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ABSTRACT

We describe the utility of process models for summarizing the sequential actions
of individuals. Such models describe why users did what they did, what informa-
tion they used from the outside environment, and what knowledge they used to
perform the task. These detailed explanations of users’ thoughts and actions can
enhance interface design by offering behavior summaries that are inspectable and
transferable to new interfaces. Sequential data sets and models for human-com-
puter interaction are often large and complex. We present a computer-supported
methodology for developing these models as summaries of sequential data. We
illustrate that this methodology can make building and using such models tractable
by applying it to an existing model for using an on-line database.
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1. INTRODUCTION"

Understanding human-computer interaction (HCI) often involves

describing temporal sequences of interactions and understanding why -

the sequencess occurred. Such activity falls under the heading of explor-
atory sequential data analysis (ESDA; Sanderson & Fisher, 1994). A partic-
ularly rigorous analysis of such sequences is a process model-an
information-processing algorithm that performs a given task with ob-
servable behavior similar in sequence and form to that of humans
performing the same task. Thus, an HCI process model is an algorithm
able to process interface events and generate interface commands so
that the external behavior of the model is similar in content to that of a
human user.

As a tool for understanding human behavior, process models have
the following virtues:
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1. Unlike verbally described models, process models are explicit. They
make definite predictions about users’ sequences of actions, about perfor-
mance time (e.g., Card, Moran, & A. Newell, 1983), and about the nature
and frequency of errors (e.g., Young & Whittington, 1990). Ideally, this
explicitness clarifies the content of a model so that discourse focuses on
strengths and weaknesses of alternative models in accounting for and
predicting observations.

2. The computational mechanisms required to achieve the observed
behaviors have led in several domains to understanding the mechanisms
of human reasoning (e.g., A. Newell & H. A. Simon, 1972).

3. Without losing explicitness, process models can capture as much
detail and variability as are present in the data. Because they provide a
language for representing exceptions and detail, process models are an
ideal vehicle for rich tasks—such as those in HCI-that produce varied and
complex behavior.

Within HCI, process models can both guide or test designs and
elucidate psychological mechanisms underlying humans’ interactions
with computers. (Olson & Olson, 1990, provided a summary.) Polson
and Lewis (1990), for example, used process models to formulate gen-
eral design guidelines. Because process models perform the task of
interest, they make direct predictions about what a human user will do
with an interface and can become a readily available “tester” of an
interface or interface design (Howes & Young, 1991). This level of
analysis and understanding is worthwhile for interfaces when the payoff
is high—for example, when the tasks are crucial, when there are many
users, when the users’ time is valuable, or when the interface is expen-
sive to produce or evaluate (e.g., Gray, John, & Atwood, 1993). Last,
process models provide behavior explanations, involving psychological
processes relevant to HCI, and so advance the basic science of the field.

However, building an information-processing algorithm and then
matching its actions step by step against sequential data is a daunting
task. Our goal here is to specify a methodology for this process and to
show how it can become tractable, in particular, by means of good
computer tools. In Section 2, therefore, we propose a methodology for
developing and using process models to summarize sequential data,
particularly for HCI tasks. In outline form, this methodology, trace-
based protocol analysis (TBPA), consists of (a) using an initial model’s
sequential predictions (a trace) to find structure in the sequential data,
(b) summarizing the model’s successes and failures in accounting for
the data, and (c) using the results of this summary to improve the model
in an iterative cycle. In Section 3, we discuss the potential utility and
difficulties of this approach.

The use of process models in HCI, as well as elsewhere, would be more
tractable if computational aids could perform or facilitate these tasks. In
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Figure 1. Trace-based protocol analysis (TBPA) methodology for developing a
process model accounting for sequential data.

Task 0 Develop a preliminary process model, an environment for it to manipu-
late, and an initial set of transcribed sequential data to test it.

Task 1 Run the model to produce a trace of its actions. The trace should support
alignment with protocol data by including:

a. A sequence of predictions (including times) for each of the data
streams (e.g., verbal, mouse and keyboard actions) and any responses
from the task environment.

b. Symbols clear to human analysts and unambiguous to automatic tools.

Task 2 Interpret the data and align them with the actions in the model trace.

a. Create a sequence of matched data-trace pairs with codes for the type
of match and associated annotations.

b. When necessary, minimally shift data and model sequences relative to
each other.

Task 3 Assess how well and in what respects the model accounts for the data,
using summaries that: :

a. Show how the data correspond to the mechanisms of the model.

b. Show where the data do and do not match the trace of the model.

Task 4 Revise the model to improve its account of the data based on
understanding the mechanisms and dynamic behavior of the model.

Section 4, we review computational tools that support parts of TBPA, and
we summarize their useful properties. With these properties in mind, in
Section 5 we present a prototype environment, Soar/Model-Testing
(SMT), that gives integrated support to TBPA. We illustrate TBPA as
supported by SMT by applying it to an existing model and its data,
illustrating how a good support environment can make developing process
models more tractable and enlightening.

2. TBPA: A METHODOLOGY FOR DEVELOPING
PROCESS MODELS

Figure 1 summarizes the tasks of TBPA-a general methodology for
using process models to characterize sequential data. For complex tasks
such as HCI, this methodology is usually tractable only with good compu-
tational tools. Therefore, we specify the tasks in detail~a necessary precur-
sor for supporting them computationally.

To illustrate TBPA, we discuss a model (“Browser”) and data for
browsing in an on-line help system. Peck and John’s (1992) paper is the
primary reference for their work. Their data came from a subject
browsing through an unfamiliar on-line help database. Browser is a
typical process model in that it is computer implemented and makes
predictions about sequential actions of a user working with an HCI
interface. ‘
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2.1. Task 0: Provide a Preliminary Model and Protocol
Data Set

Task 0 is outside the model-testing loop and is not repeated, but it gets
the methodology started. Here we discuss appropriate models and data
with which to begin the TBPA process proper.

Properties of Process Models. Process models consist of coordi-
nated action specifications sufficient to produce a sequence of actions
that perform a task. To start Task 1, the model trace need only corre-
spond roughly with actions in the protocols. This restricts TBPA to
tasks for which psychology and our model-building capabilities are
powerful enough to build this initial model. A. Newell (1977) and
Ohlsson (1990) provided approaches for creating this initial model.
Process models are typically, but not always, organized as a rule set
(e.g., production systems). Coordinating the action specifications so
that each action occurs appropriately usually involves (a) associating
with each action the conditions when it is useful and possible and (b)
providing a task-relevant hierarchy of goals, so that complex tasks can
be divided into subtasks. These models are complex enough that pro-
ducing accurate action sequences by hand is difficult; thus, they are
typically formulated as computer programs (A. Newell, 1977). If the
task involves interaction with the external world (e.g., a computer
interface), then there should be mechanisms that provide environmen-
tal inputs to the model appropriately (e.g., in response to actions taken
by the model).

Properties of Protocol Data. Protocols are sequential data collected
while a subject performs a task. Protocols may include multiple streams of
data—for example, verbal utterances, motor actions, environment re-
sponses, and eye movements (A. Newell & H. A. Simon, 1972). Recording
the responses of the environment is often necessary for understanding the
behavior as well. Multiple data streams constrain the model by requiring
it to account for more aspects of behavior. The Browser data, for example,
include verbal utterances, mouse movements and clicks, and events in the
browsing interface.

