
In: Proceedings of the 16th Conference on Behavior Representation in Modeling and
Simulation. 51-60. 07-BRIMS-014. Orlando, FL: U. of Central Florida.

 1

dTank Updated: Exploring Moderated Behavior
in a Light-weight Synthetic Environment

Frank E. Ritter

Sue E. Kase
Damodar Bhandarkar

College of Information Sciences and Technology
The Pennsylvania State University

University Park, PA 16802
frank.ritter@psu.edu, skase@ist.psu.edu, dnb133@psu.edu

Bil Lewis

Computer Science Department, Tufts University
Medford, MA 02155

bil@cs.tufts.edu

Mark A. Cohen
Business Administration, Computer Science, and Information Technology

Lock Haven University
Lock Haven, PA 17745

mcohen@lhup.edu

Keywords: simulation environments, agent architectures, behavior moderators

ABSTRACT: We provide an update on dTank (Morgan et al., BRIMS 2005), a highly usable adversarial
environment. It can be used for examining performance variability in situation awareness and architectural
comparisons of competitive agents. First, the new design and implementation details of the updated dTank
environment are discussed. In-progress models constructed with several cognitive and agent architectures (Java,
Jess, and Soar) are then noted. Next, in the moderated behavior section, we present preliminary analyses of
embedded performance delays in reaction to battlefield environmental conditions. Noise factors and variability in
delay length at the tank commander level lead to different battle outcomes. Finally, we note some changes that will
be required for dTank to better model situation awareness. Light-weight agent-construction environments such as
dTank fill an important need for experimentation and prototyping tools that support quick scenario development and
behavior implementations in a usable programming environment available to a wider user audience. These types of
modeling tools can both raise and answer critical questions concerning agents’ awareness of their surroundings
and resulting behavior.

1. Introduction

We present dTank as a highly usable construction tool
for studying the effects of behavior variability in a
simple simulated battlefield environment and for inter-
architectural comparison of models and agents. In this
report we examine how it can be used to study the
effect of moderators and situation awareness on
performance. dTank, a Java-based tool, has been
designed to present uniform capabilities to models,
agents, and humans. It uses socket communication
methods to provide uniform connections to all models.

First, we present the system design of dTank and
discuss how this design facilitates parallel comparison
of models, agents, and humans. Second, we introduce
several dTank models and agents built using different

cognitive and agent architectures. Third, we perform
an example analysis, examining how variation in
battalion performance influences measures such as
destroyed and damaged tanks, and successful shots on
target. Fourth, and finally, we conclude with a
discussion of these comparisons, their implications,
and future work with dTank.

2. dTank’s Design

dTank was designed with two main criteria, that
(a) multiple software models/agents should be able to
use a universal interface for connection, and that
(b) the human and software players should have
parallel capabilities available to them. There were
several secondary criteria as well, including that the

2

system be interesting and easy to use, and that it logged
the agents’ behavior for later analysis and playback.

The design of dTank was inspired by Tank-Soar, a tank
game developed by Mazin As-Sanie and included with
Soar distributions. dTank provides very similar
functionality, but its implementation has drifted away
somewhat from Tank-Soar. Most importantly, dTank
was intended to provide a light-weight alternative to
modeling programs such as ModSAF (Loral, 1995). It
starts to realize the idea of a Java-implemented
synthetic environment that Elliman wrote about in a
joint review of modeling projects for synthetic
environments (Ritter, Shadbolt, Elliman, Young,
Gobet, & Baxter, 2003). dTank is available online at
http://acs.ist.psu.edu/ projects/dTank/).

