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Novice and expert perspectives. The peculiar difficulties of needing
to satisfy both novices (students) and experts (trainers) requires that
ITS have multiple levels of representation for both structural and
functional components. Part of the enormous load of individualizing
instruction and of developing elaborate student models can be
supported by varying viewpoints on the knowledge representation
schemes and by varying the level of abstraction and the grain of this
knowledge representation. Thus an expert may want only a top-level
overview of the system for some purposes and a very detailed, elaborate
view of components for other purposes. A novice might well be
overwhelmed by too much detail in the beginning and needs a
graduated system of perspectives to lead into the complexities.

Qualitative representations. Qualitative simulations provide
convenient vehicles for creating systems with both meaningful
structural and functional components. Instead of a textual description
of terminology and its interrelationships, the structure is described
visually. Functional relations can also be described by using animation,
color, arrows, and textual descriptions. However, visual descriptions
of both structure and function are notoriously concrete: It is difficult
to obtain the right level of abstraction without the use of conceptual
descriptions in a textual and hierarchical form. Furthermore, it is
difficult to create visual descriptions at different levels of abstractions
in a truly hierarchical format. Functional and structural relations must
be compressed or eliminated in arbitrary ways that defy accurate
concrete representations. So, it is only when conceptual (textual) and
concrete (visual) representations complement each other that
adequately faithful models can be created.
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TEACHING THINKING IN REAL-TIME

Virtually all Al system development to date has concerned tasks that
do not involve real-time decisions in time-critical situations. Medical
diagnosis, electronic troubleshooting, geological exploration, and
computer systems configuration are representative of the kinds of task
domains addressed in Al applications. In these kinds of tasks, the
world within which the task is carried out (the task environment)
does not significantly change while the user contemplates his next
action. The user has essentially unlimited time between successive
“moves.” The Al system also benefits by having a great deal of time
to process the user’s inputs and make informed responses.

It is not surprising that considerably less Al development has
been done in domains where interactions are complicated by the
intrinsic need for real-time processing and response on the part of
the system and its users. There is an important class of military tasks,
those involving strategic or tactical decision-making in rapidly
changing environments, in which real-time operations are essential,
for example, air traffic control or radar intercept operations. Al systems
for real-time operational tasks, for example, the pilot’s associate, are
only beginning to be developed. The Al methods and the instructional
principles relevant to the design of the related Intelligent Computer

!This work was performed while the author was at BBN Laboratories. He is
currently with the Department of Psychology, Carnegie Mellon.
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Aided Instruction (ICAI) systems for real-time training are beginning
to emerge from current work in progress.

The problems of instructional design for ICAI applications to
real-time tactical decision-making tasks are significantly different from
those involved in complex systems maintenance and troubleshooting
tasks. The knowledge acquisition problem is more complicated for
real-time tasks. Expert performers tend to “compile” their knowledge
to enable efficient and rapid execution. They cannot explicitly or
precisely describe how they do what they do. The development of
indirect knowledge acquisition methods to characterize expert
performance is essential here.

Similarly, the problem of diagnosing student errors and
performance behaviors is severely exacerbated by real-time constraints.
Diagnostic methods like those used in QUEST (Feurzeig & Ritter,
chapter 15, this volume), where the student is queried for his or her
reasons and hypotheses, can be very useful. However, in a real-time
task, it is not possible to stop the world and interrupt the student
to elicit the reasons for his or her actions in the way shown in QUEST.

The diagnosis of real-time performance, particularly in rapidly
changing tactical decision-making tasks, has to be carried out after
task completion. Even if the student’s performance can be analyzed
in real-time, it is not usually possible to engage the student until
his or her problem-solving session is over. The system can then replay
the student’s recorded run in a debriefing session, critiquing his or
her task performance along the way. Real-time tasks call for distinctly
different methods, such as those being investigated currently in a system
called TRIO, described in the subsection that follows.