Performing a task requires certain actions-using a computer requires
mouse actions or keystrokes, and driving requires steering and braking.
We call these task actions. As the model performs the task, it too executes
task actions, and there is a direct match between the task actions of the
subject and those of the model. J. B. Smith, D. K. Smith, and Kupstas
(1993) described task-action protocols and how to collect them. In con-
trast, nontask actions (e.g., verbalization, gestures) are not necessary for
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achieving the task. Because a subject can omit them, their interpretation is
more complicated. They can, however, suggest internal reasoning pro-
cesses behind the task actions. Verbal “think aloud” protocols (recorded as
a subject thinks aloud while performing the task) are particularly useful for
this reason. According to theory developed by Ericsson and H. A. Simon
(1993), this verbalization stream reflects the subject’s current working
memory and thus should correspond to the internal state of the running
process model. :

Some data streams include identifiable actions (e.g., clicking a
mouse, looking at a word). Others, especially verbal utterances, must
be segmented into “actions” to allow comparison with the discrete
actions of a model. For verbal protocols, an action usually consists of
an episode of speech, unbroken by appreciable pauses, conveying one
simple idea.

2.2. Task 1: Produce a Trace

Running the model to produce a trace of its actions while performing
the task is the first task of the TBPA loop. This trace forms the model’s
predictions for all the sequential data streams. If verbal utterances are
included, then the trace must include corresponding features of the
internal memory of the model. If the subject manipulates an active
environment, the trace should show changes in the simulated environ-
ment (e.g., a Macintosh window open following a mouse double-click).
If timing is predicted by the model, then times must appear as well.
This trace should be well formatted for human interpretation and
sufficiently standardized for use by computational alignment tools.

2.3. Task 2: Interpret and Align the Data and Model Trace

The trace of a process model forms the model’s predictions about the
sequential actions in the data. Task 2, then, is a process of matching
observation sequences to predictions. For these matches to be valid or
useful, they must be replicable and self-consistent. Matching two ele-
ments may thus require information not only about those elements but
also about temporally adjacent portions and (to maintain consistency)
other matches of a similar type. Figure 2 shows a protocol fragment
aligned with an edited trace produced by the Browser model. Both
columns include task actions {mouse clicks and movements) and mental
(nontask) actions (e.g., a decision to search for the length axes com-
mand, second line in the subject protocol). An external file, prepared
by hand, provided interface information to the model, and the trace
here omits this information. The complete aligned Browser trace and
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Figure 2. Simplified sample of the match between model and data.

find-appropriate-help

. define-search-criterion

. search-for-help

. . find-criterion in hierarchical menu

. . . focus-on-current-window (heir. menu)

. . . evaluate-current-window (heir. menu)
. read-input "graphing-commands”

. . . . attempt-match-to-criterion

. . access-item on hierarchical menu

... click-on-item (menu item i361)

Now what [ want . ..

Specifying axes lengths? '
mouse to 'graphing commands

Task mouse .
to below 'axes’ .. .. move-mouse (on hier menu)
click . ... click-button

[cursor pointer to watch}]

I don't know.
[bounds help text appears]
[cursor watch to pointer]
. evaluate-help-text
. . focus-on-help-text
Bounds. . . evaluate-current-window

datainclude 5,554 lines of the form shown here, roughly the size of a
-town phone book. . .
smélcl)rtr(:espogding elements of trace and model are aligned by mser}flngt
blank elements in either sequence to achieve the best match thr(?ug gut
the dual sequence (see Figure 2). The alignment task may be tedxou:;. 11(1
conceptually trivial (e.g., aligning an unambiguous set‘of buttor;c(;s: s
to a well-fitting model), or it may be extremely demanding (e.'g., inding
indefinite references within verbal utterances). Task actions (e.bgl.,
mouse clicks, moving a disk) are usually easiest to mat.ch-—ar.l observable
action from the data matches the same action described in the tracei
Elements corresponding in content may be out of order,. orhsevtelfa
elements in one sequence may correspond to one element in the other
uence.
squccording to Ericsson and H. A. Simon (15.993),.verb !
the content of working memory, or changes in this memory. owe(;/tla)r,
in a well-defined model, each working-memory change is produce d)i
an action, and utterances can be equivalently matchc.ed‘to these mo eh
actions (A. Newell & H. A. Simon, 1972, p. 1{37). This is tl?e app;oafc;r
Peck and John (1992) used, and we follow it here. I;l Flgcllxr;a ,t.
example, the “define-search-criterion [of label axes]” model action
matches the “Now what I want ... [label axes]” utterance.

al reports reflect
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2.4. Tasks 3 and 4: Assess the Prediction-Data
Correspondence and Revise the Model

The result of alignment is a large volume of associated model-trace
elements. Primitive measures (e.g., fraction of elements matched) may give
some idea of the adequacy of the model and illustrate whether it is worth
taking seriously. But, to guide improvement of a preliminary model re-
quires richer ways of summarizing and assessing in what respects the
model does and does not account for the data. Perhaps the most useful
approach is summarizing the match of the predictions and data in terms of
the central structures in the model. If entire structures account well or
badly for data, this information can either guide revision or suggest
differences among subject groups. The pattern of support can indicate
individual differences in theoretical terms of established models (Miwa &
H. A. Simon, 1993; Ohlsson, 1990). Later, we discuss several computer-
implemented graphical analyses intended to serve these functions.

Revising the model is a design problem. This makes it the least speci-
fied task in TBPA—which can make it the most difficult as well. In our
discussion of computational tools for TBPA, we illustrate how revisions
are suggested by tools for understanding the model and its relation to data.
Over time, however, because models cannot ever be proved, the useful
evaluation measures indicate where the model succeeds and fails so it can
be improved (Grant, 1962; J. B. Smith et al., 1993). Ritter (1993) reviewed
statistics in this area and started to formalize a method of model evaluation
based on assessment.

3. }_II\ITII%'}‘Y AND DIFFICULTIES OF PROCESS MODELS

In this section, we illustrate the potential utility of process models in
HCI, using the Browser work as an illustration. We also discuss difficulties
and how the work described in this article may help to alleviate these
difficulties.

The Browser model characterizes data from a novice subject using a
help system (unfamiliar to the subject) on the Macintosh (familiar to the
subject). Initially, Peck and John (1992) expected this behavior to consist
largely of deliberation and search as the user coped with the unfamiliar
situation. In fact, Peck and John accounted for 5,554 lines of protocol data
with the Browser model, which executes only what they called “routine”
behavior-straightforward execution of methods without search.

Most important, the model indicates the mechanisms by which the
novice used the unfamiliar database so smoothly—-mechanisms of “rou-
tine” behavior (Peck & John). Each task in Browser is implemented
through an already known sequence of subtasks. Subtasks, in turn, may be
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implemented by their own methods, forming a task-method hierarchy.
However, there is no trial-and-error, no generate-and-test, no internal,
mental search for a solution that characterizes nonroutine problem solv-
ing. Browser uses general search methods at the top of its hierarchy. If
words like page and location were substituted for words like window and
menu, the task hierarchy could reflect search procedure for anything from
a dictionary definition to a mislaid mop. The bottom part of the task
hierarchy consists of the methods for using the Macintosh interface, also
familiar to the user. Thus, the model predicts that interface designs are
likely to be usable by novices if the needed knowledge consists only of
general procedures and procedures for a familiar interface.