2.1 Architecture and Interface

dTank, version 4.0, is a physical world-based
simulation environment for armored fighting vehicles
(and other fighting units, all called platforms). The
simulated battle is fought on a square grid map scaled
0.5 to 10 kilometers (other dimensions are possible).

dTank 4.0 is a major rewrite of dTank 3.0 (Morgan et
al., 2005). This new version eliminates a vast amount
of the complexity existing in the latter version, while
providing a cleaner interface and an enormous increase
in performance. In particular, dTank 4.0 includes a
dozen WWII tank platforms (e.g., Sherman, Tiger, T-
34) that behave realistically. Adding new platforms is
relatively simple. Additionally, there are multiple
terrain types, methods of computing vehicle damage,
and behavior modes.

dTank utilizes a client-server architecture and a socket-
based interface. A server is started up as a Java
program. The server displays everything, and runs the
simulation. When a tank commander connects to the
server, it is given a tank on the battlefield, and can then
send commands to move the tank. The commanders
are given updates every two seconds of what is visible
to them on the battlefield. This update rate was chosen
because it is the estimated scan rate of Navy pilots
determined by another study (Councill, Haynes, &
Ritter, 2003), and emphasizes that perception is not
instantaneous.

The commanders receive information from the
battlefield and then generate commands in the form of
text-strings. Converter files must be created on a per-
agent/architecture basis. Currently commanders are
available in Jess, Soar, and Java.

The battlefield terrain consists of a wide range of
features (e.g., grass, woods, roads). The features affect

the exploding of fired shells and the movement speed
and visual qualities.

A battle is a time-limited action between two opposing
battalions, called the Allies and the Axis. Each side
has a battalion commander, who is presumably the
programmer of the tactical code. In each battle, the
battalion commanders are arbitrarily assigned to be
either the Allies or the Axis. The Axis is positioned on
the west side of the battlefield with the Allies
positioned on the east.

Down one level from the battalion commander are the
tank commanders. Tank commanders decide the tactics
for their tanks. A tank commander is an object that
runs in its own thread or process. It receives
information from the tank (operating condition,
location, what is visible from the turret) and responds
by sending commands back to the tank. The tank
commander has no knowledge beyond the information
gathered by the tank. To support studies examining
teamwork, commanders can send radio messages to
one another if the programmer wishes to model
coordinated actions.

The battalion configurations are typically declared in a
configuration file including commander code, the types
of tanks being commanded, and the number of tanks of
that type. There is no limit on the type and number of
tanks participating in a battle. If a display of the
battlefield is desired, a window can be created and
updated in a separate thread in the server process.
Individual commanders may also create their own
windows and display anything they desire. When the
battle ends, statistics about the tanks (e.g., hits taken,
hits scored, damage sustained, number of shells fired)
are written to a results file.

2.2 The Simulator

The simulator advances the battle time by 0.1 to 10
seconds on each clock tick. A clock tick is typically
10-100 ms. This gives a real-time delay in the main
simulation loop that allows the tank commanders to run
and the display to repaint. The simulator is strictly
physical with no knowledge of displays or
commanders. When projectiles are in the air, the
seconds/cycle is decreased to enable visibility by
human observers.

2.3 The Tanks

The tank types (platforms) have knowledge of their
location, speed, heading, operational status, and
ammunition remaining. Tanks do not have direct
access to information about the environment or other
tanks. A Controller object communicates with the tank

3

commander who in turn tells the tank what to do (e.g.,
set the throttle to full, turn the turret). Controllers run
in their own threads and communicate to the server
over a socket. A Mover object moves the tank. The
Mover object is responsible for calculating new
locations, actual speed, and collisions with other
objects.

2.4 The Displays

The server display runs in a separate thread in the
server process, with no interaction with the simulation
system. The display system is solely for the human
observer.

2.5 Scanning the Environment

Every two seconds, the tank’s Mover executes an
environment scan sending the gathered information to
its Controller. A typical scan includes only what a
human in the turret (hatch down) can see and the
human game display provides—tanks, rocks, hills, and
explosions in an arc of 45 degrees around the turret
heading. Sight may optionally be reduced by haze and
other environmental conditions. Using the environ-
mental information, the tank commander decides what
actions to take.

2.6 The Adversaries

The server cycles through a battle, running the battle to
conclusion and writing out the results. The Controller
may run in the same process as the server or may
spawn a new process. In either case, it connects to the
server via port 3500 and starts a thread to communicate
with the server via a SocketCommunicator.

