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ABSTRACT:  We provide an update on dTank (Morgan et al., BRIMS 2005), a highly usable adversarial 
environment. It can be used for examining performance variability in situation awareness and architectural 
comparisons of competitive agents.  First, the new design and implementation details of the updated dTank 
environment are discussed.  In-progress models constructed with several cognitive and agent architectures (Java, 
Jess, and Soar) are then noted.  Next, in the moderated behavior section, we present preliminary analyses of 
embedded performance delays in reaction to battlefield environmental conditions. Noise factors and variability in 
delay length at the tank commander level lead to different battle outcomes. Finally, we note some changes that will 
be required for dTank to better model situation awareness.  Light-weight agent-construction environments such as 
dTank fill an important need for experimentation and prototyping tools that support quick scenario development and 
behavior implementations in a usable programming environment available to a wider user audience.  These types of 
modeling tools can both raise and answer critical questions concerning agents’ awareness of their surroundings 
and resulting behavior. 

1.  Introduction 

We present dTank as a highly usable construction tool 
for studying the effects of behavior variability in a 
simple simulated battlefield environment and for inter-
architectural comparison of models and agents.  In this 
report we examine how it can be used to study the 
effect of moderators and situation awareness on 
performance.  dTank, a Java-based tool, has been 
designed to present uniform capabilities to models, 
agents, and humans.  It uses socket communication 
methods to provide uniform connections to all models. 

First, we present the system design of dTank and 
discuss how this design facilitates parallel comparison 
of models, agents, and humans.  Second, we introduce 
several dTank models and agents built using different 

cognitive and agent architectures.  Third, we perform 
an example analysis, examining how variation in 
battalion performance influences measures such as 
destroyed and damaged tanks, and successful shots on 
target. Fourth, and finally, we conclude with a 
discussion of these comparisons, their implications, 
and future work with dTank. 

2.  dTank’s Design 

dTank was designed with two main criteria, that 
(a) multiple software models/agents should be able to 
use a universal interface for connection, and that 
(b) the human and software players should have 
parallel capabilities available to them.  There were 
several secondary criteria as well, including that the 
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system be interesting and easy to use, and that it logged 
the agents’ behavior for later analysis and playback.  

The design of dTank was inspired by Tank-Soar, a tank 
game developed by Mazin As-Sanie and included with 
Soar distributions. dTank provides very similar 
functionality, but its implementation has drifted away 
somewhat from Tank-Soar.  Most importantly, dTank 
was intended to provide a light-weight alternative to 
modeling programs such as ModSAF (Loral, 1995).  It 
starts to realize the idea of a Java-implemented 
synthetic environment that Elliman wrote about in a 
joint review of modeling projects for synthetic 
environments (Ritter, Shadbolt, Elliman, Young, 
Gobet, & Baxter, 2003).  dTank is available online at 
http://acs.ist.psu.edu/ projects/dTank/). 

2.1  Architecture and Interface 

dTank, version 4.0, is a physical world-based 
simulation environment for armored fighting vehicles 
(and other fighting units, all called platforms). The 
simulated battle is fought on a square grid map scaled 
0.5 to 10 kilometers (other dimensions are possible). 

dTank 4.0 is a major rewrite of dTank 3.0 (Morgan et 
al., 2005). This new version eliminates a vast amount 
of the complexity existing in the latter version, while 
providing a cleaner interface and an enormous increase 
in performance. In particular, dTank 4.0 includes a 
dozen WWII tank platforms (e.g., Sherman, Tiger, T-
34) that behave realistically.  Adding new platforms is 
relatively simple. Additionally, there are multiple 
terrain types, methods of computing vehicle damage, 
and behavior modes. 

dTank utilizes a client-server architecture and a socket-
based interface.  A server is started up as a Java 
program.  The server displays everything, and runs the 
simulation. When a tank commander connects to the 
server, it is given a tank on the battlefield, and can then 
send commands to move the tank.  The commanders 
are given updates every two seconds of what is visible 
to them on the battlefield.  This update rate was chosen 
because it is the estimated scan rate of Navy pilots 
determined by another study (Councill, Haynes, & 
Ritter, 2003), and emphasizes that perception is not 
instantaneous.   

The commanders receive information from the 
battlefield and then generate commands in the form of 
text-strings.  Converter files must be created on a per-
agent/architecture basis.  Currently commanders are 
available in Jess, Soar, and Java.   