Browser also provided a more typical contribution from HCI studies: a
measure of consistency in the interface (e.g., Bovair, Kieras, & Polson,
1990). It identified one instance in which the help system violated the
Macintosh interface conventions and one instance in which it did not
provide an access facility consistently across the interface (B. E. John,
personal communication, 1993).

Could these conclusions be reached without developing a process
model and laboriously comparing the sequential predictions of the model
with sequential data? To a certain extent, they could. These conclusions
are not so odd that they were exclusively discovered through a detailed
comparison with the data. However, this level of comparison is useful for
two reasons. First, as with many process models, the main features of the
Browser model were not obvious from the beginning. Peck and John
(1992) reasonably expected that a novice user would engage in a great deal
of nonroutine search for methods to use the database. It was only through
detailed comparison of the user’s actions with those of a routine-behavior
model that Peck and John came to believe that most of the user’s behavior
was also routine.

Second, all of Peck and John’s (1992) conclusions are supported by
large amounts of detailed data. A large segment of a novice’s behavior is
modeled using only general and interface knowledge. The only exceptions
indicated where the interface violated the Macintosh conventions. These
results would be less believable without this level of comparison.

Difficulties. Studies involving process models use large amounts of
complex, ordered information from the model traces and from the proto-
cols. Unanalyzed, the raw information provides little insight. Comparing
long sequences of human actions with the predictions is a complex,
symbolic manipulation, which has often required doing the task by hand.
The work is tedious, and the size of the data sets makes the manipulations
prone to error. Furthermore, as multiple versions of a model are compared
with multiple protocols, the amount of information to be managed grows
quickly. A major problem is simply finding the information when it is
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needed. A minute of protocol data can ultimately require as much as 5,000
min of analysis and model-building time (Ohisson, 1982; Ohlsson, per-
sonal communication, 1992; Peck & John, 1992; Peck & John, personal
communication, 1992). Analyzing these amounts of symbolic data is an
overwhelming task when done by hand.

A second difficulty in using process models is more subtle but just as
pervasive. The goal is to explain, using the dynamic mechanisms of the
model, the nature of behavior. It is not trivial to understand why the
model behaves as it does and to use its structure as a guide throughout
analysis. Drawing inferences from a process model requires intimate
familiarity with how it works because the dynamic structures are not
directly inspectable. Although the model specifications may be readily
available, their interactions and the structures that arise as the model
executes are not. For example, to determine what fraction of Browser’s
information processing involves the Macintosh interface would require

running the model and examining its behavior, including its internal
state, at every action.
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Limited Use. Unfortunately, testing the sequential predictions of pro-
cess models with verbal protocol data is done rarely, by few individuals,
and with small amounts of data. We believe that providing computational
support can make such work more tractable, so that the utility we have
suggested can be realized more often.

Figure 3 lists 22 such studies, which we were able to compile through
a year of computer searches, inquiries, previous reviews (Kaplan, 1987),
and discussions with people active in the field. In contrast, Bentler
(1980) estimated that there were more than 10,000 papers using multi-
variate analysis. Besides being few, these studies are small in scale
compared with other forms of analysis. Eleven of the 22 studies involve

just one subject. The total protocol time analyzed ranges from 220 sec
(less than 4 min) to 10,000 sec (2.7 hr). Only 4 studies involve more
than 1,000 segments. The most complex tasks (e.g., geometry, physics,
medical diagnosis) may typically become tractable by using fewer,
longer duration segments. Although an average segment length is prob-
ably 1 to 4 sec, the average segment time for these studies, when
reported, is much longer than a single verbal utterance. Last, only about
half the studies using verbal protocols also use task-action data—that is,
actions done in the real world in service of the task. Perhaps these
restrictions are inevitable given that all this work was done by hand.

As shown in Figure 3, Browser is one of the larger efforts in model size
and amount of data. Its size and complexity make the Browser study a
good test-case for formalizing TBPA and developing a supporting environ-

ment. However, compared with what is needed for HCI, Browser is
relatively simple in two ways:
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1. The data consist of 10 protocols, each approximately 1 min. The
analysis would be far more difficult for a single 10-min protocol because
there would be far more successive opportunities for the model and
protocol to diverge.

2. The behavior is relatively straightforward. A major result of the
Browser study is that this browsing behavior corresponded to a simple
model without search or deliberation. Yet, the analyses still take consider-
able time.

Larger protocols and more complex models may prove a challenge, but
the Browser corpus forms a good starting point.

Computational Support—The Way Out. As discussed in the remain-
der of this article, we see the growing ability to use computational tools as
a way of making this potentially valuable methodology more tractable.
The methodology is in a detailed form so that we can recognize the right
tools and algorithms if we saw them and so that we can expand them. In
Section 4, we discuss tools that are being used or that could be used to
support individual tasks of TBPA.

4. TOOLS FOR BUILDING PROCESS MODELS

Existing tools address some of the individual tasks in TBPA, so we start
by summarizing their major categories and then note the lessons they
provide when designing an environment to support the full methodology.

4.1. Tools for Protocol Analysis

Simple protocol-coding tools address the labor and bookkeeping of
assigning consistent codes to protocols. Although independent of a pro-
cess model, these tools illustrate the basic functionalities for analyzing
sequential qualitative data: (a) presentation of the protocol text, most
commonly as a set of segments, (b) modifiable code-lists with easy assign-
ment to segments, and (c) facilities for counting the occurrences of each
code or group of codes. Reviews of these tools are available in Bainbridge
and Sanderson (in press) and Ritter (1993).

Concept analysis tools code continuous text for the concepts (or declar-
ative knowledge) contained in them—ignoring the sequential order of the
concepts. The earliest tool, the General Inquirer (Stone, Dunphy, M. S.
Smith, & Ogilvie, 1966), used a database of word meanings to count
concepts in documents and could analyze corpuses of 100,000 words.
Carley (1988) built computational tools to help code verbal protocols into
semantic networks, a more sophisticated representation. These systems
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demonstrate that automatic aids can routinely analyze large amounts of
verbal data (e.g., automatic book-indexers; Waltz, 1987), but they have not
yet been applied to code protocols into labeled sequential elements.

Commercial software is sufficiently sophisticated that its general capac-
ities equal or exceed many simple, specially built protocol-coding tools.
Software used in this way includes spreadsheets (Excel [Peck & John,
1992]; Lotus 1-2-3 [Payne, Cohen, & Pastore, 1992]), databases and statis-
tical packages (e.g., Filemaker Pro™), and even multicolumn text editors
(Prep; Neuwirth, Kaufer, Chandhok, & Morris, 1990). Some packages also
now include a programming environment (e.g., macros in Excel 4.0™).
Operating systems on popular microcomputers permit integrated software
use. These tools offer tantalizing views of raw functionality and can well
support some of the tasks of developing a process model. For example, the
row-and-column format of spreadsheets provides a dense display that
groups related data together on the same row while showing adjacent data
across rows. Databases offer alternate displays of the same data, which can
be tailored to the current task. However, obtaining a range of functionality
requires sophisticated use of several applications. It is important to note
that, with source code unavailable, more graceful integration is rarely
possible, and it remains difficult to incorporate the process model itself
into an analysis system.

