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When sophisticated models of human behavior are used in synthetic en-
vironments or video games, they typically attempt to capture normative
2 06 6. 3 behavior by providing homogenous agents from a cognitive architecture.

R on S un. . + 1n +era chen, A recognized shortcoming of this approach is that in reality people do not
‘Hon n d Mmulri- agn always behave in exactly the same manner: no matter how well trained

Q_OJ nt  — New 1, or )() NY, ‘ a person might be, there are always instances when they deviate from
Lr d U. Press e ; what is prescribed by their training. Even when following doctrine, there
Cam ;‘ j can be considerable variability across individuals (Pew & Mavor, 1998;
‘ Ritter et al., 2003). This variability, even after differences in knowledge are

removed, arises both from individual differences, where different abili-
ties can lead to marked differences in behavior, and also from behavior
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performance.

Much of organizational theory and practice is designed to study indi-
vidual differences and their impact on team performance, however most
existing cognitive architectures create homogenous models unaffected by
time. Some social simulation models do explore the impact of individual
differences (e.g., cooperative versus non-cooperative agents in Axelrod,
1997; and papers in NAACSOS Conferences), but in such cases, the dif-
ferences are usually modeled at a coarse level, or simply as differences
in knowledge alone. As discussed below, more subtle individual differ-
ences can have considerable impact on teams and larger organizational
units. COJACK, the architecture introduced in this chapter, is designed to
model individual differences and variability in a psychologically plausible
manner, facilitating simulation of such phenomena.
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After very briefly reviewing how individual differences can modify
teamwork in Section 2, in Section 3 we provide examples of architectures
that support modeling variability. In Section 4 we then discuss the types
of variability that should be supported by architectures, briefly outlining
how this can be achieved. Finally, we conclude with a discussion of how
these considerations have influenced the design of COJACK, and issues
that will affect other architectures.

2 HUMAN VARIABILITY AND ITS INFLUENCE ON TEAMWORK

Several areas of research have long recognized that human variability
plays an important role in team dynamics, and that different combina-
tions of team members will have considerable impact on the overall per-
formance of teams. In social psychology, the Myers~Briggs personality
test often is used to study how team composition affects team perfor-
mance. In the area of human factors research, for example, numerous
authors in this book and in McNeese et al.’s (2001) book examine how
team member’s information processing capabilities will modify team per-
formance and attempt to design optimal teams based on tasks and team
member capabilities.

In management science, Belbin (1993) identified nine “team roles” for
members of management teams, where each role type contributes in differ-
ent ways to the team. These roles are based on a range of factors, including
cognitive ability and personality factors. For a team to perform well, it
must contain a balance of these roles. He also notes that some individuals
do not obviously fit in one particular role, but that this can be a strength
or weakness depending on how the individual reacts to it. It can mean
that this person is flexible and able to take on different team roles as the
need arises, but it can also mean that the individual is not a good “team
player.” Belbin’s work focuses on management teams. Other sources of
human variability will be important for other types of teams. For a team
engaged in physical work, the perceptual /motor ability of individual team
members will make them more or less suited to particular roles. The perfor-
mance of team members will also be constrained by the abilities of others -
for example, a team traveling together cannot progress together any faster
than its slowest member.

3 VARIABILITY IN EXISTING COGNITIVE ARCHITECTURES

There are considerable differences in the types of variability supported
by existing cognitive architectures. Here we briefly outline some of the
architectures that provide lessons in this area.
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3.1 ACT-R, Soar, and CLARION

Like almost all cognitive architectures, ACT-R, Soar, and CLARION (Chap-
ters 2, 3, and 4 in this book) support modeling individual differences as
differences in knowledge. There have been several efforts to extend Soar
and ACT-R to incorporate further aspects of variability, and CLARION
can be used in this way (Chapter 6 by Naveh & Sun). In Soar, Chong (e.g.,
1999) has started to include moderators such as fear, but his models do not
allow for changes in the influence of the moderators over time: the models
start and stay fearful. The work by Gratch and colleagues (e.g., Gratch &
Marsella (2004); and Chapter 9 here) incorporates a model of appraisal that
updates the agent’s emotional state over time. A model of teamwork has
been developed in Soar (STEAM: Tambe, 1997), but human variability has
not yet been explored within STEAM to our knowledge.