AN OVERVIEW OF TRIO

TRIO (Trainer for Radar Intercept Officers) is an expert instructional
system for training F-14 interceptor pilots and radar officers in dynamic
spatial reasoning and the basic tactics of high-speed air intercepts
(Feurzeig, Ash, & Ricard, 1984). As of the fall of 1987, it is in place
at Pensecola N.A.S., and is undergoing advanced test. The TRIO task
environment supports simulations of airborne radars, interceptor and
target aircraft operations, and weapons models. It provides dynamic
displays of heading, bearing and displacement vectors, radar screens,
flight instruments, intercept parameters, radar and missile envelopes,
and interceptor and target aircraft ground tracks. It incorporates real-
time speech recognition and synthesis subsystems including advanced
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capabilities for recognition of naturally articulated utterances from
an extensive lexicon. TRIO supports three instructional modes: (a)
demonstrations by the TRIO expert program, (b) student practice with
optional guidance, and (c) performance analysis and student debriefing
following student practice.

The Radar Intercept Task

The F-14’s primary mission is air defense of the carrier. This is carried
out by intercepting approaching hostile aircraft (bogeys) as directed
by the carrier. Because the speeds are so great and the missile envelopes
so small, there is little margin for error. The intercept has to be right
the first time.

The RIO (Radar Intercept Officer) interprets the radar displays
and other flight instruments from the back seat of the F-14. He verbally
directs the pilot based on his electronic (radar) view of the world until
the pilot has visual contact with the bogey. Only after visual contact
has been established does the pilot take command.

TRIO trains proficiency in a standard intercept tactic called a
gouge. In the typical gouge, the RIO auempts to get off three
coordinated missile shots: a long- and a medium-range forward-quarter
missile shot, and a rear-quarter missile shot, ending up behind the
nonmaneuvering bogey. To maximize performance, the student takes
all three shots as if none of them were successful. Even though the
bogey may not deviate from its straight flight path, the situation
geometry is constantly changing. Each position requires a different
set of maneuvers for successful positioning, culminating in a series
of very precise turns to maneuver into a position behind the bogey.

The conceptual intercept space, shown in Figure 10.1, classifies
each airplane position in three dimensions: (a) Lateral Separation:
the distance between the fighter’s and the bogey’s flight path—along
with the F-14’s turning radius, this determines whether the fighter
has room to turn in behind the bogey; (b) Range: the distance between
the two planes—each missile has an optimum firing range; and (c)
TargFt Aspect: this angle between the fighter bearing and the bogey’s
heading—in the gouge, this angle is optimized to provide the least
radar. cross-section to the bogey, while enabling the interceptor to
stay in front of the bogey and to get a good radar picture of it. The
RIO must also adjust his airspeed and altitude to gain the maximum
advantage in intercept performance over the bogey. Finally, the RIO
must maneuver the plane 10 achieve optimal missile shot parameters.
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As Figure 10.1 indicates, the missile envelopes and maneuvering space
decrease as the intercept unfolds and the plane approaches the bogey.
Student RIOs tend to have difficulty with the central aspect of
intercept work, that is, spatial mapping from a two-dimensional radar
screen to the three-dimensional world. The radar screen shows the
motion of the bogey and other objects relative to the interceptor symbol,
not the more familiar bird’s-eye view. The coordinate mapping requires
students to use dimensions on the radar screens that are orthogonal
to their real-world axis, or to use translations that compare different
units. (For example, up and down, the Z dimension on both radars,
is range in the X-Y plane. The lateral, or X dimension, on the DDD
(Detailed Data Display) is not a measurement of displacement, but
of angular offset in degrees.) To gain a real understanding of the
radar screens requires the development of dynamic spatial reasoning
skills as well as considerable practice. The acquisition and assimilation
of these skills is further complicated by the need to employ them
while under stress in the rapidly changing air battle environment.

TRIO Radar Displays and Flight instruments

Figure 10.2 shows the instruments on TRIO'’s control panel. In the
top left is an altitude readout in feet—in our example, 20,000. Next
to that is an airspeed indicator reading .6 mach. Beneath both of them
is the compass. '

The window in the top center position is the DDD. It is an image
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FIGURE 10.2 The student's situation displays.

of the raw analog radar data. The more easily read Tactical Information
Display (TID) is the large round window taking up the bottom two-
thirds of the display, beneath the DDD.