Sequential patterns in protocols are global features that any process
model must reproduce, and finding them is often a useful step toward
creating a process model. Tools for finding such patterns (e.g.,
MacSHAPA [Sanderson, 1993; Siochi & Hix, 1991]; Textlab [J. B. Smith
et al., 1993)) incorporate sophisticated coding schemes—methods for sum-
marizing data and for relating them to theoretical constructs. For example,
MacSHAPA can detect looping behavior (a repeated occurrence of the
same code or series of codes) and relate these loops to initiation and
completion of a goal. The Textlab tools can produce cognitive grammars
as summaries of action patterns. Childes-Clan, with approximately 250
users, is perhaps the most widely used of these systems (MacWhinney,
1991; MacWhinney, personal communication, October 1992). Childes-
Clan includes a structured editor and database language for creating a
hierarchy of codes, similar in functionality to MacSHAPA, and includes
facilities for counting a wide variety of patterns and combinations of codes,
including those between two data streams. It was used to create the
Childes database of children’s early language, which contains more than
100 megabytes of transcribed and annotated protocols. These tools char-
acterize the data with static structures or patterns, in contrast to our
emphasis on active process models, but they show the advantage of
directly including the model within the tool—the results are presented in
terms of the model, and the analyst can directly modify the model based
on the results.
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4.2. Tools for Aligning Data Elements and Model Actions

Aligning corresponding elements of two sequences—whether codes
from two coders or a protocol and the predictions of a model-is a ubiqui-
tous and tedious part of ESDA. There are two complementary ways of
supporting this task. When no subtle judgments are required, automatic
alignment algorithms are available. They can process relatively vast
amounts of data (e.g., Card et al., 1983).

In most instances, however, comparing verbal data and model predic-
tions exceeds interpretation abilities for automatic tools. A task-specific
editor can facilitate this by-hand alignment. Trace&Transcription (John,
1994) displays elements of the two sequences in side-by-side columns. The
user clicks on two elements to be aligned, and the system adds additional
blank cells in one or the other sequences to bring the elements into
alignment.

X

4.3. Tools for Automatically Developing Process Models

Machine learning tools have been used to develop a model from
protocols. The earliest attempt, PAS-1 and PAS-II (Waterman & A.
Newell, 1971, 1973), consisted of a detailed, 28-step procedure, together
with a computational tool incorporating an editable process model. These
programs coded verbal protocols into problem behavior graphs—diagrams
that represent the actions of a process model as links between hypothe-
sized states of knowledge (A. Newell & H. A. Simon, 1972). These systems
suffered from primitive display technology and a baroque command-line
interface, but their major difficulty was the inability (still present today) to
automate natural language interpretation. Working from hand-coded pro-
tocols bypasses this problem so that problem behavior graphs (Bree, 1968)
or decision rules for choosing operators in a preexisting model (Langley &
Ohlsson, 1984; Kowalski & VanLehn, 1988) can be automatically created.
ASPM (Polk, 1992) adjusts a set of knowledge-use parameters to capture
reasoning patterns of individual subjects, with new computational algo-
rithms handling the resulting complexity.

Semi-automatic modeling tools analyze coded protocol data to test a
predicted task ordering (SAPA: Bhaskar & H. A. Simon, 1977) or to
identify which of a set of models best characterizes the protocol (KO:
Dillard, Bhaskar, & Stephens, 1982; Gascon, 1976). Ethno (Heise, 1991)
iterates though a database of protocol events asking the analyst to identify
precursors for each event and automatically creating rules representing the
reported causal relations.

Achieving automatic refinement of models from data has allowed
relatively few possible types of adjustments in the model and has
required well-developed initial models along with well-defined rela-
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tions between the model and data. By incorporating the model being
tested, these systems have been able to tailor their displays and system
responses and, in their limited way, illustrate the possibility of making
process models a routine and tractable way of characterizing sequential
data.

Some intelligent tutoring systems automatically code students’ re-
sponses and collect them as direct tests of the process model underlying
the tutor (e.g., Anderson, Farrell, & Sauers, 1981; Sleeman, Hirsh,
Ellery, & Kim, 1990). The initial process models used in the tutors may
come from previous by-hand analysis (cf. Singley, 1987), but automati-
cally analyzed data from the tutor are also used to refine existing
theories (e.g., Koedinger & Anderson, 1990). This work is impressive
psychologically, pedagogically, and in its ability to routinely compare
protocols with the performance of a model. However, it cannot be
simply extended to analyzing any behavior. Actions taken by the stu-
dent are limited to those permitted by the tutoring system, and the
underlying model must be well developed. Finally, when a student’s
actions mismatch the actions of the model, the student can be “reset”
through hints or actions performed for the student-bringing the student
back into synchronization with the model. This is easier to control than
resetting the model. Despite these limitations, this work illustrates a
practical payoff and shows how process models can be used to routinely
characterize large amounts of data.

4.4. Architectures and Expert Systems

Process models consist of (a) the knowledge used to perform each
particular task and (b) an architecture—a fixed set of structures underly-
ing performance on all tasks—to interpret and apply the knowledge (A.
Newell, 1990). Architectures allow a variety of models to be built on a
framework of common assumptions. Soar (A. Newell, 1990) is an exam-
ple of such an architecture (for other examples, see Anderson, 19?3;
ACM Special Interest Group on Artificial Intelligence [SIGART],
1991). As a proposed unified theory of cognition, Soar is intended to
capture basic principles of human cognitive function sufficiently well
that it can be used to model all cognitive tasks. Although the vision
exceeds the current reality, these architectures, particularly Soar and
ACT, have been used to model a wide variety of tasks, including
perception, social interaction, problem solving, and natural. la.nguage
processing. If an architecture is incorporated into model-building afxd
data-analysis tools, then the model developed can be more readily
explained in terms of the architecture, and the analyses can b.e
specifically appropriate for and based on the mechanisms in the archi-
tecture.
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Expert systems are process models of expertise built with the aim of
producing the same results as human experts, but not necessarily by using
the same reasoning process. Development environments have been de-
signed to build expert systems—providing an architecture and an associ-
ated, structured, integrated editor. Knowledge-based knowledge-
acquisition tools have built on this framework using an expert system
recursively to monitor the process of further system building—for example,
by pointing out incomplete knowledge structures. (See ACM SIGART,
1989, for a summary.) Some knowledge-acquisition tools (e.g., KEATS:
Motta, Eisenstadt, Pitman, & West, 1988) include the ability to tie verbal
protocols or other texts to various facets of the model—showing that a
protocol segment has had its knowledge extracted. This work typically
does not analyze data in the same way psychologists would but shows that
better tools for building and understanding process models are possible,
though expensive.

Tools for understanding why a process model produces a particular
sequence of actions are an ongoing need, but, as yet, there are few
examples. Displays for understanding these models are typically limited to
the usual tools of programming languages—the ability to trace the action of
the surface behavior of the program and to examine elements of the
current state.

4.5. Implications for an Integrated Environment

The Browser example and this review of computational support tools
suggest that a computational environment supporting TBPA should have
the following four features.

Complementary Automation and User Support. We have noted re-
peatedly the amount of by-hand analysis required in TBPA, for it is
impossible to automate completely all the tasks. An environment for
TBPA cannot at this time be like a statistical package, in which data go in
and interpretative results come out. One must blend gracefully the auto-
matic facilities with support for doing tasks by hand—what we call semi-au-
tomatic analysis.

