Both these characteristics are advantageous for fitting 
computational cognitive models’ performance to human data. 

Early work on this approach was done as class projects, and BS and MS theses. It showed that the 
approach of using a GA to fit a model to data had promise (Cornwell, 2001; Ritter, 1990, 1991; Tor & 
Ritter, 2004), but did not use a large dataset.  Further work continued to show that GAs could fit larger 
data sets (Lane & Gobet, 2005; Peebles, 2016).  As an example of applying a GA to automate the 
model fitting process, this section overviews an investigation on how cognition changes with stress and 
caffeine while performing a serial subtraction task (Kase, Ritter, Bennett, Klein, & Schoelles, 2017).  
We start by describing the task and data, and then explain how a model was fit by modifying 
architectural parameters to explain what changed under stress.   

The Serial Subtraction Task 
Human performance data from a serial subtraction task was collected after one of three doses of 
caffeine (placebo, 200 mg, 400 mg) was administered to 45 male participants (Klein et al., 2008). The 
serial subtraction task is part of the Trier Social Stressor Task (TSST) that has been often used in 
physiology studies to cause stress in laboratory environments (Kirschbaum, Pirke, & Hellhammer, 
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1993). The task requires participants to mentally subtract 7s and 13s from 4-digit starting numbers 
without paper or visual cues. Participants verbally speak the answers of each subtraction problem to a 
laboratory assistant holding a timekeeping device and answer sheet.  Figure 11 shows a portion of the 
serial subtraction task with example starting numbers for the four blocks (two blocks subtracting by 7s; 
two blocks subtracting by 13s). Participants are informed of incorrect answers and then directed to start 
over at the previous correct answer. Participants are instructed to go faster halfway into each four-
minute block. Performance was recorded as a number of attempted subtraction problems and the 
percent correct for each participant in each block.   

 
Figure 11. An example of the serial subtraction task stimuli for each of four blocks in a Trier 

Social Stressor Task. 

Human Performance Analysis 
Before and after the serial subtraction session, participants completed pre- and post-task appraisals 
based on Lazarus and Folkman’s (1984) theory of stress and coping. Each participant answered 
questions reporting their perceived resources to deal with the serial subtraction task and how stressful 
they thought the task would be to perform. A ratio of perceived task requirements to perceived coping 
resources was created from the appraisal survey results. If perceived task requirements were less than 
or equal to perceived task resources (ability to cope), this equated to a challenge condition. If perceived 
needs was greater than the perceived resources, this equated to a threat condition.  

Performance differences between the challenge and threat conditions were most pronounced in the 
200 mg (LoCAF) group with an increase of 20 more attempted subtraction problems per 4-minute 
block and a 13.5% increase in subtraction accuracy by challenge participants over threat participants. 
For the 400 mg (HiCAF) group the challenge and threat conditions differences were less than LoCAF 
but still substantial: 13 more attempted problems and a 7.7% increase in subtraction accuracy in the 
challenge condition over the threat condition. Differences between the challenge and threat condition 
were least visible in the placebo (PLAC) group, 10 more attempted problems and only a 5.4% increase 
in accuracy. 

Figure 12 visualizes these performance differences with the caffeine treatment groups (PLAC, LoCAF, 
HiCAF) labeled along the x-axis and the plot subdivided into three sections: averages across treatment 
groups (not by appraisal condition) in the leftmost section, and averages across treatment groups 
subdivided by appraisal condition in the center (challenge) and rightmost sections (threat). The plotted 
data should be viewed from the perspective of a pattern that visualizes potential trends, not as a test of 
statistical significance.  It does match the expected effect of caffeine having an inverted U-shaped 
curve for those in a challenge condition, and a relatively smaller effect on those that appraised the 
condition as threat.   
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Figure 12. Comparing human performance differences in number of attempts and percent 

correct by treatment group (x-axis) and appraisal condition: treatment groups not accounting for 
appraisal (leftmost section), and averages across treatment groups divided by appraisal 

condition, challenge (middle section) and threat (rightmost section). 

Optimizing the Fit of a Serial Subtraction Model 
Based on the analysis of the human performance results, a simple cognitive model of the serial 
subtraction task was developed using the ACT-R cognitive architecture (Anderson, 2007; Anderson et 
al., 2004) to provide a description of how the task is performed. During model development, 
psychological theories of mental arithmetic performance were combined with observations gleaned 
during the experiment. The serial subtraction model performs a block of subtracting by 7s or 13s 
similarly to that of the human participants using a column-by-column calculation and verbalization 
strategy (Ritter, Reifers, et al., 2007; Ritter, Schoelles, Klein, & Kase, 2007). The model’s declarative 
knowledge uses approximately 650 arithmetic facts and goal-related information to solve the 
subtractions. ACT-R’s vocal module enables the model to verbalize the answers to each subtraction 
problem, similar to what the participants do. 