Controller processes can run independently. If the
Controller is written in Java, it may run in the server
process. To spawn a new process automatically, a new
RemoteCommander class is written that will spawn the
new process. This is how commanders written in
different languages are run.

Figure 1 shows part of the interface that a human user
sees when his dTank display has connected to a server.
Figure 2 shows a more complete view including
several tanks in the server window.

Models can use the state-representation differently,
either acting directly on information as it is made
available, or building internal state-representations.
Models then decide upon an action that affects the
environment. This action is sent to dTank in a
formatted string held in a buffer for time-
synchronization purposes.

Aside from state information, which is sent at regular
intervals, software agents are also informed of
important events, such as being hit, killed, and various
types of damage. This is to allow modelers some
flexibility in the behaviors of models in difficult
situations.

Figure 1: A detailed view of dTank from the
commander's interface

Figure 2: View of the dTank server window

3. dTank Models

In order to understand several different architectures,
dTank models have been created in Java, Jess, CAST,
and Soar. Work on ACT-R (Anderson, Bothell, Byrne,
Douglass, Lebiere, & Qin, 2004) and CoJACK
(Norling & Ritter, 2004; Ritter & Norling, 2006)
models are in-progress. Previous work has used dTank
to compare Soar and CAST (Yen, Yin, Ioerger, Miller,
Xu, & Volz, 2001) models to understand how and
when to communicate (Sun, Council, Fan, Ritter, &
Yen, 2004). We note a few of them here being actively
developed and included to illustrate this use of dTank.

4

Actions in dTank such as moving forward, turning,
rotating the turret, and firing can be composed into
strategies such as Wandering, Hunting, Chasing,
Retreating, and Attacking that are broadly applicable to
both models and humans. The most common strategies
employed by current dTank models are described next.

Wandering is moving in a random or semi-random
fashion across the battlefield while rotating the turret.
This strategy initiates when no target is visible and
terminates upon acquiring a target. It is composed of a
series of turret rotation, move-forward, and turn
commands. Retreating is moving away from a known
target location. It is composed of a series of turn and
move-backward commands. Attacking is a rapid series
of commands that aim and fire the turret. Usually this
is composed of an alternating sequence of aim and fire
commands until the enemy can no longer be seen or is
destroyed. This strategy initiates upon sight of an
enemy tank and terminates when no enemy tank is
visible.

3.1 Built-in JavaTanks

Several sample Java tank commanders are built into the
dTank 4.0 distribution for use in tests and to populate
the environment. These commanders parse the
information messages from the tanks, and implement
simple battlefield tactics.

JavaTanks are capable of executing any of the
strategies noted above. For example, the
SmartCommander JavaTank wanders the battlefield in
search of enemy tanks. When a target is detected the
SmartCommander initiates an attack-like strategy by
setting the tank heading and aiming the turret towards
the target location. For firing purposes, the
SmartCommander evaluates the distance between his
tank and the target tank. If the SmartCommander is too
far away from the target, no fire command is given,
and if too close to the target, a retreat strategy is
executed. The portion of the SmartCommander code
shown below illustrates the use of target distance
evaluation and the retreating action.

if (distance < 200.0){
 writeDisplayMessage("Too close. Retreat!");
 retreating = true;
 commanderCommunicator.setDesiredHeading
 (afvModel.getHeading());
 commanderCommunicator.setThrottle(-.50);
 continue;
} else
 commanderCommunicator.setThrottle(1.0);
if (distance > 600.0){
 writeDisplayMessage("Too far to fire: " +
 Utility.shorten(distance));
 continue; }

In contrast to the SmartCommander, the
DumbCommander does not scan the battlefield for
information. Instead, the DumbCommander aimlessly
wanders the battlefield firing random shots.

3.2 Built-in JessTank

Jess is a rule-based engine and scripting environment
developed by Sandia National Laboratories (Friedman-
Hill, 2003). Jess enables the development of software
systems with reasoning capabilities developed using
knowledge supplied in the form of declarative rules. In
contrast to other agents such as Soar, Jess is light-
weight. Also, because of its powerful scripting
language, Jess provides easy and direct access to a
majority of Java API’s.