The most recent version of ACT-R (5.0) includes a model of perception
and action with noise parameters that can be increased to cause more vari-
ation, in addition to the cognitive parameters provided by previous ver-
sions. There have been a few projects that have attempted to include more
aspects of individual differences (e.g., Daily, Lovett, & Reder, 2001) and
the body and its effects on cognition (Jongman, 1998; Ritter, Avraamides,
& Councill, 2002), but none of these have also examined teamwork.

3.2 Other Cognitive Architectures

There are several other architectures that support human variability (e.g.,
Epic: Meyer, Glass, Mueller, Seymour, & Kieras, 2001). We only review a
few examples here. PSI (Dérner, 2003), one of the more complete, includes
abody and a sense of time, in addition to parameters related to individual
differences. These two aspects play an important role in modeling human
variability. PSI's behavior in a complex task has been compared with hu-
man behavior (Detje, 2000), demonstrating that models and humans need
a complex task with several subtasks to express variability — if there is
only one task, the model cannot give up on that task, or prefer a different
task. The human data in this complex task showed that the behaviors and
behavior orders varied across individuals. Finally, varying the drives and
individual parameters in the model gave rise to different types of behavior.
MAMID (Hudlicka, 2004) is a similar architecture that starts to model the
effects of moderators on cognition but extends this to model the effects
on leadership; PMFserv includes moderators and has been used to mode]
crowd behavior (Silverman, 2004).

Sloman (2000) has argued the need to include emotions in human
modeling, and has developed the Sim.Agent toolkit to explore these
types of architectures (Sloman & Logan, 1999). The use of this toolkit has



420 Frank E. Ritter and Emma Norling

illustrated that there is a wide range of differences to explore. Social science
simulations such as appear at the NAACSOS Conference model teams, but
have tended either not to model cognition in detail or else not to model
variability. There are no doubt further exceptions.

4 ADDING SUPPORT FOR HUMAN VARIABILITY

Human variability can be viewed as consisting of three types of variability.
The first type is inherent individual differences of abilities, such as work-
ing memory capacity. The second and third types represent external and
internal factors that cause an individual to vary their behavior over time
(Ritter, 1993). A variety of reviews have been undertaken that provide sup-
port for modeling these differences, including Boff and Lincoln’s general
review (1988), and Silverman’s (2004) focused survey.

This section summarizes the types of parameters that we propose to start
to model individual differences and to support modeling behavioral mod-
erators, and is taken from a more detailed review (Ritter & Norling, 2003).

4.1 Individual Differences

Our initial survey identified approximately sixty architectural parameters
that have been studied because they give rise to individual differences that
can be broadly classified into four groups: cognition, perception, action,
and physiology. Although this parameter set is not exhaustive (it would
certainly be possible to find many more parameters that influence human
reasoning and action), we believe that this set is a sufficient initial set to
capture the main elements that contribute to human variability. We briefly
describe each group, presenting examples to illustrate how they can influ-
ence agent behavior.

4.1.1 Cognition

The parameters that we have selected to capture variability in cognition are
primarily taken from ACT-R 5.0 (Anderson et al., 2002). This parameter set
has been extensively validated. In addition to these parameters, we have
identified 2 number of higher-level parameters affecting cognition, such
as the number of parallel tasks that can be maintained. We have included
a few personality variables such as acquiescence. Ultimately, however, we
believe, these higher-level effects should arise from the effects of lower
level parameters.

4.1.2 Perception

The majority of simulated environments provide most perceptual data as
visual data, sometimes also including sound. Here we focus on visual per-
ception. A similar parameter set has been developed for aural perception.
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TABLE 18.1. Example parameters of visual perception. Defaults are taken from the
literature. Suggested standard deviations, in parentheses, in most cases are estimated.

Parameter Default Description

Saccade time 120 ms Time taken to move the eye to a new
(10 ms) location.

Fovea size 3 deg. The size of the cone of vision for which full
(0.2 deg) visual detail is available.

Visual working 3 The number of items that can be stored in

memory 0.5 the visual buffer.

