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Abstract 
How many times should a simulation be run to generate valid predictions?  With a 
deterministic simulation, the answer simply is just once.  With a stochastic simulation, the 
answer is more complex.  Different researchers have proposed and used different heuristics.  
A review of models presented at a conference on cognitive modeling illustrates the range of 
solutions and the problems in this area. We present the argument that because the simulation 
is a theory, not data, it should not so much be sampled but run enough times to provide stable 
predictions of performance and of the variance of performance.  This applies to both pure 
simulations as well as human-in-loop simulations.  We demonstrate the importance of running 
the simulation until it has stable performance as defined by the effect size of interest.  When 
runs are expensive we suggest a minimum numbers of runs based on power calculations; 
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when runs are inexpensive we suggest a maximum necessary number of runs.  We also 
suggest how to adjust the number of runs for different effect sizes of interest.  
 
Keywords:  power calculations, effect sizes, simulation methodology, cognitive modeling, 
human-in-the-loop simulations 
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INTRODUCTION 
We provide guidance here for how many times to run a simulation, including a human-in-the-

loop simulation or a cognitive model, to ensure that the simulation has converged on stable 

predictions.  This advice is derived from power calculations.   

One paradigm in which this heuristic guidance can be applied is when a model is 

constructed to perform and make predictions about some human task.  Although this seems 

like a narrow topic to explain to a general simulation audience, the number of times to run a 

simulation is an important topic because in many cases simulations are being used incorrectly, 

and as a result, analysts and their audience do not truly understand the simulation’s predictions.  

We begin with our view of simulation.  This will require talking about several layers of a 

simulation taxonomy until we reach the level at which this chapter is aimed, and then 

illustrating the problem and quantifying the solution for an example simulation.  

The methodology that we are prescribing provides suggestions for any simulation with 

random processes as components, including the development of human-in-the-loop 

simulations and stochastic cognitive models developed and run on computational cognitive 

architectures.  In the next sections, we will elaborate on these terms. 

The first term to notice in our taxonomy is “computational”. What is the difference 

between computational modeling and statistical or mathematical modeling? We believe that 

the main difference is that computational models are computer programs rather than equations 

or distributions. The advantage of models as computer programs is that they can simulate 

complex behavior. For instance, a computational model of a human playing a computer-

generated game of Tetris through a computer interface is feasible, but it seems it would be 

very difficult to develop a mathematical model of the integrated cognitive, perceptual and 

motor processes involved in this task. One important advantage of models as computer 

programs is that they can be process models, providing a theory of the information processes 

in cognition by processing information themselves.  
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Computer programs that are intended to model some cognitive process belong to a part 

of Artificial Intelligence (AI) called human-level AI or cognitive science, depending on the 

emphasis of intelligence level or being human-like in the processing.  One approach being 

taken to achieve human-level intelligence is simulation of human behavior. The field of 

cognitive architectures has developed in the last 25 years to create high-fidelity simulations of 

human behavior. There are many definitions of the term cognitive architecture.  Most 

definitions include some notion that the cognitive architecture contains the immutable 

functional machinery of cognition. For example, a definition by Ritter and Young (2001, 

consistent with Newell, 1990) is:   

      
“A cognitive architecture embodies a scientific hypothesis about those aspects of human 
cognition that are relatively constant over time and relatively independent of task. “  

That is, those information processing computations are not modified by changes in beliefs, 

goals, and so on.  

Another important notion of cognitive architectures is that the architecture by itself 

cannot produce any behavior.  Knowledge must be added to the architecture to achieve 

behavior, creating a model. The current state of the art in cognitive architectures is that the 

modeler must supply the knowledge.  Therefore, many architectures equip the modeler with a 

modeling language to develop models. While being able to program models via a modeling 

language has benefits in terms of efficiency and complexity, Byrne (2003) points out that 

“individual modelers need to have solid programming skills”. The advantage of architectures 

implemented as computer programs is that the programming language is not ambiguous, and 

therefore supports a more uniform interpretation of the theory.  

Cognitive architectures also come in many flavors. Cognitive architectures as 

computer programs represent scientific theories such as those in ACT-R, Soar, and EPIC. 

Some like Soar (Laird, Newell, & Rosenbloom, 1987) and EPIC (Kieras, 2003; Kieras, 

Wood, & Meyer, 1997) are basically deterministic in the sense that in most models noise is 

not directly added to computations and the same predictions are made each time the model is 
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run.  ACT-R is an example of a hybrid architecture that has stochastic components. The 

example model described later in this paper is an ACT-R model (Anderson, 2007).  

To understand the dilemma presented in the next section a brief description of the 

ACT-R architecture is required. ACT-R is symbolic and rule-based, but also has a layer below 

the symbolic layer, called the sub-symbolic layer. One quantity computed by the subsymbolic 

layer is the activation of declarative memory elements. This activation determines the 

retrieval probability and latency for a memory element. The other important computed 

quantity is the rule utility, and it is based on Temporal Difference Reinforcement Learning. 