Hooking Jess agents to dTank is relatively simple. In
most cases, it is as simple as assigning the class path to
the Jess executable file. Once the class path is set,
dTank can be connected to the Jess reasoning engine
using standard import statements. The Jess engine uses
the Rete algorithm (Forgy, 1982), and all references to
Jess are through the set of Rete interfaces provided by
Jess. Upon initializing Jess in the dTank environment,
a common working memory is generated between the
dTank environment and the Jess agent; from this point
onwards all communications between the two is
through this working memory. Jess interfaces support
standardized storing and transmission between the
agent and environment. This is performed through the
use of templates that represent facts in the
environment. Fact templates can be defined either in
the Jess agent or the dTank code. A sample definition
of the tank template in dTank storing facts associated
with the tank is:

rete.executeCommand
 ("(deftemplate tank (slot name)
 (slot nationality)(slot distance)
 (slot speed))")

Each time the dTank environment is scanned, all
environmental features are transmitted back to the
common working memory and stored as facts in
corresponding templates. The following code
demonstrates the storage of the environment facts in
the common working memory.

String assertFact = "(assert
 (tank " + " (name " + tankname + ")" +
 "(nationality \"" + nationality + "\")" +
 "(distance " + dist + ") " +
 "(speed " + speed + ")" ;
rete.executeCommand("(assertFact)");

Each addition of a fact triggers the Rete algorithm,
which attempts to match rules with the new fact(s).
Based on the matched rules, actions are specified for

5

the Jess commander. Writing rules in Jess is based on
a Lisp-like notation. For example, a strategy that fires
on Axis tanks traveling at a speed greater than 50 mph:

(defrule tankRule
 (tank (name ?nm) (nationality “Axis”)
 (distance ?dist)(speed ?spd&:(> ?spd 50)))
 => (fire))

Similar rules can be created for any of the commander
actions mentioned earlier, such as turning, forward
movement, chasing, and rotating. Because of Jess’s
compatibility with Java, Jess commands can be
executed both from the Jess module or the main Java
code. The major advantage of employing the Jess
engine is the ease with which reasoning rules and a
knowledge base of facts can be stored in a separate
module without having to recompile the central dTank
program.

3.3 Built-in SoarTank

Soar defines behavior as movement through a problem
space; a high-level organizational tool that can be used
to partition knowledge in goal-relevant ways (Lehman,
Laird, & Rosenbloom, 1998). A problem space
consists of a goal, states, and operators, and is goal
directed. When a Soar model in unable to accomplish
its current goal, an impasse is generated causing the
model to enter a child problem space with the goal of
resolving the impasse.

In order to create a Soar dTank commander, Soar had
to be hooked up to dTank using the Java to Soar API
and the Soar Markup Language (SML). The API
makes it possible for Java applications to communicate
with the Soar Kernel using SML to define the format of
the messages exchanged. Both the API and SML are
available as part of the standard Soar distribution.

The connection between Soar and dTank is initiated by
creating a Soar Kernel and loading the Soar
productions that define the commander’s behavior.
These productions watch the input link for changes in
the environment and respond by placing appropriate
actions on the output link.

During each decision cycle, dTank monitors the Soar
output link for pending actions such as moving or
rotating the turret. If actions do exist, they are
performed by the commander. Next, dTank populates
working memory with the current state of the
environment (as it is seen by the commander) so that
the Soar model can react to environmental changes.
This cycle continues until the tank is destroyed or the
user terminates the battle.

The Soar commander demonstrates the Wander,
Retreat, and Attack strategies described in section 3. It
was created using the Herbal high level behavior
representation language (Cohen, Ritter, & Haynes,
2005; Ritter et al., 2006). These strategies are
implemented using a top problem space and one for
each of the operators: wander problem space, attack
problem space, and retreat problem space.