The TID displays the bogey’s position relative to the fighter, and
several flight constants in digital form. The fighter's position is
represented by the circle on the bottom with a line pointing straight
up it. This line represents the fighter's velocity vector. Because the
fighter is always moving forward with respect to itself, this vector
always points in the same direction. The thin dashed line from the
fighter to the upside-down box is the antenna train angle (ATA)
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between the fighter and the bogey. Each dash is 20 miles—this makes
range estimation easy. '

The bogey is represented by the open-box symbol with a vector
pointing in the direction of the bogey’s flight. In Figure 10.2 the
bogey is headed across the fighter’s flight path. The closing velocity
is 613 knots, which is displayed on the right side midway down the
TID. The closure velocity can also be estimated from the vector lengths.
The heavy horizontal bar is the artificial horizon. A circle appears
when a missile is selected, indicating the allowable firing parameters
for that type of missile. The missile steering dot, visible in the circle,
indicates the current firing parameters. When the dot is inside the
circle, the missile is correctly positioned for firing. In addition to
the circle, the two-letter abbreviation for the missile and the number
of those missiles on board are displayed on the lower right side; our
example screen shows that a Sparrow missile is selected, with one
remaining.

The two-letter combinations on the top of the TID are abbreviated
names for the flight parameters displayed to their right. RA is range
in nautical miles. MB is magnetic bearing from the fighter to the
bogey. AS, bogey airspeed in knots, and MH, magnetic heading of
the bogey, alternate being displayed every 2 seconds. AL is the bogey’s
altitude in feet.

The vertical angle between the fighter and the bogey is printed
below and to the left of the block of bogey flight parameters, and
above the artificial horizon. Below this is a timer that serves as an
indicator that the TID is functioning correctly. On the top left there
are two windows for displaying the radar range scales selected.

REAL-TIME INSTRUCTIONAL METHODS IN TRIO

Students learning a complex real-time procedural task generally need
to be instructed before, during, and after practicing the task. Before
attempting the task, the student needs instruction on how to do it
A dynamic explanation, such as an actual demonstration, is a great
deal more desirable than a static description. While performing the
task the student may need help to focus his attention on critical features
at appropriate times, or to guide him through difficult situations.
An instructor looking over the student’s shoulder can provide
enlightening and productive practice sessions. Instructors like to coach
students learning procedural skills in the dynamic environment as
they are learning. This enables students to be taught the features that
experts use to understand the situation while in the context of the
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ongoing task. Such coaching also allows exercises to continue that .
would otherwise have been lost due to early, correctable errors. The
student will not have time for discussions of alternative strategies,
or for detailed fault analysis while performing the task. Postpractice
debriefing is a natural place for these discussions. We have implemented
and integrated in TRIO instructional facilities for all three aspects
of real-time training—demonstrations, guided practice, and critical
debriefings.

The TRIO Articulate Expert

Qn current training simulators, instructors of tactical tasks must spend
time executing sample runs for the students to observe, emulate, and
learn from. Automating this capability with an expert system is highly
a'mactive to instructors and students. It can provide more viewing
time for the students. When the expert performs at an appropriate
level of performance accessible to a student, it provides a standard
for the students to measure themselves against, while teaching them
tousea common terminology. Instructors like an expert facility because
it standardizes the initial training steps and frees them to spend more
time teaching advanced topics.

De_signing and building expert systems to explain what experts
are doing while performing a procedural task is difficul; human
experts often have trouble explaining while doing. One would like
the explanations not just to inform, but also to gradually educate
the student to think like an expert. Human experts think in terms
of goals; and goal-driven actions; so should an expert program. The
expert must also run quickly and efficiently because it sits on top
of a simulation.

‘ The TRIO expert program is capable of performing the same
intercept tasks that it trains. TRIO provides an articulate goal-directed
flying expert (FEXPERT) as an exemplar for student RIOs. The TRIO
expert is articulate—as it performs air-intercept engagements it
explains its performance along the way. Each time it takes an action
(c.:.g., calls for a change in heading, altitude, or airspeed, selects or
fires a weapon, or changes the radar display presentation) it can state
Fhe reason for the action, not only in terms of what the action is
intended to accomplish, but also why this is desirable in terms of
the RIO’s goals.

~ The goal structures of the tactics employed in performing
Intercepts are explicitly represented in the rules that drive the
FEXPE.RT. The use of a goal-based rule hierarchy enables rapid
evaluation and execution of the rules and facilitates real-time intercept
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performance in rapidly changing air battle situations. It also aids in
the generation and presentation of tactically based explanations of
the expert’s actions to better motivate the sense and purpose of the
strategic thinking and spatial reasoning involved.