The computation of both these quantities involves the addition of noise to the calculation. 

These noise quantities are controlled by the modeler through parameters (i.e., one for 

activation and one for utility).  Therefore, ACT-R models can be stochastic and most are, 

unless major components are removed by setting the noise to 0.  

To develop a model in ACT-R, the model adds procedural knowledge in the form of 

production rules and background knowledge in the form of declarative memory chunks.  This 

allows very complex models to be built, but these types of models can be difficult to analyze 

and evaluate because of the inherent complexity of the knowledge contained within them and 

the variability in processing the knowledge by the noisy architecture. 

As discussed above, cognitive architecture-based models are often built to simulate 

human users of computer systems. So, to evaluate such a model it seems natural to want to 

compare model data to human data. The traditional way to do this is by hypothesis testing 

where the null hypothesis is that there is no difference between human data and model data. 

But hypothesis testing can only be used to reject the null hypothesis. Thus, we can show that 

model data does not match the human data, but cannot prove that it matches.  (Grant, 1962, 

provides an argument showing how correlation helps provide an answer in this area.) 

The problem of how many times to run a model is one part of the bigger problem of 

model comparisons. One hoped for outcome of this handbook is to provide guidance for 

modelers developing complex models on how to show that the model data corresponds to 
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human data. In a symposium on “Model Fitting and Parameter Estimation” Ritter (2003) 

posited the following points on the problem of model validation and comparison for the type 

of models developed under cognitive architectures. (a) Task performance is more important 

than fit—more credit should be given to models that actually perform the task. (b) Enough 

detail should be given about the model fit to see if the model is worth taking seriously or not.  

If the model can fit any data, then it should be dismissed as a psychology theory (but may be 

useful as an AI model).  (c) It should be reported where the model can be improved.  In other 

words, let the reader know where the holes are and where the model can and will be 

improved.  This view is that of Grant (1962) as applied to cognitive architecture-based 

models.  But again, before a one can think about model comparisons, the model’s predictions 

must be understood.  

One of the strengths of ACT-R and architectures like it is the ability to interact with 

the same software as humans-in-the loop. It can do this because it has “eyes”, “hands”, 

“ears”, and can speak. These perceptual and motor components of ACT-R are not only 

psychologically plausible but can interact with the stimulation and operating system software 

to manipulate input devices and read the computer screen. With these components ACT-R 

models perform human actions such as searching computer screens, listening to instructions, 

and manipulating a mouse or joystick.  

The relevance to human-in-the-loop systems is that ACT-R can be a human-in-the-

loop when human subjects are expensive. Imagine a team oriented simulated task environment 

where the team members are at workstations and communicate over a network. ACT-R 

models can be developed to work in such environments, replacing one or more of the team 

members, or, for some studies, all of the team (e.g., Ball et al., 2010).  The issue for this paper 

is how many times do you need to run such a simulation to understand the implications of the 

simulation, with or without humans in the loop?   
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MODELERʼS DILEMMA 
Because cognitive models are really simulations, a common question facing creators 

of cognitive models, at least implicitly, is "How many times should we run the model to 

generate predictions for comparison across experimental conditions and for comparison with 

the data?"  As we note below, authors have used a wide variety of answers: Some 

comparisons use a single run of the model, although this is somewhat uncommon with models 

that include stochastic effects.  Some comparisons run the model once per subject.  This is 

often just a handy heuristic as they look for a number to choose.  Other researchers run it 10, 

or 20, or 50, or 1,000's of times.  The dilemma is that you want to run a stochastic model 

enough times to understand its predictions without running it so many times as to waste 

resources.  In completely human studies, this problem is addressed through power 

calculations. For other simulations including human-in-the-loop simulations, power 

calculations would be useful as well.   

Figure 1 illustrates this problem.  On the left hand side, if a model with random 

elements is run only a few times, the distribution of performance is not well known (shown 

with a shaded line indicating a less understood distribution).  The mean and standard 

deviation are also less well known, and the standard error of the mean1, is larger.  On the right 

hand side of Figure 1, where the model is run more times, the distribution is better known 

(shown with a more complete histogram and a solid estimated distribution line).  The mean 

and standard deviation become more stable and the standard error of the mean becomes 

smaller with additional runs.  And yet, with further runs the improvement that each run 

provides decreases.   

< Insert Figure 1 about here> 

                                                

1 The standard error of the mean is a standard statistical measure of how well known the mean 

is, and it is explained in more detail below. 
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The extent of the problem of knowing how many times to run a model can be 

illustrated by looking at a sample of models.  There are many venues where this can be done.  

Table 1 provides just one example set, a summary of models presented at the 2004 

International Conference on Cognitive Modeling (Lovett, Schunn, Lebiere, & Munro, 2004) 

where the papers are available online.  Similar results are available for other sets of models2.  

The table includes each paper reporting a model to data comparison where the model 

appeared to have a stochastic component or where the task provided variance.  The second 

and third columns note how many subjects were included and how many times the models 

were run3.  