The variety of protocol-encoding tools illustrates this range. The
semi-automatic protocol-coding tools present protocol segments conve-
niently, provide modifiable menus of codes, and provide facilities for
counting the occurrences of each code or group of codes. Tools for
finding patterns in protocols automatically identify larger scale sequen-
tial patterns in these data. The power of concept-analysis systems sug-
gests that automatic tools may one day be able to code natural language
protocols.
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Interactive Displays Supporting Analysis Tasks. Evaluating pro-
cess models involves large amounts of information, including both
sequential data and sequential output from the model. Well-designed
displays can show extremely large amounts of information so that the
important patterns become visually apparent. Larkin and colleagues
(Casner & Larkin, 1989; Larkin & H. A. Simon, 1987) have suggested
that displays are useful if they reduce search for needed information or
allow easy spatial judgments to replace more difficult analytic judg-
ments. Thus, the maximum of a set of numbers is easier to see in a
graph than in a list. Displays need not be limited to graphics but can
include formatted text (outlines, spreadsheets, semantically meaningful
indentations in code and traces).

Such displays can be forceful final summaries of work, but they are
most useful as part of the ongoing interaction between the model and
data. Because these displays involve large amounts of information, they
cannot readily be produced by hand. Therefore, we believe that a gopd
support environment should produce useful information summaries
automatically and easily. The graphical summaries should also manage
access to the large amount of information, letting the user see currently
important information and then shift views or elaborate elements for
further information.

Integration of the Process Model. Using a model to account for proto-
col data is easier if it is consistently available throughout the environment,
providing a structure for all other tasks. This organization is hard to realize
unless the model is integrated with the analysis system. We have also
observed the need for tools and displays to illustrate the major structures
and functions of the model. In an integrated support system, these tools
are readily available throughout the analysis. Additionally, as we illustrate
later, there can be tools that summarize the current correspondence be-
tween the data and structures in the model and to test alternate model
forms.

Expandability. No application, even for relatively simple tasks
(e.g., graphing), ever provides all the functionality a user needs. This is
particularly true for exploratory analyses like model building and test-
ing. Serious and innovative users always move beyond the tool
developers’ imagination. This intrinsic limitation is particularly rele-
vant for research tools, because the aims and methods of research vary
widely, even within a single methodology. Therefore, an environment
for TBPA must be expandable.
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5. A PROTOTYPE ENVIRONMENT FOR DEVELOPING
PROCESS MODELS

We have started to explore, using a prototype system, how a unified
computational environment can enhance the value of TBPA, as specified
Figure 1. This prototype environment incorporates a modeling architec-
ture, as we have argued it should, and takes its name, Soar/Model-Te esting,
from the Soar architecture. However, many of its tools would work equally
well with other architectures, and we discuss here implications that tran-
scend any particular architecture.

Figure 4 shows the interactive displays of the environment and their
information links. Starting with Task 0 of the TBPA methodology, models
are constructed in the Structured Editor and run in the Model Interpreter,
which provides a trace and other diagnostic aids, such as the ability to
examine model structures and substructures. Additionally, displays can
summarize static and dynamic structures of the model. As specified for
Task 1, the design for the trace of model actions facilitates alignment with
sequential data. To begin Task 2, aligning data with the model trace,
sequential data are entered or imported into the Alignment Spreadsheet,
which also holds a trace of the model. An automatic algorithm and tools
for semi-automatic alignment jointly support matching the data and trace.
Task 3, assessing the performance of the model, uses the Model-Fit dis-
plays that summarize how well the static and dynamic structures of the
model correspond to data. We discuss how the entire environment helps
to suggest revisions for improving a model (Task 4). Additionally, a
“pseudo-revision” process can suggest possible effects of a proposed revi-
sion without altering the model itself.

The SMT environment supports each of the TBPA tasks, as already
discussed. However, SMT components are integrated, allowing ready
movement between tasks. Many displays help manage the large amount of
information intrinsic to TBPA by showing selected information, which the
user can elaborate as needed. Manuals and on-line help facilities are
linked to most of the displays. Information on how to obtain the SMT
components is available from Frank E. Ritter.

5.1. Building a Model (Task 0)

A structured editor (Hucka, 1994; Ritter, Hucka, & McGinnis, 1992)
supports creating and revising model code; provides commands to facili-
tate searching and manipulating the model; and includes templates for
common code structures. Integration within the environment allows mod-
ifying and examining the underlying elements selected in the running
model.
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Figure 4. Displays and information links in the SMT environment.
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Creating a computational model of behavior and modifying it to better
account for data require a deep and complete conception of how the
model works. As all programmers know, reading the model code, or even
reading a trace, is often insufficient to provide this conceptual structure.
The SMT Graphic Model Display (Ritter & McGinnis, 1992) shown in
Figure 5 builds from the model code a diagram showing spatially the
elements of the model and their relations—in this case, Browser. The
display is interactive and can show varying amounts of detail. The partic-
ular notation, triangles for methods (or problem spaces) and circles for
actions (operators), comes from the community using the Soar modeling
architecture. The bricks indicate individual model elements (produc-
tions)—reflecting the complexity of each method and giving access to these
rules by clicking on them.

5.2. Running a Model to Produce a Trace (Task 1)

The Soar model interpreter was modified to produce a more compact
and less ambiguous trace of the actions of the model. The top of Figure 6
shows a simplified version of this trace. Each line corresponds to a pre-
dicted subject action (e.g., move mouse to the hierarchical menu) or a
mental decision (e.g., decide to evaluate the help text) that could match an
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Figure 5. Structure of Browser code produced by the SMT Graphic Model Display.
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utterance or a mouse movement over text being evaluated. The line
numbers correspond to the time units of the model. The indentations and
dots reflect the hierarchical structure of actions and methods that imple-
ment them. The spacing and format allow the trace to fit directly and
compactly into the spreadsheet and to be automatically aligned. (Os in the
trace indicate Soar operators, which correspond to what we call actions in
the Browser model. Ps are problem spaces, which correspond to methods.)

A trace is simply a log of main events. It usually gives little insight into
how these events correspond to the internal structure of the model. To
serve this need, SMT provides a dynamic graphic display of the current
structure of the model. Figure 6 includes a graphic display corresponding
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Figure 6. Simplified trace of model actions and graphical representation of dynamic
model state.
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to the trace. In the trace, the “find-appropriate-help” method (P) arose
from the action (O) of the same name. In this method, several actions
and their methods have been used, and the model is now applying the
“search-for-help” method still within the find-appropriate-help method.
The graphical structure shows this current state directly. As the model
runs, new lines appear in the trace, and the graphic display is updated,
with new circles appearing for actions and new triangles for methods.
When a method is complete, the triangle disappears. As an example of
its utility, work using this display has suggested that many Soar models
do not just do search in problem spaces and that operators are less
concrete than first thought (Ritter, 1993).
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5.3. Aligning User and Model Actions (Task 2)

To support the difficult task of aligning the data and trace, SMT
provides a specialized spreadsheet (Nichols & Ritter, 1994). As shown by
the representation of this tool in Figure 7, its format is quite different from
the single-element displays often used in protocol-coding tools, reflecting
a central difference between protocol coding and TBPA. In protocol
coding, one wants available all information about the protocol element,
formatted well, with space for categories and annotations. Many argue
(e.g., Ericsson & H. A. Simon, 1993) that this coding should be done
independent of context (i.e., without immediate access to the surrounding
elements). In contrast, TBPA involves matching data and model-action
sequences, and so the sequences must be visible. Additionally, this format
produces meaningful, emergent features—the filled space of regions where
the model and data match closely contrasting with blank space in either
the data or model metacolumns indicating unmatched sequences.