Table 18.1 provides several examples. These parameters (and the mecha-
nisms that they influence) are assumed to be separate from other cognitive
mechanisms. This approach treats perception as impenetrable, in that cog-
nition is assumed not to modify how perception works (Pylyshyn 1999).
This assumption is useful because it makes it easier to create cognitive
agents. There are already suggestions that this approach is too modular
when taken to this extreme, and should only be seen as a useful working
hypothesis.

4.1.3 Action

Existing models that have typically included motor output have often done
so at the level of hand movements and typing (e.g., ACT-R/PM: Byrne,
2001; EPIC: Meyer et al., 2001; SegMan: St. Amant & Riedl, 2001; Sim-eyes
and -hands: Jones, Ritter, & Wood, 2000; Norling & Ritter, 2001; Ritter et al.,
2000). The more accurate models include parameters to modify both speed
and accuracy. Speed particularly is not constant over time, with variance
under standard conditions that can itself be affected by moderators.

The fine-grained level of mouse and keyboard inputs does not, however,
correspond to the level of detail provided by the simulation environments
in which many agents will operate. The architecture should also provide
support for movement at other levels of granularity, such as walking.
Parameters and mechanisms for gross motor movements are likely to be
particularly important for modeling fatigue, both as a variable that is influ-
enced by moderators, but also because motor output over time increases
fatigue.

4.1.4 Physiology

Physiological parameters are necessary to represent fundamental aspects
of the agent’s body. Initial settings will represent individual differences.
They will also help implement the effects of other moderators and time.
Many physiological aspects of a body may influence the agent via their
interaction with other parameters rather than or in addition to directly
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influencing the reasoning/action of the agent. As such, they can themselves
be seen as behavior moderators. For example, heart rate and blood pressure
influence how quickly stimulants are taken up and then excreted.

Parameters we have included in this set include heart rate, blood pres-
sure, body temperature, and levels of various naturally occurring hor-
mones (such as cortisol). One of the difficulties of including these parame-
ters at this stage is that the effects of many of these variables on cognition
have not been extensively studied particularly with models in mind, giv-
ing us limited data to work with (Silverman, 2004). As a result, it is likely
that the initial versions of architectures will contain only placeholders for
these parameters, without attempting to capture their full influence. They
do, however, provide useful suggestions for further research.

4.2 Behavior Moderators

Extending Ritter’s (1993) earlier analysis, we have grouped behavior mod-
erators and the variables to implement them into three classes: external
(arising outside the entity), internal (arising from internal changes in the
entity), and task-based (arising from processing). Task-based moderators
can be seen as a special sub-class of internal moderators. They have im-
portant implications for modeling behavior, so we keep them separate.

4.2.1 External Moderators

External moderators are external events or conditions that affect the entity’s
behavior. These include things such as temperature, noise, and time of day.
The range of external moderators that could be modeled is extensive, but
the choice of moderators to include will depend on the model, the task
to be performed, and most importantly, the perceptions that are available
from the model’s environment.

External moderators influence the agent’s body, and will have to be
implemented as changes to intermediate, physiological parameters that
are time dependent. The effect of temperature, for example, is a cumula-
tive function. These parameters can then be used to moderate cognitive
parameters.

4.2.2 Internal Moderators
Internal moderators are those that arise out of changes within the individ-
ual, especially over time. Variations in the values of the entity’s param-
eters can themselves lead to variations in other parameters. Task-based
moderators (discussed next) are a special sub-class of internal moderators.
Other types of internal moderators include changes in physiology with
time (e.g., caffeine) and sleep and fatigue-related factors.

Chemical moderators such as caffeine are, in a way, like external mod-
erators. These moderators originate outside the body, but it is their effect
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on the body (and subsequently on the brain) that produce the changes i
behavior. Typically, an initial dose is ingested, which may take some tim
to be absorbed, and then over time the chemical is excreted. The level ¢
the chemical affects various aspects of cognition, perception, and action.

4.2.3 Task-Based Moderators

Task-based moderators are those associated with the information bein;
processed and the passage of time. Most cognitive architectures assum
that their mechanisms are fixed across time; however, there are many ele
ments of the task that can moderate behavior, including time itself, Sampl
task-based moderators include boredom, fatigue, and appraisal/emotiv.
moderators. We know, for example, that performance on a vigilance tas]
drops 20% over as little time as an hour (Boff & Lincoln, 1988, Ch. 7.403).