Table 1, which is representative of other conferences and even journal papers, shows 

that more than a third (12.5/33) of the papers did not report how many times the model was 

run; and an additional 7.5 probably did not run their model enough to report stable predictions 

(20 or fewer runs).  So, well over half did not run their model to get stable predictions or did 

not report that they did.   In addition, none of the papers in Table 1 provided a rationale for 

the number of model runs beyond "to match the number of subjects" or "to provide stable 

performance."  No paper mentioned effect sizes, although many included standard error bars 

on their graphs.  The number of times the models should have been run is not known to us—it 

would depend on the effect size of interest, but we will see that it is most likely that the 

number of runs was too low.  (The number of runs would also vary based on the number of 

parameters manipulated, but these models did not vary parameters or perform parameter 

sweeps.)  This lack of reporting of the theories is alarming.   

< Insert Table 1 about here> 

                                                

2 For example, http://acs.ist.psu.edu/nottingham/eccm98/home.html.   

3 Papers with two studies had each study counted 0.5.  Papers that were not simple, that 

examined complex data, e.g., language corpora, or that presented only tools or theoretical 

points, are not included.   
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Of course, where models are deterministic, they only need to be run once. Where there 

are closed form solutions to obtain the predictions of models, these closed form solutions 

should be used.  For example, we have run a Soar model for 100 hours to compute 

predictions, only to discover with a bit of mental effort that a closed form iterative function 

would provide the same data in 6 s on a slower machine (Ritter, 1988).  

When runs are inexpensive, using a very large number of runs (e.g., 10,000 to 

100,000) is a very satisfactory answer because it provides stable estimates of performance, 

and the power analyses below indicate why. However, there are an increasing number of 

cases when simply performing a large number of runs will not work. Performing a large 

number of runs is not possible when runs are expensive, numerous models must be run as in a 

network, or search in a combinatorial parameter space is required (where there may be 

100,000 parameter sets to test, making 1,000 runs per setting turn into 100,000,000 runs).  

These situations include models that interact with or are based on robots that are both 

complicated to setup and cannot be run faster than real time, models that work with 

commercial software that can only run in real time, models that interact over a long time 

period, models that have multiple settings or parameters to be adjusted, models that interact 

with software too complicated to rewrite to run faster than real time (e.g., some process 

control models), and models that have to interact with people (i.e., human-in-loop 

simulations) or simulate group behavior with real time constraints (e.g., they cannot be run 

faster than real time).   

Even when models can be run faster than real time there are cases when the modeler 

might wish to run as few as necessary. These include when there are multiple models to be 

considered or a combinatorial set of possible parameter sets (e.g., changes to working 

memory, changes to processing speed, and changes to representation).  Even for models 

running faster than real time one should ask how many runs are needed to understand the 

model's predictions?   
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We will present the case here, using an example representative model, that suggests 

that researchers should run their model until it makes stable predictions (that is, the 

predictions obtained are representative of the model’s predictions).  We will also describe a 

way to compute stability.  Our results suggest that some of the models in Table 1 may have 

been appropriately presented, but most could have been understood better and presented more 

clearly by following the suggestions we make below.  We provide a rationale and a way to 

compute how many runs represent stable predictions based on effect sizes and the power with 

which the modeler wants to determine these effects.  Our approach also shows that an answer 

of providing "an infinite number of runs" or “as many as possible” (which could also be put 

forward) are wasteful and unnecessary prescription for human-in-the-loop simulations.  For 

illustration we use a medium-sized model we created to understand behavioral moderators.  

We analyze its behavior as an example—the calculations and implications apply to all user 

models with stochastic elements.  We introduce that model next. 

EXAMPLE MODEL:  COGNITIVE APPRAISAL AND SUBTRACTION 
Serial subtraction commonly has been used to assess the relationship between task appraisals 

and resulting physiological changes.  This task is regarded as an active coping task and has 

been used across many laboratories as a stressor task (e.g., Kirschbaum, Pirke, & 

Hellhammer, 1993; Quigley, Feldman Barrett, & Weinstein, 2002; Tomaka, Blascovich, 

Kelsey, & Leitten, 1993).  In this task, subjects are given an arbitrary seed number and are 

asked to subtract repeatedly a single- or double-digit number.  For example, a subject is given 

1,457 as the seed number and is asked to repeatedly subtract 7 from the running total while 

speaking aloud each result.  Mistakes are noted and the subject is asked to correct them before 

they can continue.   