Columns representing data and those representing the model trace are
grouped together into two metacolumns (separated by a heavy line in
Figure 7). The model metacolumn (on the right) includes the step number
of each action (DC), the model trace, and related notes or annotations (not
shown). The protocol metacolumn (on the left) shows the time (T) of the
action, with separate columns for mouse actions (MSE), responses from
the interface (INT), and verbal utterances (VBL). The type of protocol
segment (m = mouse movement, b = mouse button action, v = verbal)
appears in the ST column. The type of model-data match (mr = mouse
movement required to do the task, mba = mouse button action, v = verbal
utterance) appears in the TYP column. The column headed MC indicates
the number of the trace action matching the protocol data element. This
column is particularly useful when items match out of order (e.g., if
Segment 21 matched Line 121) or when several items in one sequence
match one item in another sequence. Metacolumn rows must stay together
because each represents a single data or trace element. Therefore, during
alignment, the spreadsheet moves entire rows in a metacolumn relative to
the other metacolumn. The user can align two metacolumn rows simply
by selecting them and executing a keystroke.

If there are well-defined criteria determining whether two elements
match, an automatic algorithm (described in Figure 8) can align element
sequences. The technique worked well with the Browser corpus, correctly
aligning all 296 task actions (mouse clicks and movements to them). Even
if only a fraction of the elements are aligned automatically, not only is part
of the job done, but the aligned pairs subdivide the rest into smaller and
thus simpler subsequences. For example, the Browser corpus has about
600 sec of protocol. The 296 automatically aligned task actions, on aver-
age, position the remaining data within 2 sec or about 20 lines of their final
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Figure 7. A simplified portion of an alignment spreadsheet.
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alignment. If the algorithm proves untractable on the total corpus, the user
may be able to identify parts suitable for automatic alignment and then
work by hand to place these subparts within the whole.

5.4. Assessing the Model (Task 3)

The aligned corpus is typically complicated and lengthy, so we need
summaries to show in what ways the model does and does not account for
the data. Although the spreadsheet provides some informative local infor-
mation, more powerful summaries are necessary. We have created two
such displays. To aid in relating the summaries to the details of the
spreadsheet, the graphical summaries are “live,” in that clicking on a point
displays further information about them. These assessment tools go be-
yond a single assessment number (e.g., goodness of fit) and show where to
improve the model {Grant, 1962).

Dynamic Structure in the Model. The model-support display shows
the dynamic behavior of the model. Thus, it is another tool, like those
discussed in Section 5.1, for understanding the dynamic behavior of the
model. We discuss it here because it can also serve as a basis for model-
data comparison. This display is a graph of each model action as a function
of when it occurred in the action sequence (see Figure 9). The horizontal
axis shows the sequence number of an action; on the vertical axis are
names of actions. The small black squares indicate that the model per-
formed the action at the left at a location in the sequence indicated by the
position on the horizontal axis. Lines through these points link them
sequentially. Actions on the vertical axis are ordered and indented to
correspond roughly to their place in the action-method hierarchy. Figure
9 shows one short browsing episode or about one 15th of the Browser
corpus. Peck and John (1992) showed a similar hand-drawn display.

Emergent features in this display reflect dynamic features of the model.
For example, in Figure 9, the small periodic cycles occur as the model
repeatedly reads the contents of a scrolling menu and scrolls the menu to
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Figure 8. SMT’s automatic alignment algorithm.

Using as a basis the alignment algorithm of Card, Moran, and A. Newell (1983, chap.
3), we developed the following algorithm for use in SMT, which extends theirs in four
ways:

Allowing equivalent symbols. By providing pairs of regular expressions, the user defines
equivalencies between the data and trace sequences, allowing different tokens in the
two sequences. Thus, “click” in the data can match “operator-click-button” in the trace.

Computing an actual sequence of forward matched pairs. Both algorithms start by creating a
matrix corresponding to String 1 along the top and String 2 along the side. A simple
walk across the matrix and comparison of the string elements corresponding to each
cell build up a measure of the maximum cumulative matches up to that cell (but not
what they are). The value of the last cell holds the length of the maximum common
subsequence. Our algorithm then walks across the matrix again, using the match
numbers to identify corresponding pairs.

Four patterns can appear in the matrix: (a) If the next symbols in the streams match
(now indicated by the cumulative'match values), then the walk moves diagonally,
adding a pair of matched tokens and their locations. A completely matching
subsequence thus corresponds to a diagonal path across the matrix; (b) if the next two
symbols are completely unmatchable, the algorithm moves diagonally, inserting two
pairs of tokens and blanks, indicating that these tokens are to be unaligned; (c & d) the
cumulative match cells may indicate that the longest match required is obtained by not
aligning elements in one of the streams —that is, moving vertically or horizontally to
find another matched pair. In this case, an element from a single trace is noted as
matching a blank. If one sequence is completely matched, then the remaining elements
in the other sequence are simply matched to “blank.”

Updating the spreadsheet. The user is first offered the opportunity to examine and modify
the pairs found by the algorithm. These correspondences and their locations are then
used to align the elements matched by the algorithm through shifting the metacolumns
in the spreadsheet.

Flexible modification. The matched sequence found by this algorithm depends on the
starcing location of its “walk” and its route through the matrix. Generally, starting at
the beginning — where the model and trace are most likely to match and the match will
be most stable —is a good heuristic. However, in the Browser corpus, there often is a
series of mouse movements that ultimately place the cursor over a menu item, with this
last movement the one that corresponded to the movement of the model. We modified
the algorithm so that it adjusts which of the several best subpaths it uses to include the
last matchable item of a series of equivalent items in the data sequence.

see more. These and larger cycles illustrate what Peck and John (1992)
called “routine” behavior—a constant cycling through actions and methods
that implement them, without interruption or search for alternatives.

Empirical Support for Model Structures. The model-support display
in Figure 9 uses the behavior of the model] as a backdrop for viewing the

support display showing model actions, organized by method, annotated with corresponding subject
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behavior of the subject and so assessing how well they correspond. Each
small, black square is a model action, and annotations indicate corre-
sponding elements in the protocol-each annotation reflecting a protocol-
model match in the alignment spreadsheet. Unmatched model actions
remain as unannotated dark squares, and unmatched protocol actions
appear in temporal sequence at the bottom of the graph.

As discussed by Ericsson and H. A. Simon (1993), Figure 9 shows that
most model actions are not matched by data. Verbal protocols are always
sparse compared to a process model. People do not report everything that
is part of their processing. In the Browser corpus, the use of motor actions
augments the data considerably, but the evidence for a model must still
rest on consistency between the model and those data points we have.

For the episode shown in Figure 9, two action groups (associated with
“double-click-on-item” and “focus-on-help-text”) receive strong support.
Protocol elements correspond to many or most of the model actions
implementing these methods. In contrast, the “access-item” method re-
ceives no direct support from these data. The only evidence for it is the
support for an action used to implement it, “double-click-on-help-text.”