Several architectural parameters in ACT-R appeared important in performing serial subtraction. Three 
parameters were selected to explore out of more than 80 parameters available in the ACT-R 
architecture: the activation noise (ANS) parameter that affects variance in retrieving declarative 
memory information and the error rate for retrievals; the seconds-per-syllable (SYL) parameter that 
controls the rate the model speaks; and the base level constant (BLC) parameter that affects declarative 
knowledge access.  The search space for fitting the serial subtraction model was defined by the three 
parameter value boundaries: ANS [0.1 – 0.9], SYL [0.1 – 0.9], and BLC [0.1 – 3.0].   

Because of the large search space, a GA approach was used to automate the serial subtraction model 
fitting process. GAs have been used to optimize the fit of functions to data for a long time (Davis & 
Ritter, 1987; Goldberg, 1989). GAs use a set of genotypes, the genes for a solution, and compute the 
fitness of a phenotype, a solution created by the genotype. In cognitive modeling, a genotype could 
represent a set of parameters applied to the cognitive model. For this investigation, a parallel genetic 
algorithm (PGA) was used to overcome the large combinatory parameter search spaces and substantial 
computational and time resources associated with fitting the ACT-R model to the human performance 
on the serial subtraction task.  We could imagine using other approaches with other models and tasks.   

The ACT-R cognitive architecture and serial subtraction model are written in the Lisp programming 
language. To utilize the parallel processing of the PGA in the fitting process, ACT-R and the model 
were packaged into an executable Lisp image or core file for use in a high-performance computing 
(HPC) cluster. This image file can be executed by a system call from a C program on each processor in 
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parallel while using a message passing interface (MPI) to communicate genotypes and fitness values 
among the processors.  

To run a generation of the models, the population of genotypes (ACT-R parameter sets consisting of 
ANS, BLC, and SYL values) is distributed to the processors using the MPI. Each processor executes 
the Lisp image file that runs the model within the ACT-R architecture and then calculates a fitness 
value based on the model’s performance predictions compared to the human performance statistics 
(number of attempts and percent correct). To produce a fitness value, a sum of squares error function 
uses both statistics from each block of serial subtraction performance. Based on the fitness values, 
genetic functions (mutation, crossover, and selection) are applied to the corresponding ‘population’ of 
genotypes. This process of generating and evaluating genotypes is repeated through a number of 
generations with the effect of evolving a set of candidate solutions (the best parameter values that fit 
the model).  

For this investigation, the optimization setup consisted of nine PGAs executing 100 generations of 200 
binary-encoded genotypes. Each PGA optimized the serial subtraction model to participant group 
performance data by caffeine and appraisal conditions. The PGAs used genotypes formed by one 36-bit 
chromosome divided into three 12-bit substrings each representing the value of the three ACT-R 
parameters ANS, BLC, and SYL. The termination condition for the PGAs was a specified number of 
generations (100) instead of proximity to each participant’s performance statistics. These choices are 
somewhat arbitrary but show an example GA. 

Model-to-data fit was determined by the fitness function defined by the sum of squared discrepancies 
between model performance (number of attempts and percent correct) and the corresponding human 
performance (e.g., (47.3 – 47.2)2 + (81.5% – 81.4%)2 = 0.02). In this case, the fitness represents a 
difference between model performance and the data.  A fitness value of 0 representing perfect 
correspondence between the model predictions and the human data; values less than 1.0 represent a fit 
less than 1 difference in a number of attempts and percent correct.  Other functions could have been 
used and would have perhaps found slightly different results.  One can also weight the fit to improve 
response time or error rate or error type or other measures.  

Employing this type of automated optimization approach allowed for 20,000 different sets of parameter 
values to be tested in a directed manner each time the PGA was executed. Using this approach, the 
serial subtraction model was optimized to the nine rows of human performance data shown in Table 4. 