The type of appraisal made prior to the task affects performance on the serial 

subtraction task—subjects making challenge appraisals attempt more subtractions and have 

more correct responses than do subjects who make threat appraisals prior to the task (Tomaka, 
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Blascovich, Kelsey, & Leitten, 1993).  A "challenge" appraisal occurs when, although 

stressfulness of the task is deemed high, coping ability is also deemed high.  A "threat" 

appraisal occurs when stressfulness is high and coping ability is seen as low.  Although serial 

subtraction may not appear stressful to everyone, it is typically challenging and often 

threatening to participants, probably due in large part to the highly evaluative and social 

nature of the task (e.g., the experimenter often is seated close to the subject and “knows the 

answers”, and the subject is told that they are being recorded for “later analyses”).  We know 

that these appraisals influence performance and are not entirely evaluations of knowledge 

because performance varies when the participant’s appraisals are manipulated and knowledge 

held constant (Tomaka, Blascovich, Kibler, & Ernst, 1997).   

The model 

To illustrate the effect of increasing the number of model runs we chose a cognitive model of 

serial subtraction that was built using the ACT-R cognitive architecture.  It is similar in size 

and complexity to many ACT-R models and models being developed in other architectures.  

ACT-R is a production rule-based cognitive architecture; that is, cognitive activity takes place 

through the successive firing of production rules that take an "if…then" format.  The model 

includes several stochastic elements.  The details are not important for this analysis, but are 

available in the descriptions of the model (Ritter, Reifers, Klein, Quigley, & Schoelles, 2004; 

Ritter, Reifers, Klein, & Schoelles, 2007) and of the architecture (Anderson & Lebiere, 1998).   

The choice of which rule to fire from among those that match a particular situation 

(so-called conflict resolution) is thus a knowledge-based process, where higher valued rules 

represent more strongly held beliefs.  It is also a stochastic process due to the presence of 

ACT-R’s Expected Gain Noise (EGN) parameter.  This noise allows the occasional firing of 

rules that are less than optimal.  Adding noise to the decision process is consistent with 

several theories of stress indicating that high levels of stress negatively influence cognition, 

particularly decision making (e.g., Mathews, 2001), and as we shall show, consistent with 
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existing data.  There are, of course, other possible approaches to modeling stress in ACT-R 

(Ritter, Reifers, Klein, & Schoelles, 2007).  Testing all of them and all of their combinations 

would be a useful but non-trivial exercise, so this model is presented here for illustration.  

Indeed, the need to test these combinations (up to 200 possible variants) suggests the need to 

understand how many times we need to run each variant to understand its predictions.  

Our current serial subtraction model contains the necessary procedural knowledge 

(i.e., 28 rules implementing subtraction) to perform the serial subtraction task as well as 

declarative knowledge about numbers and arithmetic facts (257 declarative memory elements 

made from 16 types, such as digits, columns, subtraction-facts, and comparison of number 

pairs).  The model, the graphical interface, and movie demos of the model running are 

available (acs.ist.psu.edu/ACT-R_AC/ ). 

Changes to the model examined 

The capacity for the model to perform the task under threat or challenge appraisals is 

implemented by adjusting the value of the rule utility noise parameter4 to simulate the effects 

of cognitive appraisal influencing the decision process about what knowledge to apply.  When 

the model is set to challenge appraisal, the rule utility noise parameter is set to a small value 

(0.1) to model a "clear head", but one where errors can occur as they do in real subjects.  

When the model is set to threat appraisal, the default value of the rule utility noise is changed 

to a greater number (1.0) to simulate a state where the procedural knowledge is applied less 

accurately in the thought process of threatened individuals.  Although appraisals are often 

dichotomized as challenge or threat, they fall along a continuum of appraisals and thus this 

parameter could vary across a continuum as well.  An attractive feature of this type of 

modification based on modifying architectural parameters is that it is based on a cognitive 

architecture (Ritter, Reifers, Klein, & Schoelles, 2007).  This allows the modification to be 

                                                

4 The parameter is EGN in ACT-R 5, and EGS in ACT-R 6. 
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easily borrowed and used by any other model built in ACT-R.  We have applied a related 

change to a model of driving (Ritter, Van Rooy, St. Amant, & Simpson, 2006). 

These changes to produce two conditions of the model, however, are used for 

illustrative purposes here.  Our analysis applies to any model that makes predictions that 

include a stochastic component, and where closed form or infinite runs are not available.   

COMPARISON OF THE MODEL WITH DATA 
Results from the model performing the serial subtraction task under challenge and 

threat appraisals can be compared to human data obtained from an empirical study using the 

same task.  The first three rows of Table 2 present the human data taken from Tomaka et al. 

(1993) of subjects performing the serial subtraction task who made pre-task appraisals.  With 

more challenging appraisals, more subtractions were attempted and more attempts were 

correct.  (These differences were reported by Tomaka et al. as being significantly different, 

but standard deviations were not reported in their paper.  The ACT-R model predicts that the 

standard deviations were small with respect to their sample size and mean and that these 

differences are reliable.) The model’s standard deviations are, however, much smaller than 

data from later studies where the SD (across subjects) is approximately 15 subtraction 

attempts (Ritter, Bennett, & Klein, 2006).   