The goal of the Soar commander’s top problem space
is to destroy all enemy tanks before its own tank is
destroyed. However, the top space relies heavily on
the behavior provided by the wander, attack, and
retreat sub goals. As the Soar commander operates
within the dTank environment, it continually switches
between these problem spaces in order to respond to
changes in the environment. For example, if there is
no enemy spotted and the commander’s tank is healthy,
the commander enters the wander problem space with
the goal of finding an enemy tank. On the other hand,
if the commander’s tank is damaged, it will enter the
retreat problem space with the goal of avoiding enemy
fire. The relationships between these four problem
spaces are shown in Figure 3.

Figure 3: The problem space hierarchy for the

Soar/dTank commander

Each problem space in the Soar commander contains
operators that help accomplish the main goal. The top
space acts as a controller—its operators detect
environmental conditions that move the model into one
of the remaining three problem spaces. The wander,
retreat, and attack problem spaces contain operators
that carry out actions that generate wander, attack, or
retreat behavior. The operators in each problem space
are shown in Figure 4.

The Soar commander described here contains 33
productions and serves as an excellent starting point for
creating more complicated dTank commanders in Soar.

Figure 4: The operators used by each problem

space in the Soar/dTank commander

6

4. Moderator-Influenced Behavior

In many existing synthetic environments, the individual
entities in the simulation execute the same task in the
same way, ignoring differences between individuals,
and even the variability of a given individual over time.
Recent thinking recognizes the inherent variability of
humans (i.e., differences in cognition and physiology
from one individual to the next), and the necessity of
modeling this to improve the realism of synthetic
forces (e.g., Gluck, Gunzelmann, Gratch, Hudlicka, &
Ritter, 2006; Hudlicka & Pfautz, 2002; Silverman,
2004). This variability, even after differences in
knowledge are removed, arises both from individual
differences, where different abilities can lead to
marked differences in behavior, and also from behavior
moderators—internal and external factors, typically
related to time and environmental conditions, that
moderate individual differences.

Endsley (1988) defined Situation Awareness (SA) as
“the perception of elements in the environment within
a volume of time and space, the comprehension of their
meaning and the projection of their status in the near
future.” Thus, the construct of SA suggests three levels
(Matthews, Pleban, Endsley & Strater, 2000). Level 1
involves the perception of the elements of a particular
environment. Level 2 involves understanding what
those elements mean. Level 3 requires the individual to
translate the perception and understanding of the
environment into a projection of future events likely to
occur within that environment.

To explore the effect of level 1 SA (the perception of
elements in the environment) and to demonstrate how
the effects of moderators on SA could be explored, a
simple experiment was conducted using two dTank
commanders derived from the SmartCommander
described earlier.

Tank commanders have the capability to gather
information from the battlefield environment at
specific time intervals. By varying the time delay
between environmental scans, individual differences in
perception and response time to battlefield events can
be simulated. For instance, an extended delay between
information gathering tasks and action could mimic a
fatigued or stressed commander.

Four sets of dTank battles, 30 battles per set, were
staged between two teams, four AlertCommanders
versus four DullCommanders. Starting positions,
Allies and Axis, were alternated by battle to eliminate
any initial positional advantage. A constant battle time
limit of 1,000 seconds was used. During the first set of

battles a default environmental scan delay of one
second was used. For the second set of battles, the
environmental scan delay for the DullCommanders was
increased to two seconds, while AlertCommanders’
delay remained at the default—one second. For the
third set of battles the DullCommanders’ scanning
delay was again extended by one second, totaling three
seconds. During the last set of battles, the
DullCommanders’ scanning delay was again increased
by one, totaling four seconds.

Figure 5 shows the number of destroyed tanks for the
four sets of battles with increasing environmental
scanning delays applied to the DullCommanders. Solid
lines with circle markers are the tanks under control of
DullCommanders that have been destroyed during the
battle. The dashed line with square markers indicates
AlertCommanders’ destroyed tanks.