Temporal Malch Between Model and Data. Sequential data, if they
includes timing information, allow testing of temporal predictions of a
process model. The SMT processing-rate graph (Figure 10) shows subject
time on the horizontal axis and model time on the vertical axis. Points on
the graph are protocol-trace pairs, with the symbol indicating the type of
element, as in Figure 9. Unmatched protocol actions again appear at the
bottom. Again we use one episode from the Browser corpus, but, because
the Browser model was never intended to make temporal predictions, this
post hoc analysis serves merely as an illustration of our techniques. Sakoe
and Chiba (1978) used similar displays to understand speech-recognition
models.

If the temporal predictions of the model were completely accurate, and
the model and subject are executing comparable processes, all the points
would lie on a straight line with intercept 0 and slope 1. Other patterns
indicate particular inconsistencies with the way the model fits the data.
Specifically:

L. A straight line with slope unequal to 1 indicates that the unit of
model time is different from the unit of protocol time-a suggestion to
recalibrate the times associated with basic processes in the model. Regions
with differing slopes indicate that different structures of the model may
each perform tasks with a time proportional to that of the subject, but the
“model time” units—the time associated with some basic processes—are
inconsistent between the structures.

Figure 70. Relative processing-rate display showing model versus subject effort.
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2. During nearly horizontal regions, the subject performs actions
slowly relative to the model. Perhaps the model performs the task in an
overly simple manner. The unmatched protocol elements might suggest
more realistic mechanisms for this subtask.

3. During nearly vertical regions, the subject performs actions rapidly
relative to the model. Perhaps the subject is acting automatically, whereas
the model executes more sequential steps. The model may need the ability
to perform these actions simply or directly, without using submethods.

4. A downward concave line suggests that the processing rate of the
model is decreasing relative to that of the subject, perhaps because the
subject was learning more than the model. An upward concave line
suggests the opposite.

5.5. Revising the Model (Task 4)

The function of model-assessment displays is less to demonstrate the
global adequacy of a model than to suggest ways in which the model might
misrepresent processes and thus might be improved. Although it is not
possible to specify an algorithm for assessing particular model deficits
indicated by a collection of results, we discuss at the end of the Section 5.4
how the processing-rate display might suggest model improvements. We
continue that list here, indicating how the various other SMT displays
might suggest model revisions.

5. Blank regions in the protocol metacolumn of the spreadsheet, and
many unmatched protocol actions in the summary displays, indicate
where and how the model is incomplete. The content and function of the
unmatched protocol material might guide expanding the model—suggest-
ing new actions, methods, or mental structures.

6. Long matched sequences with out-of-order substructures suggest
problems with the fine-control structure of the model or with the condi-
tions associated with major methods.

7. Unannotated methods in the model-support display suggest that the
model is doing too much. Methods could be removed or could have their
conditions specialized to avoid the problematic situations.

Pseudo-Revision. Because exploring model improvements is a central
task, SMT provides a “pseudo-revision” facility to test some implications
of model revision without recoding the model. Specifically, users can
delete (or add) tasks and methods and propagate these changes through
the summary displays as if they were produced by a running model. Thus,
simple changes can be assessed roughly but quickly. For example, in the
Browser corpus, we “removed” the intermediate Macintosh methods (e.g.,
“access-item”), implementing higher actions directly with mouse actions.
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Propagating these changes through the summary displays showed that the
density of the support increased in the model-support displays and that the
relative processing-rate display did not appreciably change. (However, B.
E. John, personal communication, interpreted these changes differently.)

5.6. Exploratory Data Analysis With TBPA: An Illustration

TBPA is an exploratory data analysis technique, and the SMT environ-
ment provides powerful tools for this exploration. When one applies such
tools, sometimes unexpected results appear. This is as it should be with
exploration. :

In the processing-rate graph (Figure 10), there are regions that have
a sawtooth appearance because the verbal utterances (V) are systemati-
cally lower (later) than the surrounding motor actions (circles). This
indicates that the subject’s utterances appear later than one would
expect from the surrounding motor actions. This difference raises the
question: How are verbal utterances generally related to their nearby
motor actions? (However, recall that the Browser model was not de-
signed to predict times. Therefore, the following discussion is purely an
exploration of our techniques and of possible implications from the
Browser corpus.)

One might expect that the answer relates to processing load—giving a
verbal protocol is essentially a secondary task. If processing load from the
primary task is high, then verbal utterances may be delayed, as with any
secondary task. If this view is correct, it could aid HCI designers in the
difficult task of assessing the processing load imposed by an interface
design by providing a more principled measure of task load.

In principle, a detailed process model could predict processing load by
direct assessment of the internal processing required. For example, if the
time allotted by the external environment is too short to perform the
necessary internal processing, a high processing load (or at least a sense of
stress) is likely to result. Alternatively, the model might process a lot of
information internally, without any way of storing intermediate results
externally. Both situations create high processing load and would predict
corresponding slowness to respond to a secondary task. (For efforts to
model processing load, see Gray et al., 1993; Olson & Olson, 1990; Payne
et al., 1992.) Even with a less detailed model, we can regard verbalization
as a secondary task and use the predictions of the model as a base from
which to measure verbalization delay. This may give us a continuous
picture of processing load through the course of the task. Alternatively,
lags that make no sense may indicate where to improve the model.

Examining these lags is also a way of testing Ericsson and H. A. Simon’s
(1993) assumption that verbalization order corresponds to the order in
which verbalization content enters working memory. If this assumption is
correct, most verbalizations will be current—that is, the structures they
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refer to should be in sequence with nearby motor actions or should follow
them closely.

We use task actions (A) as a “clock” with which to measure lags of
verbalizations (V) of matching model structures. Task actions, because
they are unambiguously matched, form a reliable baseline. If the align-
ment shows the sequence A1-V-A2 for both the model and the protocol,
then we define the verbalization V to have a lag of 0 (within the grain size
of the model). If, however, the model shows A1-V-A2-A3, and the
protocol shows A1-A2-A3-V (for Vs matched in content), then verbal
production is lagging behind other operations. We define lag in this case
as the model time of the preceding task action (A3) minus the model time
of V.

In the Browser corpus are 195 aligned verbal utterances. For 145 of
them, there is no lag—the verbalization occurred in sequence with task
actions. For 46 of the remaining 50, the lag was within 100 units of model
time, roughly 10 sec (A. Newell, 1990). One verbalization occurred earlier
than predicted, and 3 were significantly delayed (300 to 400 model cycles).
Upon further inspection, in each of these “delayed” verbalizations, the
subject was reviewing an earlier part of the search. Thus, these events seem
roughly consistent with the current model but suggest a review process the
current model does not include. Originally, two utterances occurred ear-
lier than their predicted time. One was a coding error. The second occurs
in a long menu-examination sequence. Study of the processing-rate dis-
play indicates that the model is slow compared to the subject. (The model
reads every item; the subject skims.) Thus, the baseline is probably too
slow, rather than the utterance being too far ahead.

Implications for Verbal Protocols. In the Browser corpus, all verbal
utterances were sequential with respect to other utterances, and most of
them (145 of 195) were in sequence with associated motor actions. This
supports Ericsson and H. A. Simon’s ( 1993) assumption that verbal proto-
cols reflect current working-memory content and are reported in the order
they enter working memory. The Soar architecture links model time to
human time (about 10 cycles/sec). This gives us a rough measure of the lag
of concurrent verbal protocol under minimal task demands—roughly 1 sec
(9 model cycles was the average lag). (However, recall that this exploration
is based on a model never intended to make time prediction.)