The model's predictions with the pre-task appraisal overlay are shown in the second 

set of rows of Table 2 (rows 4-6).  In each case, the model makes predictions that are different 

from each other (p < 0.01) for each type of appraisal.  The model for threat appraisals 

reproduces fairly accurately the average number of attempts and correct responses when 

performing under threat appraisal.  However, in the case of a challenge pre-task appraisal, the 

model does not perform as many subtractions as in the human data, but it successfully 

matches the ratio of correct responses to subtraction attempts.   

The model's performance was measured over multiple runs because its performance 

varied.  The noise applied to the model is supplied by a pseudorandom number generator 
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based on the Mersenne Twister, which is designed to provide numbers with low 

autocorrelation, that is, runs of ACT-R are independent when taken in a series, and are 

samples from a single distribution (independent and identically distributed).  When the rule 

utility noise is zero (EGS = 0), the model exhibits perfect performance because it applies rules 

completely accurately.  When the rule utility noise is greater than zero, the model can make 

several kinds of mistakes based on applying a nearly appropriate but wrong rule, or applying 

the right rule at the wrong time.  The rules chosen can vary slightly (at EGS = 0.1) to 

somewhat (EGS = 1.0) from optimal.   

< Insert Table 2 about here > 

The good fit of the model with the pre-task appraisal overlay to the human data 

suggests that our choice of how to implement cognitive appraisal was sensible.  The model 

offers one plausible and very simple hypothesis to explain the impact of cognitive appraisal 

on task performance.  It encourages more work to determine if the way appraisal affects 

performance is indeed by influencing the level of noise present in the thought process of 

humans.   

But is this a fair and sufficient comparison of the model's performance with the data?  

How many times should we have run our model to confidently report its predictions?  When 

we have multiple possible changes to our theories, how many runs do we need to test each of 

these modifications? 

COMPUTING HOW MANY RUNS TO PERFORM 
Figure 2 starts to answer the question of how many times a model should be run.  It shows the 

individual number of subtraction attempts across 100 runs (light points) as well as the 

running, cumulative average values (dark points).  The error bars are the cumulative standard 

deviation at each point, that is, the standard deviation for the points up to that run.  Figure 2 

illustrates the range of possible values, the problem of using just a few runs, and how with an 

increasing number of runs the true average is approached.   
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We propose two possibilities for a criterion for stable predictions.  The first is based 

on the standard error of the mean.  Figure 3 shows how the standard error of the mean (SEM) 

decreases over a series of 100 runs for our model.   

Equation 1 shows how the SEM is based on the variance and the size of the sample.   

SEM  =  Variance / N    =   Standard deviation / sqrt (N)   (eq. 1) 

The SEM represents the error in predicting the mean of a distribution.  Assuming that the 

values are independent and identically distributed, the SEM indicates that the true mean has a 

95% chance of being within a range of the estimated mean +/- 1.96 * SEM.  Thus, one way to 

determine how many times to run a simulation is to run it until the estimated range of the 

mean is small enough for your purposes.   

Figure 3 also shows how the standard deviation stabilizes with additional runs.  This 

figure is interesting because it also shows how the predictions of the mean and variance 

become more accurate with additional runs.  The mean (Figure 2) and the variance (Figure 3) 

are initially unstable with a small sample of runs.  With additional runs, the SEM basically 

decreases from run 4 on.  With 100 runs the SEM is at 0.35 and decreasing rather slowly 

(related to the square root of the number of model runs, per Eq. 1).  Figure 4 shows how the 

change in SD between runs decreases across the 100 runs.   

In this case, if we wanted to know how many subtraction attempts the model predicted 

for a 4-minute block, +/- 0.5 subtractions with 95% confidence, based on Eq. 1 we would 

have to have a SEM of 0.5/1.96 or a SEM of 0.255 (0.5 = 1.96 * SEM, or 0.5/1.96 = SEM = 

0.255).  If we use an estimate from Figure 3 of the standard deviation as being 3.6 (it is 

probably slightly less), then 3.60/sqrt(N) = 0.255.  Solving for N gives us 199 runs.  

< Insert Figures 2, 3, & 4 about here> 

Together, Figures 2 and 3 demonstrate that reporting a single run of our model, in 

particular the first run in our series, 61 attempts in a 4-minute block, would have over 

predicted the number of attempts by about 10%.  Other single runs would be more or less 
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accurate.  Some papers have reported one run of a model as an example.  With deterministic 

models, this is appropriate.  For models with stochastic components, these figures show that 

one run is clearly not enough.   

Other reports have run the model once per subject.  For this data set, the model would 

be run 22 times.  Figure 3 suggests that the first 22 runs in our series would provide a fairly 

reasonable prediction of the mean total attempts from the model, 54.86.  This prediction is 

still slightly high, however.  Figure 3 goes on to show that with more runs, the model's 

average number of attempts drops slightly to 54.4 attempts.  Figure 2 also shows that the SEM 

at 22 runs is 3.54/sqrt (22) = 0.75, and thus that other sets of 22 runs could more or less 

accurately represent the model's performance.   