The top plot of Figure 5, with no additional scanning
delays, shows both DullCommanders and
AlertCommanders nearly equal in battle wins based on
the number of destroyed tanks. Across the 30 total
battles, DullCommanders won 13 battles while
AlertCommanders won 14 battles, and three battles
were considered a tie with an equal number of tank
losses per side. In the second plot of Figure 5
DullCommanders have an additional delay of one
second. In this case, AlertCommanders accumulated
twice as many wins (16 battles) over DullCommanders
(8 battles), however, the number of ties has doubled as
well (6 ties). In the third plot, with DullCommanders
scanning delayed two additional seconds, Alert-
Commanders’ performance dropped slightly to 13
battle wins over DullCommanders’ 7 battle wins. In
this case one third of the total battles are considered a
tie in number of destroyed tanks (10 out of 30). The
bottom plot in Figure 5 shows that with an additional
three-second delay the DullCommanders are nearly
obliterated with only two wins out of 30 battles.
AlertCommanders accumulated 23 winning battles
with 5 battles considered a tie.

Table 1 presents a summary of winning battles—least
number of destroyed tanks equals a win. In each battle
set the length of the environmental scanning delay
applied to each team is shown along with the
corresponding wins and ties. The figure and the table
together show that the environment and current
scenario are noisy, but that there are effects in the
expected range, and that these effects are of an
interesting size.

7

Figure 5: Number of destroyed tanks by delay type for Alert vs. DullCommander teams

Table 1: Number of winning battles by team

Battle
Set (30) Team Additional

Delay (s) Wins Ties

Alert 0 14 1

Dull 0 13

3

Alert 0 16 2

Dull 1 8

6

Alert 0 13 3

Dull 2 7

10

Alert 0 23 4

Dull 3 2

5

Figure 6 displays the means for the number of tanks
destroyed and damaged, and the number of successful
shots fired on opposition’s tanks across each set of 30
battles. In the top plot, when no additional scanning

delays are applied (leftmost on the x-axis) the
destruction is approximately equal—the markers
overlap. Moving along the x-axis, with additional
delays added to DullCommanders, the lines begin to
separate into a downward trend for AlertCommanders’
destroyed tanks, while the DullCommanders’ means
stay within the 2 to 3 destroyed tank range. The
greatest difference in mean destroyed tanks appears at
the rightmost point of the x-axis, with three seconds of
delay added to the DullCommanders.

Similarly, in the bottom plot of Figure 6, the mean
number of successful shots fired per tank is tracked by
increasing amounts of environmental scanning delay
added to DullCommanders. As expected, the
theoretically equal initial no-delay state (leftmost x
position) for both teams is nearly equal empirically. As
the additional delays are added to the
DullCommanders, their successful shots sharply
decrease down to a mean of 2 shots. In contrast,
AlertCommanders’ successful shots increase to a mean
of 6.5 as they win more battles and the Dull-
Commanders become more passive in the environment.

8

Figure 6: Mean number of tanks destroyed, damaged, and successful

shots by delay type per tank for Alert vs. DullCommander teams

Despite the somewhat noisy simulation environment,
there is an obvious effect of scanning delay on both the
number of tanks destroyed and successful shots fired.
The number of damaged DullCommander tanks goes
down slightly at the end as they are being destroyed
instead. Besides scanning time, tank agents could react
to the information gathered from the battlefield in
many other ways, for example, implementing different
tactical strategies or coordinating battalion behavior via
radio messages.

Although preliminary and small in scale this
experiment, including code modifications to the tank
commanders and executing all 120 battle runs, was
completed in a relatively short period of time—
approximately two days by a graduate student not
particularly familiar with the dTank modeling tool or
Java. Clearly, this pace is an advantage over more
complex synthetic environments for exploratory
research and analysis.

5. Summary and Future Work with dTank

This experiment shows that the dTank environment
provides a useful testbed for concepts in this area.
Tanks can be created that have at least simple situation
awareness, and the effects of changes to SA can be

modified with results appearing in performance.
Modifying the situation awareness led to significant
differences in performance, both anticipated and
unanticipated. The pace and rate of these changes
(with delays of 1-3 seconds) is both a useful range and
a psychologically plausible range. More serious
examinations of the effect of response time on situation
awareness are possible. dTank thus appears to be able
to support studies on the role of behavioral moderators
on performance through modifications to situation
awareness.