The battlefield terrain consists of a wide range of 
features (e.g., grass, woods, roads). The features affect 

the exploding of fired shells and the movement speed 
and visual qualities.  

A battle is a time-limited action between two opposing 
battalions, called the Allies and the Axis.  Each side 
has a battalion commander, who is presumably the 
programmer of the tactical code.  In each battle, the 
battalion commanders are arbitrarily assigned to be 
either the Allies or the Axis.  The Axis is positioned on 
the west side of the battlefield with the Allies 
positioned on the east. 

Down one level from the battalion commander are the 
tank commanders. Tank commanders decide the tactics 
for their tanks.  A tank commander is an object that 
runs in its own thread or process. It receives 
information from the tank (operating condition, 
location, what is visible from the turret) and responds 
by sending commands back to the tank. The tank 
commander has no knowledge beyond the information 
gathered by the tank. To support studies examining 
teamwork, commanders can send radio messages to 
one another if the programmer wishes to model 
coordinated actions. 

The battalion configurations are typically declared in a 
configuration file including commander code, the types 
of tanks being commanded, and the number of tanks of 
that type. There is no limit on the type and number of 
tanks participating in a battle.  If a display of the 
battlefield is desired, a window can be created and 
updated in a separate thread in the server process. 
Individual commanders may also create their own 
windows and display anything they desire.  When the 
battle ends, statistics about the tanks (e.g., hits taken, 
hits scored, damage sustained, number of shells fired) 
are written to a results file.  

2.2 The Simulator 

The simulator advances the battle time by 0.1 to 10 
seconds on each clock tick. A clock tick is typically  
10-100 ms.  This gives a real-time delay in the main 
simulation loop that allows the tank commanders to run 
and the display to repaint. The simulator is strictly 
physical with no knowledge of displays or 
commanders. When projectiles are in the air, the 
seconds/cycle is decreased to enable visibility by 
human observers.  

2.3 The Tanks 

The tank types (platforms) have knowledge of their 
location, speed, heading, operational status, and 
ammunition remaining. Tanks do not have direct 
access to information about the environment or other 
tanks.  A Controller object communicates with the tank 
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commander who in turn tells the tank what to do (e.g., 
set the throttle to full, turn the turret).  Controllers run 
in their own threads and communicate to the server 
over a socket. A Mover object moves the tank. The 
Mover object is responsible for calculating new 
locations, actual speed, and collisions with other 
objects. 

2.4 The Displays 

The server display runs in a separate thread in the 
server process, with no interaction with the simulation 
system. The display system is solely for the human 
observer. 

2.5 Scanning the Environment 

Every two seconds, the tank’s Mover executes an 
environment scan sending the gathered information to 
its Controller. A typical scan includes only what a 
human in the turret (hatch down) can see and the 
human game display provides—tanks, rocks, hills, and 
explosions in an arc of 45 degrees around the turret 
heading.  Sight may optionally be reduced by haze and 
other environmental conditions.  Using the environ-
mental information, the tank commander decides what 
actions to take.  

2.6 The Adversaries 

The server cycles through a battle, running the battle to 
conclusion and writing out the results. The Controller 
may run in the same process as the server or may 
spawn a new process. In either case, it connects to the 
server via port 3500 and starts a thread to communicate 
with the server via a SocketCommunicator. 

Controller processes can run independently. If the 
Controller is written in Java, it may run in the server 
process. To spawn a new process automatically, a new 
RemoteCommander class is written that will spawn the 
new process. This is how commanders written in 
different languages are run.  

Figure 1 shows part of the interface that a human user 
sees when his dTank display has connected to a server. 
Figure 2 shows a more complete view including 
several tanks in the server window. 

Models can use the state-representation differently, 
either acting directly on information as it is made 
available, or building internal state-representations.  
Models then decide upon an action that affects the 
environment.  This action is sent to dTank in a 
formatted string held in a buffer for time-
synchronization purposes. 

Aside from state information, which is sent at regular 
intervals, software agents are also informed of 
important events, such as being hit, killed, and various 
types of damage.  This is to allow modelers some 
flexibility in the behaviors of models in difficult 
situations. 