5.7. Expandability

SMT has been built with available, largely free tools in the Unix
environment. This allows a knowledgeable user to extend it to meet
specific needs (e.g., different architecture or different summary displays).
The Graphic Display was built with Garnet (Myers et al., 1990) and the

———— AN
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Soar5 interpreter (Laird, Congdon, Altmann, & Swedlow, 1990). The
Modified trace relies solely on the Soar interpreter. The Summary Dis-
plays were built with S (Becker, Chambers, & Wilks, 1988), using S-mode
(Bates, Kademan, Ritter, & D. Smith, 1990) within the GNU-Emacs editor
(Stallman, 1984). The model editors and the alignment spreadsheet are
also based on the GNU-Emacs editor.

6. CONCLUDING REMARKS

Process models characterize sequential data through an algorithm that
can replicate those data. The precision and dynamic information of such
models have much to offer, but the models have not been used as exten-
sively as one would expect given their benefits. The major reasons may be
that both the models and associated data are complex and voluminous, the
methodology for developing them has been ill-defined, and the .effort
involved in manipulating them can be overwhelming (especially without
good computational tools).

6.1. TBPA and Its Computational Support

We have explicated TBPA-a methodology for developing process
models to account for sequences of human behavior. In essence, the
methodology involves (a) building a computational mpdel capa.ble .of
producing a sequence of actions that can be compared with the actlons'm
a sequential data set, (b) aligning and matching the model output w.1th
data, (c) interpreting which mechanisms of the model succ?ed and which
fail in accounting for features of the data, and (d) using this mforl.ngtlon.to
revise and improve the model. Analyzing the requirements and difficulties
of each step contributed to the design of computational aids to make the
TBPA methodology both tractable and more informative. The require-
ments and difficulties for each step were noted in some detail so that they
could be supported computationally.

Using our specification of TBPA and a review of the software used to
perform some of its tasks, we identified the following needs: (a).cor‘nple-
mentary automation and user support, (b) interactive displays, with infor-
mation selected and spatially organized to facilitate users’ tasks,.(_c) support
within a single, highly linked environment, and (d) expandability by t!xe
user. These features appear to be important to many types of sequential
data analysis as well. .

Our prototype integrated environment, SMT, illustrates the following
functionalities, which we see as central to the best use of process models:
(a) representations of the model, including its static structure and t}}e
dynamic structures that emerge when the model executes, (b) automatic
and manual tools for interpreting sequential data and aligning th?m with
the predictions of the model, and (c) displays and measures indicating how
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functional structures of the model account for data. Applying this proto-
type to a model and corpus of data illustrate, as is to be discussed, how
good tools allow more extensive benefits from a process model. The
evolution of the environment is ongoing, as further models stretch its
capabilities (Ritter, 1994) and the underlying architecture (Soar) changes.

6.2. Benefits of Computationally Supported TBPA

Principled Analysis of User Behavior. Creating a process model re-
quires specifying knowledge sufficient to perform the task. This knowledge
specification can be used to measure task load, to explain why HCI
designs are successful (e.g., why a novice can easily use a particular help
system), and to ensure consistency and completeness in manuals as well as
in the interface itself. Once created, a process model can represent a
potential user at any time. Given a new interface or, more realistically, a
modification of an interface, the model should show what a user will do.
Other theories of interface use are approximations of this level of under-
standing. For example, design guidelines attempt to steer the design
toward interface designs that will produce useful patterns of behavior, but
they do not characterize actual behavior. Process models can make quan-
titative predictions (e.g., about time and knowledge-based errors in using
a particular interface). The processing-rate display can help develop mod-
els in this direction. The tentative measure of how long verbalizations
typically lag coordinated motor actions (about 1 sec) contributes to the
science of psychology as a foundation of HCI and demonstrates that
mouse and verbal actions can give a consistent picture of user activity.

Improved Communication. In both computer science and psychol-
ogy, it is difficult to formulate good model summaries that are both simple
enough to communicate and faithful to the important details. The SMT
displays have been popular in papers and presentations in the Soar com-
munity and in workshops introducing Soar models (Lehman et al., 1994).
This popularity seems to reflect the ability of the display to show the
dynamic behavior of the theoretical objects in the model. Similar dynamic
direct-manipulation displays should be useful in describing the structure of
any process model.

We illustrated the general utility of several types of summaries of
sequential behavior: (a) The model itself provides an active summary that
can both replicate human behavior and be analyzed or modified to suggest
behavior in new situations; (b) the degree of correspondences between
model actions and data actions in the alignment spreadsheet summarizes,
in a simple way, the quality of the model; and (c) graphic displays, such as
those we presented, both highlight visually the larger scale regularities in
human behavior (e.g., periodicity) and how they can characterize the

PROCESS MODELS AS SUMMARIES OF HCI ACTIONS 377

model-data match. The displays also illustrate where the model does well
(or poorly), so that one knows where to trust its predictions.

Time Savings and Its Implications. An obvious advantage of appro-
priate computational tools is that they save time. For example, we were
able to replicate the original analyses for each Browser episode in about
90 min, including creating both graphic displays. In contrast, the original
analysis (not including graphic displays) required at least 10 hr. A model
support graph requires about 6 hr with a drawing package or about 10 min
with SMT.

These savings go beyond merely getting the job done faster—they allow
a qualitative change in how one works with a model and data. When the
examination of one protocol episode requires a day or more, the analyst
becomes immersed in the details and loses track of general questions and
issues. Exploring an odd idea about the data is hardly an option if it
requires 3 weeks. Tools like SMT let analysts routinely examine how well
a model accounts for data and what changes might improve this account.
This approach brings to large amounts of sequential nonnumerical data
some of the ability to examine and explore the data that cell means and
sketched graphs provide for quantitative data. -

We hope that these ideas and illustrations will encourage additional
depth and rigor in use of sequential data and will allow wider use of
process models as action summaries. In the Browser case, for example, we
were readily able to examine all the data with all the tools and displays—
thus supporting stronger statements about how well the general features of
the model really characterize all the data.

More Complete and Varied Analysis. 'We were able to explore a vari-
ety of analyses and displays, selecting those that proved most informative.
In this environment, we illustrated the general utility of several types of
summaries of sequential behavior: (a) The model itself provides an active
summary that can both replicate human behavior and be analyzed or
modified to suggest behavior in new situations or used to predict behavior
with a changed interface; (b) the degree of correspondences between
model actions and data actions in the alignment spreadsheet summarizes,
in a simple way, the quality of the model; and (c) graphic displays, su-ch as
those we presented, both highlight visually the larger scale regularities in
the model-data match (e.g., periodicity) and indicate how well various
parts of the data are supported by data.

Opportunity to Explore. A small feature of one of our displays (the
jagged segments in the relative processing-rate displays) suggested new
implications of previously analyzed data. With good tools, we could
readily explore this possibility—arriving at an unexpected result on the
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processing load in the task—and test several theoretical statements about
verbal protocol data. Letting the data tell you things you never thought of
is a crucial part of science, particularly of ESDA, and has often been
obscured for process-model work by the inability to stand back and
sum}xlnzzlrize the sequential data and predictions that are at the heart of the
method.
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