An additional use of dTank is as a training environment
for cognitive modelers. Non-expert level programmers
find the environment friendly, interesting, and highly
usable—it has been used by third year undergraduates
at Penn State and Lock Haven Universities in AI and
modeling classes. dTank provides tools that support
the analysis of scenarios and simulation data.

dTank supports communication between dTank agents,
making it possible to create and test theories of social
processes such as teamwork. It would also be possible
to start to examine how teamwork and moderators and
situation awareness interact and influence each other.

Although dTank is a promising and useful modeling
environment for behavior representation, there are

9

many opportunities for improvements. A recent report
by Sheppard and Baxter (2006) examining the effects
of moderators on behavior suggest that simulations like
dTank will have to pass more information to the
agents. For example, currently the effects of
suppressive fire cannot be modeled because agents
only know when they are hit, not when someone near
them is hit and makes a noise, or when someone firing
at them makes a noise.

6. Acknowledgements

The development of this software was supported by
ONR (contract N00014-06-1-0164). This work was
also supported by the UK MOD's Analysis,
Experimentation and Simulation corporate research
programme (Project No: RT/COM/3/006). Comments
from Harold Hawkins and Colin Sheppard have
influenced this work; comments from three anonymous
reviewers have improved this presentation of it.

7. References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass,
S., Lebiere, C., & Qin, Y. (2004). An integrated
theory of the mind. Psychological Review, 111(4),
1036-1060.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005).
Herbal: A high-level language and development
environment for developing cognitive models in
Soar. In Proceedings of the 14th Conference on
Behavior Representation in Modeling and
Simulation, 133-140. 105-BRIMS-043. Orlando,
FL: U. of Central Florida.

Councill, I. G., Haynes, S. R., & Ritter, F. E. (2003).
Explaining Soar: Analysis of existing tools and user
information requirements. In Proceedings of the
Fifth International Conference on Cognitive
Modeling, 63-68. Bamberg, Germany.

Endsley, M. R. (1988). Design and evaluation for
situation awareness enhancement. In Proceedings of
the Human Factors Society 32nd Annual Meeting,
97-101. Santa Monica, CA.

Forgy, C. L. (1982). Rete: A fast algorithm for the
many pattern/many object pattern match problem.
Artificial Intelligence, 19, 17-37.

Friedman-Hill, E. (2003). JESS in action. Greenwich,
CT: Manning Publications.

Gluck, K. A., Gunzelmann, G., Gratch, J., Hudlicka,
E., & Ritter, F. E. (2006). Modeling the impact of
cognitive moderators on human cognition and
performance. In Proceedings of the 2006
Conference of the Cognitive Science Society, 2658.
Mahwah, NJ: Erlbaum.

Hudlicka, E., & Pfautz, J. (2002). Architecture and
representation requirements for modeling effects of

behavior moderators. In Proceedings of the
Eleventh Conference on Computer Generated
Forces and Behavioral Representation, 9-20. 02-
CGF-085. Orlando, FL: Division of Continuing
Education, University of Central Florida.

Lehman, J. F., Laird, J. E., & Rosenbloom, P. S.
(1998). A gentle introduction to Soar: An
architecture for human cognition. An invitation to
cognitive science. D. Scarborough & S. Sternberg
(eds.). Cambridge, MA: MIT Press.

Loral. (1995). ModSAF software architecture design
and overview document (SADOD) (No. Report
ADST/WDL/TR--95--W003339B). Orlando, FL:
Prepared for U.S. Army Simulation, Training and
Instrumentation Command (STRICOM).

Matthews, M. D., Pleban, R. J., Endsley, M. R., &
Strater, L. D. (2000). Measures of infantry situation
awareness for a virtual MOUT environment. In
Proceedings of the Human Performance, Situation
Awareness and Automation: User Centered Design
for the New Millennium Conference.