 

Figure 1: A detailed view of dTank from the 
commander's interface 

 

Figure 2: View of the dTank server window 

3.  dTank Models 

In order to understand several different architectures, 
dTank models have been created in Java, Jess, CAST, 
and Soar. Work on ACT-R (Anderson, Bothell, Byrne, 
Douglass, Lebiere, & Qin, 2004) and CoJACK 
(Norling & Ritter, 2004; Ritter & Norling, 2006) 
models are in-progress.  Previous work has used dTank 
to compare Soar and CAST (Yen, Yin, Ioerger, Miller, 
Xu, & Volz, 2001) models to understand how and 
when to communicate (Sun, Council, Fan, Ritter, & 
Yen, 2004).  We note a few of them here being actively 
developed and included to illustrate this use of dTank. 
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Actions in dTank such as moving forward, turning, 
rotating the turret, and firing can be composed into 
strategies such as Wandering, Hunting, Chasing, 
Retreating, and Attacking that are broadly applicable to 
both models and humans.  The most common strategies 
employed by current dTank models are described next. 

Wandering is moving in a random or semi-random 
fashion across the battlefield while rotating the turret.  
This strategy initiates when no target is visible and 
terminates upon acquiring a target.  It is composed of a 
series of turret rotation, move-forward, and turn 
commands.  Retreating is moving away from a known 
target location.  It is composed of a series of turn and 
move-backward commands.  Attacking is a rapid series 
of commands that aim and fire the turret.  Usually this 
is composed of an alternating sequence of aim and fire 
commands until the enemy can no longer be seen or is 
destroyed.  This strategy initiates upon sight of an 
enemy tank and terminates when no enemy tank is 
visible. 

3.1 Built-in JavaTanks  

Several sample Java tank commanders are built into the 
dTank 4.0 distribution for use in tests and to populate 
the environment. These commanders parse the 
information messages from the tanks, and implement 
simple battlefield tactics. 

JavaTanks are capable of executing any of the 
strategies noted above. For example, the 
SmartCommander JavaTank wanders the battlefield in 
search of enemy tanks. When a target is detected the 
SmartCommander initiates an attack-like strategy by 
setting the tank heading and aiming the turret towards 
the target location. For firing purposes, the 
SmartCommander evaluates the distance between his 
tank and the target tank. If the SmartCommander is too 
far away from the target, no fire command is given, 
and if too close to the target, a retreat strategy is 
executed. The portion of the SmartCommander code 
shown below illustrates the use of target distance 
evaluation and the retreating action. 

if (distance < 200.0){ 
  writeDisplayMessage("Too close. Retreat!"); 
  retreating = true; 
  commanderCommunicator.setDesiredHeading 
    (afvModel.getHeading()); 
  commanderCommunicator.setThrottle(-.50); 
  continue; 
} else 
  commanderCommunicator.setThrottle(1.0); 
if (distance > 600.0){ 
  writeDisplayMessage("Too far to fire: " + 
  Utility.shorten(distance)); 
  continue; } 

 

In contrast to the SmartCommander, the 
DumbCommander does not scan the battlefield for 
information. Instead, the DumbCommander aimlessly 
wanders the battlefield firing random shots. 

3.2 Built-in JessTank 

Jess is a rule-based engine and scripting environment 
developed by Sandia National Laboratories (Friedman-
Hill, 2003).  Jess enables the development of software 
systems with reasoning capabilities developed using 
knowledge supplied in the form of declarative rules. In 
contrast to other agents such as Soar, Jess is light-
weight. Also, because of its powerful scripting 
language, Jess provides easy and direct access to a 
majority of Java API’s.  

Hooking Jess agents to dTank is relatively simple.  In 
most cases, it is as simple as assigning the class path to 
the Jess executable file. Once the class path is set, 
dTank can be connected to the Jess reasoning engine 
using standard import statements. The Jess engine uses 
the Rete algorithm (Forgy, 1982), and all references to 
Jess are through the set of Rete interfaces provided by 
Jess. Upon initializing Jess in the dTank environment, 
a common working memory is generated between the 
dTank environment and the Jess agent; from this point 
onwards all communications between the two is 
through this working memory. Jess interfaces support 
standardized storing and transmission between the 
agent and environment.  This is performed through the 
use of templates that represent facts in the 
environment. Fact templates can be defined either in 
the Jess agent or the dTank code. A sample definition 
of the tank template in dTank storing facts associated 
with the tank is: 

rete.executeCommand  
  ("(deftemplate tank (slot name) 
      (slot nationality)(slot distance) 
      (slot speed))") 

Each time the dTank environment is scanned, all 
environmental features are transmitted back to the 
common working memory and stored as facts in 
corresponding templates. The following code 
demonstrates the storage of the environment facts in 
the common working memory.  