Results of the PGA Optimization 
Table 4 summarizes the PGA optimization results by caffeine level and appraisal. The first column 
denotes the appraisal condition with CH for the challenge, TH for threat, and ALL for the average 
across challenge and threat. The next two columns, Human Performance and Avg. Model Prediction, 
list the number of attempts (first value) and percent correct (second value) for the human (second 
column) and the model (third column). The model’s performance is an average across the number of 
best fitting parameter sets. For example, the (3) in the first row, last column, means the PGA found 
three parameter sets producing fitness less than 1.0 and that the parameter values (last column), model 
predictions (third column), and fitness value (fourth column) are averaged across those three best PGA 
runs. The fitness value column shows the PGA optimizations were able to find good solutions for all 
the caffeine and appraisal conditions within a fractional part of a single subtraction problem. 
Considering the complexity of the serial subtraction task and how the human performance varied across 
conditions, these are exceptional model-to-human data fits that suggest how cognition changed. 
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Table 4. Optimization results for three treatment groups (PLAC, LoCAF, HiCAF) and appraisal 
groups (CH = challenge, TH = threat) comparing human performance and model predictions in 

number of attempts and percent correct in a four minute block, and average fitness value 
associated with the best fitting (less than 1.0 fitness values, shown in parentheses).3 

Condition Human 
Performance 

Avg. Model 
Prediction 

Avg. Fitness 
Value 

ACT-R Parameters 
ANS, BLC, SYL (N) 

PLAC (no caffeine) 
ALL 47.3  /  81.5% 47.2  /  81.4% 0.53 0.64,  2.45,  0.51  (3) 
CH 50.7  /  83.3% 50.8  /  83.2% 0.47 0.62,  2.44,  0.52  (6) 
TH 40.4  /  77.9% 40.2  /  77.9% 0.36 0.68,  2.47,  0.56  (5) 

LoCAF (200 mg caffeine) 
ALL 54.9  /  86.5% 54.9  /  85.9% 0.52 0.61,  2.45,  0.40  (4) 
CH 57.8  /  88.3% 57.7  /  87.7% 0.54 0.61,  2.47,  0.36  (3) 
TH 37.5  /  74.8% 37.7  /  74.9% 0.38 0.59,  2.34,  0.60  (6) 

HiCAF (400 mg caffeine) 
ALL 45.7  /  79.2% 45.7  /  79.2% 0.54 0.58,  2.38,  0.52  (4) 
CH 51.6  /  82.8% 51.7  /  82.7% 0.51 0.52,  2.30,  0.43  (3) 
TH 38.9  /  75.1% 38.9  /  75.1% 0.57 0.65,  2.46,  0.62  (4) 

 
Several trends can be observed within the parameter values producing best fits in Table 4. Beginning 
with the seconds-per-syllable parameter, SYL, shown in the last column and last value in the triple in 
Table 4, the model predictions indicate that overall challenge subjects speak a syllable more quickly 
than threat subjects. This is true for all treatment groups. LoCAF shows the greatest difference in 
speech rate (0.24) while HiCAF differences in SYL are less (0.19), and PLAC differences are the least 
(0.04). Challenge subjects self-report less stress and are generally confident that they can perform the 
serial subtraction task well. With less stress and a low dose of caffeine more fluid speech appears to 
occur.  

Overall, the activation noise parameter values (ANS, the first value in triple) are high compared to what 
would be manually assigned to the model in the ACT-R modeling community. This occurrence could 
be due to the task being more stressful than typically found in psychology experiments (i.e., this task as 
part of the Trier Social Stressor Task has been purposively used to elicit a stress response). Although 
abnormally high, the ANS value range in Table 4 is narrow (a difference of 0.16), which hints at the 
fact that caffeine may not greatly effect this parameter’s role in the model’s performance of serial 
subtraction. The ANS values are basically equivalent across PLAC (a difference of 0.06) and LoCAF 
(a difference of 0.02). The greatest variability in ANS (a difference of 0.13) is in HiCAF where 
challenge predictions (0.52) show a lower value then threat predictions (0.65). ANS values that are 
slightly higher in predicting threat subjects correspond to lower performance (fewer attempts and lower 
accuracy), and the self-reports where subjects do not believe they will perform well. 

Similar to the ANS value range, the base level constant parameter (BLC, the middle value in the triple) 
value range in Table 4 is narrow (a difference of 0.17). Caffeine may not effect this parameter’s role in 
the model’s performance of serial subtraction either. The BLC values are basically equivalent across 
PLAC (a difference of 0.03). LoCAF shows a difference in BLC values of 0.13 with challenge 
predictions showing a higher BLC value than threat predictions. In this case, caffeine may be causing a 
‘boost’ in the base level activation value of facts in declarative memory promoting the higher 
probability of selection in response to a retrieval request and lower declarative fact retrieval time which 
would lead to better overall performance. Surprisingly HiCAF exhibits a reverse trend with challenge 

                                                
3 This table represents a correction to similar tables published in Kase et al. (2017) and Ritter, Kase, 
Klein, Bennett, and Schoelles (2009) in the human and model performance columns but not the fitness 
or parameters columns, which remain basically the same; the implications also remain the same.   
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predictions showing a lower BLC value (2.30) compared to threat predictions (2.46). This trend is 
unexpected, requiring further investigation.   