The heuristic of one run per subject ignores that model runs are typically much less 

expensive than subject time.  Moreover, different sets of 22 runs could lead the modeler to a 

wide range of different conclusions, which is clearly not desirable. Most importantly, if one 

takes the model to be a theory, then the choice of “number of runs = number of subjects” 

reports a sample of the theory rather than reports the theory's predictions and thus is not at all 

appropriate.  

Figures 2 and 3 show that increasing the number of runs improves the quality of the 

model's predictions in that they are more accurate.  Namely, the cumulative averages are more 

stable, the mean standard error decreases, the standard deviation stabilizes, and the 

corresponding power to find differences between model conditions and between the model’s 

predictions and the data increases.  The two figures suggest that the best number of runs for 

the model is simply the largest number possible, as more runs provide more stable and more 

accurate predictions, although there are decreasing returns with more runs. 

If one is using a simulation where running the simulation is not free or even 

inexpensive, one will have to choose a cutoff, however.  For instance, using the model here, 

the SEM drops to 0.5 by about 40 runs and then drops slowly with additional runs.  So, 

Figures 2 and 3 might lead to a different conclusion, which is to do runs until the changes to 
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the mean and SD from run to run become negligible—where negligible is defined by the 

modeler and the size of differences of interest.  For human-in-the-loop simulations, this might 

be 10, or 40 or more but you can see the trade-offs in the figures.   

But, when simulation runs are not easy to obtain, how can we choose an appropriate 

number of runs?  Power calculations are a way to compute how likely a study is to find effects 

based on their size and the size of the sample (Cohen, 1988).  This is the same computation 

that experiment designers use to determine how many subjects to run.  It is a simple equation 

that can be used to compute the probability of finding a given effect size given the number of 

times a variable is measured.  An effect size is the ability to see a difference between two 

means using the standard deviation as a unit.  Thus, an effect size of 1 is observed when the 

difference between two means is separated by 1 standard deviation; 0.5 is a difference of half 

a SD, and so on. Because effect sizes are represented in terms of standard deviations, it does 

not matter what the source of noise is in the model, or if the standard deviation is large in 

relation to the mean. A disadvantage to using effect sizes is that they are in terms of standard 

deviations, not in the raw measure.  For example, an effect size on reaction time is in standard 

deviations rather than milliseconds, which is slightly harder to reason about.   

The equation for computing power is used in Table 3 and shown here as equation 2.   

δ = effect size * sqrt (N/2)   (eq. 2) 

In this equation the noncentrality parameter (δ)  is based on two components, effect size and 

sample size.  For a given power value, small effect sizes require correspondingly larger 

sample sizes.  

The SD of model performance (e.g., shown in Figures 2 and 3) and sample size can be 

used to compute a measure of (statistical) power (using the formula in Table 3, taken here 

from Howell, 1987, Ch. 9), to find medium differences (effect size = 0.5 SDs) with a 

probability of 0.94, and small differences (effect size = 0.2 SDs) with a probability of 0.29.  

The use of standard deviations as a measure allows this calculation to be unitless and to apply 

to all differences between models and subjects and also between model conditions.  The 
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differences between model conditions here have an effect size of more than 2—in this case, 

the difference in means of the challenge and threatened model’s subtraction attempts divided 

by the (pooled) standard deviation (54.5-46.8)/3.5, is an effect size of 2.14—so there is more 

than adequate power to find reliable differences between the model conditions of threat and 

challenge. Practically, for our model, 100 runs provides more than enough power (0.94) for 

the example model's effect size of interest (e.g., medium = 0.5). 

< Insert Table 3 about here> 

We suggest that a power of 0.90 for the expected effect size can provide a suggestion 

of how many runs are required when runs are expensive, and a power of 0.99 when runs are 

inexpensive.  Table 4 thus provides a bracketing of number of runs based on a range of power.  

We choose 0.99, a relatively high number, because model runs are usually inexpensive, and 

because we wish to understand our model clearly and completely.  Table 4 provides example 

values for runs assuming t-tests between means are used.  Other values of alpha, other types 

of measures, and other tests are possible, but other choices for these values do not change the 

conclusions that increasing the number of runs is desirable to increase power and stabilize the 

mean and SD, and that power calculations can be used to suggest the number of runs to 

perform.   

Table 3 shows the power for a range of effect sizes with 100 runs, which we used here. 

Table 4 provides the number of runs to achieve a power of 0.9 for the same expected effect 

sizes.  This provides a set of reasonable minimum times to run a model where the models runs 

are expensive.   

Table 5 provides the number of runs required to achieve a power of 0.99 for the same 

expected effect sizes.  This provides a set of reasonable maximum runs for various effect 

sizes.  If we expected an effect size of 0.8, then 56 runs would provide a power of 0.99 to 

differentiate predictions from different settings of the model.  If we would like to differentiate 

an effect size between model conditions of 0.2 (Cohen's small effect) then 882 runs would be 
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required for a power of .99, and if an effect size of 0.1, then 3,528 runs.  This last effect is but 

10% of a standard deviation, but if we are interested in that difference, and the model predicts 

such differences, we can have the statistical power to detect it.   