4.3 Including Variability for Team Studies

Differences across individuals and over time within an individual are im
portant when studying team performance. Obviously, some of the param
eters that we have identified will have more of an impact on teamworl
than others. For some of the lower level parameters, their influence o
teamwork may be indirect and not yet known. However, many behaviora
differences arise from the interaction of parameters and moderators, s
consideration must be made before discarding any particular parameter
The effect of reaction time, for example, on teamwork, appears to be littl
studied, yet Gratch and Marsella (2004 and Chapter 9 in this book) repor
reaction time as important for interpreting social agent cognition. In th
absence of better measures, those parameters that are most clearly under
stood should be implemented first, providing a framework for testing th
implementations of less studied or more complex parameters.

5 MODELING TEAM AND ORGANIZATIONAL EFFECTS OF
INDIVIDUAL DIFFERENCES

We present here an overview of COJACK, a project to create a cognitive
architecture that supports human variability. It is based on the lessons fron
the architectures reviewed and uses the parameter set we have developec
(Ritter & Norling, 2003). Many aspects of this architecture will also b
important in other cognitive architectures in the future.

5.1 The Development of COJACK

COJACK is based upon an existing agent programming language, JACK
(www.agent-software.com.au). As JACK is a Belief-Desires-Intention:
(BDI)-based language, its core constructs correspond to folk psychologica
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FIGURE 18.1. Schematic of the COJACK cognitive agent-based architecture.

concepts. This level of representation facilitates both knowledge capture
from the experts to be modeled and understanding the models that are de-
veloped (Norling & Sonenberg, 2004). JACK provides a level of abstraction
useful for knowledge acquisition and model understanding; COJACK fills
in the details needed to support variability. We aim to maintain the usability
of JACK while supporting cognitive plausibility.

COJACK is a software overlay for JACK that supports individual dif-
ferences through the set of parameters outlined earlier, and behavior mod-
erators via active modifications to these parameters. These parameters
vary across time in a particular individual, as well as across individuals.
Finally, COJACK is tied to the environment through a simulation intercon-
nect layer, which remains an important aspect of modeling (Ritter, Baxter,
Jones, & Young, 2000). COJACK's implementation has been tested with
a model of serial subtraction, a task commonly used to stress subjects.
Figure 18.1 provides a schematic of COJACK. This framework includes
constraints on its processing mechanisms. These processes degrade with
time on task (or are refreshed with rest).

The behavior moderator modules, which look like a type of key in
the figure, represent different settings of these parameters, including how
the parameters influence each other and how fast they change with time.
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Currently, settings are designed to be used in isolation to modify the cog-
nitive architecture as an overlay, but in time they will interact to produce
cumulative effects. This merging will be limited by our attention as well

* as the paucity of data of how multiple moderators interact.

Graphical interfaces and traces will be supported though the cognitive
modeling framework as well as the base agent architecture. These displays
and traces are necessary for debugging and for explanation to users.

5.2 The Addition of a Simulated Body

Cognitive aspects alone are not enough to support human-like variability;
the interactions between perception/action/ physiology/ cognition are im-
portant. Several architectures have included parts of bodies, particularly
perception and action, but it is time to start to include further parame-
ters related to a body, such as reservoirs related to sleep and energy (as in
PMFserv and PSI). The full range of interactions between physiology and
cognition are not yet understood, but capturing more of these effects will
prove important.

5.3 The Importance of Time and Usability

Few existing cognitive architectures alter their behavior because of changes
in physiology with the passage of time. However, the effects of nearly all of
the important moderators considered here (e.g., fatigue, stimulants) change
as time passes. Architectures that wish to model such moderators will have
to include the effects of time, and modify their bodies and information
processing mechanisms accordingly.

Modeling these additional physiological processes and time will require
that some attention be paid to usability. The overlays will have to be clear,
with their effects included in model traces, and to be inspectable because
these parameters will intentionally vary across individuals, with time, and
with initial settings. The overlays will draw on research that most cognitive
modelers are not familiar with. All these factors will make the models
harder to use, ironically, making models more like the humans they are
meant to simulate.
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