String assertFact = "(assert  
  (tank " + " (name " + tankname + ")" +  
    "(nationality \"" + nationality + "\")" +  
    "(distance " + dist + ") " + 
    "(speed " + speed + ")" ; 
rete.executeCommand("(assertFact)"); 
 
Each addition of a fact triggers the Rete algorithm, 
which attempts to match rules with the new fact(s). 
Based on the matched rules, actions are specified for 
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the Jess commander.  Writing rules in Jess is based on 
a Lisp-like notation. For example, a strategy that fires 
on Axis tanks traveling at a speed greater than 50 mph:  

(defrule tankRule  
  (tank (name ?nm) (nationality “Axis”) 
    (distance ?dist)(speed ?spd&:(> ?spd 50))) 
 => (fire)) 

Similar rules can be created for any of the commander 
actions mentioned earlier, such as turning, forward 
movement, chasing, and rotating. Because of Jess’s 
compatibility with Java, Jess commands can be 
executed both from the Jess module or the main Java 
code. The major advantage of employing the Jess 
engine is the ease with which reasoning rules and a 
knowledge base of facts can be stored in a separate 
module without having to recompile the central dTank 
program. 

3.3 Built-in SoarTank  

Soar defines behavior as movement through a problem 
space; a high-level organizational tool that can be used 
to partition knowledge in goal-relevant ways (Lehman, 
Laird, & Rosenbloom, 1998).  A problem space 
consists of a goal, states, and operators, and is goal 
directed.  When a Soar model in unable to accomplish 
its current goal, an impasse is generated causing the 
model to enter a child problem space with the goal of 
resolving the impasse.   

In order to create a Soar dTank commander, Soar had 
to be hooked up to dTank using the Java to Soar API 
and the Soar Markup Language (SML).  The API 
makes it possible for Java applications to communicate 
with the Soar Kernel using SML to define the format of 
the messages exchanged.  Both the API and SML are 
available as part of the standard Soar distribution. 

The connection between Soar and dTank is initiated by 
creating a Soar Kernel and loading the Soar 
productions that define the commander’s behavior.  
These productions watch the input link for changes in 
the environment and respond by placing appropriate 
actions on the output link. 

During each decision cycle, dTank monitors the Soar 
output link for pending actions such as moving or 
rotating the turret.  If actions do exist, they are 
performed by the commander.  Next, dTank populates 
working memory with the current state of the 
environment (as it is seen by the commander) so that 
the Soar model can react to environmental changes.  
This cycle continues until the tank is destroyed or the 
user terminates the battle. 

The Soar commander demonstrates the Wander, 
Retreat, and Attack strategies described in section 3.  It 
was created using the Herbal high level behavior 
representation language (Cohen, Ritter, & Haynes, 
2005; Ritter et al., 2006).  These strategies are 
implemented using a top problem space and one for 
each of the operators: wander problem space, attack 
problem space, and retreat problem space. 

The goal of the Soar commander’s top problem space 
is to destroy all enemy tanks before its own tank is 
destroyed.  However, the top space relies heavily on 
the behavior provided by the wander, attack, and 
retreat sub goals.  As the Soar commander operates 
within the dTank environment, it continually switches 
between these problem spaces in order to respond to 
changes in the environment.  For example, if there is 
no enemy spotted and the commander’s tank is healthy, 
the commander enters the wander problem space with 
the goal of finding an enemy tank.  On the other hand, 
if the commander’s tank is damaged, it will enter the 
retreat problem space with the goal of avoiding enemy 
fire.  The relationships between these four problem 
spaces are shown in Figure 3. 

 
Figure 3: The problem space hierarchy for the 

Soar/dTank commander 

Each problem space in the Soar commander contains 
operators that help accomplish the main goal.  The top 
space acts as a controller—its operators detect 
environmental conditions that move the model into one 
of the remaining three problem spaces.  The wander, 
retreat, and attack problem spaces contain operators 
that carry out actions that generate wander, attack, or 
retreat behavior.  The operators in each problem space 
are shown in Figure 4.  