< Insert Table 4 about here> 

< Insert Table 5 about here> 

DISCUSSION AND CONCLUSIONS 
We have presented an example of how many times to run a simulation to understand its 

predictions. This model's behavior represents theoretical predictions.  Therefore, the theory's 

predictions should be as stable as possible.  The results of our example model illustrate that 

models, where possible, should be run until their predictions are stable.  This is particularly 

important when the model's performance includes predictions of variance in behavior.  With a 

stochastic model implemented as a computer program, we do not wish to sample its behavior, 

but to report its predictions accurately.  Thus, we recommend reporting performance based on 

a larger number of runs than appears to be typically done, and reporting the variance in the 

predictions.  The results shown in Figures 2, 3, and 4 show that running a model once, or 

twice, or even several times per human experimental subject, typically will not provide 

completely accurate predictions and will sometimes provide uncharacteristic predictions.   

The power calculations presented here provide a rational way to choose the number of 

runs.  The rationale uses the size of the differences between model conditions and the desired 

probability of finding these differences to choose the number of model runs to report.  This 

calculation is based on a simple equation included in most introductory statistics books.  The 

calculations are based on standard deviations, which means that the model's standard 

deviation or mean does not have to be known before the model is run.  

Although we used 100 runs for our serial subtraction model, we recommend 150 runs 

as a reasonable number that provided very stable predictions for medium to large effects.  
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Power calculations support the use of 150 runs as a useful number for most effect sizes and 

phenomena of interest to this subtraction model.  If one is interested in smaller effect sizes 

(e.g., Cohen's small effects), then more runs will be required.  If one is exploring how a model 

works or the model runs are expensive, then fewer runs may be appropriate, allowing that 

there will be less power to see differences between model conditions or between model and 

data, and a greater likelihood that the predictions are not stable.  Other effect sizes and power 

requirements than the ones reported here can be used as well.   

These results suggest that most of the papers in Table 1 did not report stable 

predictions for their model.  While none of the papers in Table 1 reported effect sizes per se, 

large effects are relatively rare, and some of the models were examining what appear to be 

small to medium effects.  On the other hand, the model that was run 7,200 times was almost 

certainly run too many times, although we agree that if resources are not an issue, then it is 

best to err on the side of caution.  

This use of power analysis particularly helps when model runs are expensive.  For 

example, humans-in-the-loop simulations (e.g., Thiruvengada & Rothrock, 2007), models of 

hour-long experiments that run in real-time (e.g., Schoelles & Gray, 2001), models that work 

with physical robots (Ritter, Kukreja, & St. Amant, 2007), or models run over large number 

of parameter settings (Best, Fincham, Gluck, Gunzelmann, & Krusmark, 2008; Lovett, Daily, 

& Reder, 2000; Ritter, Kase, Klein, Bennett, & Schoelles, 2009) become difficult to run many 

times.  In these cases, this calculation lets modelers know how many runs are sufficient given 

the effect size of interest.  The power analyses and graphs of the model's output can provide 

guidance of how many is enough.   

These analyses also encourage modelers to think about effect sizes.  These are not 

always known, however, it is useful to consider the effect size of the effect of interest.  Where 

the effect size is small, more subjects need to be run and the model needs to be run more 

times to get stable predictions.  Where the effect is large, less work generally has to be done.  

This should encourage researchers to look at large effects first.   
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Would this admonition apply to other models or other aspects of models?  Absolutely.  

These results are not dependent on the specific architecture, but rather on the fact that the 

predictions have a distribution of outcomes.  Soar models that include stochastic elements, for 

example, Miller and Laird's (1996) categorization model and Soar models with stochastic 

memory would similarly benefit from multiple runs, and could use the same tables.  

Psychology experiments already use these types of calculations, or should.   

These results would also apply to different statistical tests for different measures, for 

example, Chi-square on categorical outputs, or different analyses, such as regression, although 

the power calculations would be different.  If the comparison of interest was another measure, 

such as types of errors, then the percentage and types of errors (which this model makes) 

becomes clearer when more of its behavior has been examined.  As models become more 

complex, the number of runs may need to be adjusted because of the additional cost of 

running the model, however, the cost of running the model additional times is typically much 

less expensive than not accurately representing and understanding its predictions. 