Morgan, G. P., Ritter, F. E., Stevenson, W. E.,
Schenck, I. N., & Cohen, M. A. (2005). dTank: An
environment for architectural comparisons of
competitive agents. In Proceedings of the 14th
Conference on Behavior Representation in
Modeling and Simulation, 133-140. 105-BRIMS-
044. Orlando, FL.

Norling, E., & Ritter, F. E. (2004). A parameter set to
support psychologically plausible variability in
agent-based human modelling. In The Third
International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS04), 758-
765. New York, NY.

Ritter, F. E., Haynes, S. R., Cohen, M., Howes, A.,
John, B., Best, B., Lebiere, C., Jones, R. M.,
Crossman, J., Lewis, R. L., St. Amant, R., McBride,
S. P., Urbas, L., Leuchter, S., & Vera, A. (2006).
High-level behavior representation languages
revisited. In Proceedings of ICCM - 2006- Seventh
International Conference on Cognitive Modeling.,
404-407. Trieste, Italy: Edizioni Goliardiche.

Ritter, F. E., & Norling, E. (2006). Including human
variability in a cognitive architecture to improve
team simulation. In R. Sun (Ed.), Cognition and
multi-agent interaction: From cognitive modeling
to social simulation (pp. 417-427). Cambridge,
UK: Cambridge University Press.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R.
M., Gobet, F., & Baxter, G. D. (2003). Techniques
for modeling human performance in synthetic
environments: A supplementary review. Wright-
Patterson Air Force Base, OH: Human Systems
Information Analysis Center (HSIAC).

Sheppard, T., & Baxter, J. (2006). The Suitability of
CoJACK for Modelling the Effects of Suppressive

10

Fire (No. RT/COM/3/006/2, Task 5, initial report):
QinetiQ, Farnborough.

Silverman, B. G. (2004). Human performance
simulation. In J. W. Ness, D. R. Ritzer & V. Tepe
(Eds.), The science and simulation of human
performance (pp. 469-498). Amsterdam: Elsevier.

Sun, S., Councill, I. G., Fan, X., Ritter, F. E., & Yen, J.
(2004). Comparing teamwork modeling in an
empirical approach. In Proceedings of the Sixth
International Conference on Cognitive Modeling,
388-389. Mahwah, NJ: Erlbaum.

Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D., &
Volz, R. A. (2001). CAST: Collaborative agents for
simulating teamwork. In Proceedings of the
Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI-01), 1135-1142. Los
Altos, CA: Morgan Kaufmann.

Author Biographies

FRANK RITTER helped found the College of
Information Sciences and Technology (IST), an
interdisciplinary academic unit at Penn State
University, to study how people process information
using technology. He works on the development,
application, and methodology of cognitive models,
particularly as applied to interfaces and emotions. He is
an editorial board member of Human Factors and AISB
Journal.

SUE KASE is a research assistant in the Applied
Cognitive Science Lab, College of IST. Her research
involves implementing behavioral moderators in

cognitive architectures and models of teams. Her Ph.D.
thesis utilizes cognitive architectures and parallel
genetic algorithms in high-performance computing
environments to fit human behavior models of
arithmetic performance under stressful conditions.

BIL LEWIS teaches Computer Science at Tufts
University and does research on Electronic Voting at
the MIT Media Lab. His primary work is in debugging
backwards in time. (He is the creator of the
Omniscient Debugger, www.lambdacs.com/debugger/
debugger.html.) He is author of three books on
multithreaded programming along with the GNU
Emacs Lisp Manual.

DAMODAR BHANDARKAR is a research assistant
in the Applied Cognitive Science Lab, College of IST.
He is currently completing his Ph.D. in Industrial
Engineering, with a focus in Human Factors. His
current research involves modeling human
performance in complex environments. He helps
maintain dTank and the dTank API's, and creates
models in various architectures to work with dTank.

MARK COHEN is an assistant professor in the
Business Administration, CS and IT Department at
Lock Haven University, and a graduate student
associated with the Applied Cognitive Science Lab in
the College of IST at Penn State. His current research
efforts include developing software that simplifies the
creation and maintenance of cognitive models.