The Soar commander described here contains 33 
productions and serves as an excellent starting point for 
creating more complicated dTank commanders in Soar. 

 
Figure 4: The operators used by each problem 

space in the Soar/dTank commander 
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4.  Moderator-Influenced Behavior 

In many existing synthetic environments, the individual 
entities in the simulation execute the same task in the 
same way, ignoring differences between individuals, 
and even the variability of a given individual over time.  
Recent thinking recognizes the inherent variability of 
humans (i.e., differences in cognition and physiology 
from one individual to the next), and the necessity of 
modeling this to improve the realism of synthetic 
forces (e.g., Gluck, Gunzelmann, Gratch, Hudlicka, & 
Ritter, 2006; Hudlicka & Pfautz, 2002; Silverman, 
2004).  This variability, even after differences in 
knowledge are removed, arises both from individual 
differences, where different abilities can lead to 
marked differences in behavior, and also from behavior 
moderators—internal and external factors, typically 
related to time and environmental conditions, that 
moderate individual differences. 

Endsley (1988) defined Situation Awareness (SA) as 
“the perception of elements in the environment within 
a volume of time and space, the comprehension of their 
meaning and the projection of their status in the near 
future.”  Thus, the construct of SA suggests three levels 
(Matthews, Pleban, Endsley & Strater, 2000). Level 1 
involves the perception of the elements of a particular 
environment. Level 2 involves understanding what 
those elements mean. Level 3 requires the individual to 
translate the perception and understanding of the 
environment into a projection of future events likely to 
occur within that environment. 

To explore the effect of level 1 SA (the perception of 
elements in the environment) and to demonstrate how 
the effects of moderators on SA could be explored, a 
simple experiment was conducted using two dTank 
commanders derived from the SmartCommander 
described earlier. 

Tank commanders have the capability to gather 
information from the battlefield environment at 
specific time intervals. By varying the time delay 
between environmental scans, individual differences in 
perception and response time to battlefield events can 
be simulated.  For instance, an extended delay between 
information gathering tasks and action could mimic a 
fatigued or stressed commander. 

Four sets of dTank battles, 30 battles per set, were 
staged between two teams, four AlertCommanders 
versus four DullCommanders.  Starting positions, 
Allies and Axis, were alternated by battle to eliminate 
any initial positional advantage. A constant battle time 
limit of 1,000 seconds was used.  During the first set of 

battles a default environmental scan delay of one 
second was used. For the second set of battles, the 
environmental scan delay for the DullCommanders was 
increased to two seconds, while AlertCommanders’ 
delay remained at the default—one second. For the 
third set of battles the DullCommanders’ scanning 
delay was again extended by one second, totaling three 
seconds. During the last set of battles, the 
DullCommanders’ scanning delay was again increased 
by one, totaling four seconds.  

Figure 5 shows the number of destroyed tanks for the 
four sets of battles with increasing environmental 
scanning delays applied to the DullCommanders.  Solid 
lines with circle markers are the tanks under control of 
DullCommanders that have been destroyed during the 
battle. The dashed line with square markers indicates 
AlertCommanders’ destroyed tanks.  

The top plot of Figure 5, with no additional scanning 
delays, shows both DullCommanders and 
AlertCommanders nearly equal in battle wins based on 
the number of destroyed tanks. Across the 30 total 
battles, DullCommanders won 13 battles while 
AlertCommanders won 14 battles, and three battles 
were considered a tie with an equal number of tank 
losses per side. In the second plot of Figure 5 
DullCommanders have an additional delay of one 
second. In this case, AlertCommanders accumulated 
twice as many wins (16 battles) over DullCommanders 
(8 battles), however, the number of ties has doubled as 
well (6 ties). In the third plot, with DullCommanders 
scanning delayed two additional seconds, Alert-
Commanders’ performance dropped slightly to 13 
battle wins over DullCommanders’ 7 battle wins. In 
this case one third of the total battles are considered a 
tie in number of destroyed tanks (10 out of 30). The 
bottom plot in Figure 5 shows that with an additional 
three-second delay the DullCommanders are nearly 
obliterated with only two wins out of 30 battles. 
AlertCommanders accumulated 23 winning battles 
with 5 battles considered a tie. 