What does this approach not answer?  It does not tell you what effect size you will 

find interesting, or how many times to adjust your model (related to overfitting).  It does not 

tell you what to do if the model does not fit the data; indeed, it suggests that if you run your 

model long enough, your significance tests will get accurate enough to find even small 

differences between model and data.  These remain interesting and important problems, but at 

least we can hope that simulations are run enough to be thoroughly understood.   
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TABLES AND FIGURES  
Table 1.  Number of model runs compared to subject data for papers at the 2004 International 

Conference on Cognitive Modeling (Lovett, Schunn, Lebiere, & Munro, 2004).  ng is not 

given. na is not applicable, as model results were presented for illustration only or the model 

was not stochastic.  
Paper Subjects Model runs 

Altmann & Burns, 2004 71 ng 
Belavkin & Ritter, 2004 ng ng 
Brumby & Howes, 2004 20 100 
Byrne et al., 2004 164 100 
Chandrasekharan et al., 2004 3 10 
Chartier et al., 2004 ng 100 
Chavez & Kimbrough 48 20 
Chong, 2004 ng ng 
Cox & Young, 2004 ng ng 
DelMisser, 2004 60 ~ 8 
Fu et al., 2004 32 ng 
Fum & Stocco, 2004 ng ng 
Gray et al., 2004 54 48 
Halverson & Hornof, 2004 24 2,520 
Kushleyeva et al., 2004 10 10 
Maka et al., 2004 45 essays ng 
Marnier & Laird, 2004 na 100 
Martin et al., 2004 11 20 
Matessa, 2004 ng ng 
Matusuka & Corter, 2004 14, ng 50, 500 
Morita & Miwa, 2004 33 ng 
Nason & Laird, 2004 na 500 
Nellen & Lovett, 2004 160 180 
Nuxoll et al., 2004 na, na 5, ng 
Nuxoll & Laird, 2004 na 5 
Peebles & Bothell 30 150 
Rutledge & West, 2004 3 1,000 
Salvucci et al., 2004 11 ng 
Simen et al., 2004 3 ng 
St. Amant & Ritter, 2004 6 20 
Stewert et al., 2004 2,571 1,000 
Taatgen et al., 2004 ng ng 
Wu & Liu, 2004 ng 7,200 
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Table 2.  Comparison of the model's behavior for threat and challenge conditions to human 

data taken from Tomaka et al. (1993) per 4-minute block.  Standard deviations of the model's 

performance are shown in parentheses.   

 

       Cognitive Appraisal Conditions 

  Threat  Challenge   

Human data  Attempts 46  61   
(N=22) Correct 42  56   
 % correct 91%  92%   

 
 
 

 Threat 

(EGS=1) 

 Challenge 

(EGS=0.1) 

 ACT-R Default 
(EGS=0) 

Model 
(N=100) 

Attempts 46.8 
  (3.6) 

< 54.5 
  (3.5) 

< 70.9 
  (1.3) 

 Correct 42.5 
  (5.1) 

< 50.2 
  (5.1) 

< 70.9 
  (1.3) 

 % correct 91%  92%  100% 

 

 Note.   < denotes significant difference at α = 0.01 
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Table 3.  Power of t-tests (alpha=0.05, two-tailed) for a range of effect sizes.  This table uses 

δ = effect size * sqrt (N/2) (Howell, 1987, p. 201-202, and associated appendix to compute 

power for the value of δ). 

 
Mean Effect Size N δ Power 
0.1 100 0.71 < 0.17 
0.2 (Cohen's small) 100 1.41 0.29 
0.5 (Cohen's medium) 100 3.54 0.94 
0.8 (Cohen's large) 100 5.66 > 0.99 
2.14 (effect size reported here in  
          the subtraction model) 

100 15.13 > 0.99 

 

 

 

Table 4.  The required number of runs (N) to find the given effect sizes (for t-tests with 

alpha=0.05, two-tailed) for a range of effect sizes with power = .90.  This table uses δ = effect 

size * sqrt (N/2) (Howell, 1987, p. 201-202, and associated appendix to compute power for 

the value of δ). 

 
Mean Effect Size N δ Power 
0.1 2,178 3.30 0.90 
0.2 (Cohen's small) 545 3.30 0.90 
0.5 (Cohen's medium) 88 3.30 0.90 
0.8 (Cohen's large) 34 3.30 0.90 
2.14 (effect reported here) 5 3.30 0.90 
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Table 5.  The required number of runs (N) to find the given effect sizes (for t-tests with 

alpha=0.05, two-tailed) for a range of effect sizes with power = .99.  This table uses δ = effect 

size * sqrt (N/2) (Howell, 1987, p. 201-202, and Appendix Power to compute power for the 

value of δ). 

 
Mean Effect Size N δ Power 
0.1 3,528 4.20 0.99 
0.2 (Cohen's small) 882 4.20 0.99 
0.5 (Cohen's medium) 142 4.20 0.99 
0.8 (Cohen's large) 56 4.20 0.99 
2.14 (effect reported here) 8 4.28 0.99 
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Figure 1.  The distribution of performance, mean, and standard error of the mean for a  

model run a few times (left) and run many times (right).  The distribution for the few runs is 

dashed to show that it is a less accurate representation.      
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Figure 2.  The predicted number of total attempts and cumulative standard deviation as error 

bars across the 100 runs of the model with a Challenge setting.  
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Figure 3.  The cumulative standard deviation and the cumulative standard error of the mean 

across 100 runs of the model with a Challenge setting.  
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Figure 4.  The change in standard deviation (between run N and N-1) across the 100 runs of 

the model with a Challenge setting.   