Summary: Optimizing Fit of Models Automatically 
This investigation showed how a cognitive model was fit to three different caffeine treatments and 
appraisal groups using a PGA. The fits were very close, revealing several patterns in the parameter 
values. The changes to the model to fit these data increased understanding of the cognitive mechanisms 
in the ACT-R architecture that lead to differences in behavior. There appear to be systematic changes 
in cognition due to caffeine and task appraisal—most notable talking faster when challenged and with 
the low caffeine level and talking slower when threatened or with no or high caffeine, and more noise 
and higher basic activation in declarative memory processes when threatened with high caffeine.   

Finally, this line of research has not been actively pursued by the cognitive modeling community but 
should be as these results point out. The PGA optimization approach was successful in producing 
excellent model-to-human data fits and shows promise for replacing the cognitive modeling 
community’s traditional manual optimization technique—an iterative step-by-step process that 
encourages modeler bias in selecting parameter values that at best support a chosen hypothesis, and at 
worst lead to lack of understanding of a complex process.  Overfitting can be ameliorated by running 
this stochastic approach several times to see if the same parameters sets are consistently found or if 
there are multiple good fits, gathering additional data, and testing the results to see if the parameter sets 
continue to provide good fits and examining the range of behavior that they lead to.   

Conclusions and Future Work 
This paper reviewed some promising futures for cognitive modeling and architectures. These were 
providing simulated eyes and hands for models to interact directly with unmodified interfaces, 
providing a physiology substrate to the mind to support modeling how cognition is changed by having 
a body, and using genetic algorithms to fit models to data to understand the model better. Work that has 
been done show that work in these directions can be fruitful, but more importantly, in each case in the 
work shows that much further work can be done.  

Including these approaches in modeling cognition will make it harder in many cases (but not all, the 
use of simulated eyes and hands will mean that additional interfaces for models will not have to be 
built), but will make the models more representative of how humans behave in the world and are 
modified by it.  You might wish to pursue these directions or work to make them easier to include.  

If these directions are viewed as design patterns, and general approaches to performing a task or 
extending an architecture, they suggest that there are many other projects in these areas that you can 
approach too.  In addition to these results, we would like to close by noting where you can learn more, 
and to provide some comments on modeling in general.   

Further Resources on Modeling 
There are a couple of resources to mention to provide further modeling design patterns.  Pew has led 
several reviews (Gluck & Pew, 2005; Pew, 2007; Pew & Mavor, 1998, 2007) that provide example 
models, architectures, and uses.  A response to Pew and Mavor’s (1998) report also has further 
example projects (Ritter et al., 2003). To learn more about the basics of behavior for modeling, we can 
recommend several textbooks for psychology (Anderson, 2000, 2014, any editions; Ritter, Baxter, & 
Churchill, 2014) and for physiology (Hall, 2016, also known as Guyton and Hall, any edition). 
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Comments on How to Model 
This paper concludes with some comments on modeling in general based on these projects. These 
projects often reused data and models (and updated the models while doing so).  Each of these projects 
reused multiple programs.  It is probably the case that reuse was essential because work in this area is 
often complex.  So it is worth explicitly noting that it is helpful to reuse models, data, and tools because 
it is often very difficult to create them.   

So, if you are going to reuse materials, we encourage you to document your systems and code in 
several ways. This is easier when the system has been documented with comments and README files 
and stored separately from the investigator in an archive.  It was also useful to have graphs, analyses, 
pictures, and movies of the models running.  We recommend creating these documentation items as 
you iterate your model, and to note when and how they were done, the software used, the processes 
used, who created or performed each one, and what each column or variable means.   

Newell also often mentioned in discussions that you should not build tools for others—you should 
build tools for yourself and use them.  If your use is promising, then others will help build a 
community. In this case, you are the user, and your use is the proof.  We have partially fulfilled 
Newell’s vision in this area with these projects.   

These projects and their results, those of interaction, modeling the physiology underlying cognition, 
and machine learning optimized fits are presented as design patterns.  You do not have to use the 
details, but recreate these types of processes with your own resources, and for your own architecture, 
and for your own situation—so can you!   
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