Table 1 presents a summary of winning battles—least 
number of destroyed tanks equals a win. In each battle 
set the length of the environmental scanning delay 
applied to each team is shown along with the 
corresponding wins and ties.  The figure and the table 
together show that the environment and current 
scenario are noisy, but that there are effects in the 
expected range, and that these effects are of an 
interesting size. 
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Figure 5: Number of destroyed tanks by delay type for Alert vs. DullCommander teams   

 

Table 1: Number of winning battles by team 

Battle 
Set (30) Team Additional 

Delay (s) Wins Ties 

Alert 0 14 1 

Dull 0 13 

3 

Alert 0 16 2 

Dull 1 8 

6 

Alert 0 13 3 

Dull 2 7 

10 

Alert 0 23 4 

Dull 3 2 

5 

 

Figure 6 displays the means for the number of tanks 
destroyed and damaged, and the number of successful 
shots fired on opposition’s tanks across each set of 30 
battles. In the top plot, when no additional scanning 

delays are applied (leftmost on the x-axis) the 
destruction is approximately equal—the markers 
overlap. Moving along the x-axis, with additional 
delays added to DullCommanders, the lines begin to 
separate into a downward trend for AlertCommanders’ 
destroyed tanks, while the DullCommanders’ means 
stay within the 2 to 3 destroyed tank range. The 
greatest difference in mean destroyed tanks appears at 
the rightmost point of the x-axis, with three seconds of 
delay added to the DullCommanders. 

Similarly, in the bottom plot of Figure 6, the mean 
number of successful shots fired per tank is tracked by 
increasing amounts of environmental scanning delay 
added to DullCommanders.  As expected, the 
theoretically equal initial no-delay state (leftmost x 
position) for both teams is nearly equal empirically. As 
the additional delays are added to the 
DullCommanders, their successful shots sharply 
decrease down to a mean of 2 shots. In contrast, 
AlertCommanders’ successful shots increase to a mean 
of 6.5 as they win more battles and the Dull-
Commanders become more passive in the environment.  
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Figure 6: Mean number of tanks destroyed, damaged, and successful 

shots by delay type per tank for Alert vs. DullCommander teams 

Despite the somewhat noisy simulation environment, 
there is an obvious effect of scanning delay on both the 
number of tanks destroyed and successful shots fired. 
The number of damaged DullCommander tanks goes 
down slightly at the end as they are being destroyed 
instead.  Besides scanning time, tank agents could react 
to the information gathered from the battlefield in 
many other ways, for example, implementing different 
tactical strategies or coordinating battalion behavior via 
radio messages. 

Although preliminary and small in scale this 
experiment, including code modifications to the tank 
commanders and executing all 120 battle runs, was 
completed in a relatively short period of time—
approximately two days by a graduate student not 
particularly familiar with the dTank modeling tool or 
Java. Clearly, this pace is an advantage over more 
complex synthetic environments for exploratory 
research and analysis. 

5.  Summary and Future Work with dTank  

This experiment shows that the dTank environment 
provides a useful testbed for concepts in this area.  
Tanks can be created that have at least simple situation 
awareness, and the effects of changes to SA can be 

modified with results appearing in performance.  
Modifying the situation awareness led to significant 
differences in performance, both anticipated and 
unanticipated.  The pace and rate of these changes 
(with delays of 1-3 seconds) is both a useful range and 
a psychologically plausible range.  More serious 
examinations of the effect of response time on situation 
awareness are possible.  dTank thus appears to be able 
to support studies on the role of behavioral moderators 
on performance through modifications to situation 
awareness.   

An additional use of dTank is as a training environment 
for cognitive modelers.  Non-expert level programmers 
find the environment friendly, interesting, and highly 
usable—it has been used by third year undergraduates 
at Penn State and Lock Haven Universities in AI and 
modeling classes.  dTank provides tools that support 
the analysis of scenarios and simulation data. 

dTank supports communication between dTank agents, 
making it possible to create and test theories of social 
processes such as teamwork.  It would also be possible 
to start to examine how teamwork and moderators and 
situation awareness interact and influence each other.  

Although dTank is a promising and useful modeling 
environment for behavior representation, there are 
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many opportunities for improvements.  A recent report 
by Sheppard and Baxter (2006) examining the effects 
of moderators on behavior suggest that simulations like 
dTank will have to pass more information to the 
agents.  For example, currently the effects of 
suppressive fire cannot be modeled because agents 
only know when they are hit, not when someone near 
them is hit and makes a noise, or when someone firing 
at them makes a noise.   
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