When each goal is seen as desirable or necessary to achieve, it
is introduced. Each action taken to achieve this goal then has a context
to which it can refer. The use of a goal-based expert system by providing
rule structure also provides the means to keep the number of active
rules low. This significantly speeds up the expert system. If the expert
can think quickly, it can be checked more often, which implies a
higher level of expertise and of control over the exposition.

The expert’s actions and explanations are given as spoken
utterances, from a real-time speech-synthesis device. The use of speech
as the output mode is necessary because the RIO trainee has to attend
closely to the radar scope and tactical information displays generated
during the rapidly changing air battle. This poses a heavy visual
workload. The use of another modality that does not distract the
trainee’s monitoring of the displays or otherwise hamper his visual
performance is essential.

TRIO also supports speech-recognition capabilities to simulate
the RIO’s voice communications with the F-14 pilot. The student
RIO directs the intercept through commands to a simulated pilot
provided in TRIO. The TRIO speech-recognition facility is capable
of real-time recognition of naturally spoken English messages from
a specified lexicon of allowable RIO utterances, consisting of flight
directives such as “Come starboard hard as possible to a heading of
two four zero degrees.” The TRIO “pilot” interacts with the flight
simulation to carry out the flight directives spoken by the RIO.

The articulate expert capability is central to TRIO's capability
for instructional demonstrations. In this mode of instruction the expert
performs an intercept in very much the same way the trainee is expected
to perform it. The intercept problem is usually assigned by an instructor
or generated by TRIO, but problems may also be posed to the expert
by the trainee. The expert explains its actions and the underlying
reasons for them in terms of its current goal structure. The knowledge
is represented using a special type of production rule system—
continuous running, interrupt-driven, goal-directed rules—to operate
the articulate expert program. The expert performs intercepts in real-
time and explains its actions and reasoning along the way. It uses
the identical information that the student sees and drives the simulation
through the same interface. The intent is to provide the trainee with
concrete models that prepare him for his own attempt to do similar
intercepts.

The expert system has to be efficient to work in this environment.
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The simulation generates and displays considerable information to
provide real-time response from the radar and aircraft models.
Maintaining current information at the rates imposed by the high
closing speeds of the two aircraft requires rapid processing. The student
is polled continuously for new intercept control instructions. (The
expert’s performance must be attainable by the student, so the expert
is only polled every few seconds.) The correct and rapid performance
of the expert is achieved through the shaping of the rules into a goal
tree and the use of a clean control structure.

The goal hierarchy that is taught to the student also guides the
expert in running an intercept. The expert’s task is represented in
the rules as a series of high-level goals together with associated subgoals
or actions for fulfilling each goal under any contingency. The top-
level rules expand to access the rule sets that are appropriate for the
current situation. Each rule has several components, including a test
to check if this rule is to be fired now, an action to be taken (none
for goals), a rule set to access next (none for actions), rules to remove
from current consideration, and a rationale for why the current goal
was established or the current action taken that becomes part of the
explanation given to the student.

To illustrate the way rules interact, consider the following. When
running an intercept, one would like to have a slight (.1 mach) speed
advantage on the bogey. One of the first goals is to achieve this. Its
test is set to be always true, because it is always desirable to achieve
a speed advantage. When it fires it tells the student “Get co-speed
plus.” (Explanations must be terse because additional actions and
explanations will quickly follow.) The co-speed goal then brings in
three action rules to achieve itself. One of them will match the current
situation of being either too fast, too slow, or at the desired speed.
When one of them fires, it removes the others which cannot apply.
It also gives a command to the simulated pilot instructing how to
set the throttle. (All commands to the pilot are printed out on the
screen or spoken for the student.)

The expert is called periodically by the simulation. If a rule has
recently fired, the expert may suspend action for an appropriate time
set by that rule. (The designated time represents the time between
successive actions that a good student would require.) Without this
delay, FEXPERT could run much faster during certain periods of
the intercept, but it would fail as an exemplar because a student would
not be able to achieve its speed.

Figure 10.3 shows the display of the expert’s command to the
pilot (on the top screen labeled FEXPERT’s Commands), with the
rationale that is normally spoken to the student printed below it.
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Student Practice and TRIO Daemons

After a trainee has seen the articulate expert fly an intercept to
demonstrate a new tactical procedure or the application of a familiar
tactical procedure to a new siwation, he typically tries to do it on
his own using TRIO’s guided practice facility. The trainee’s
performance is monitored and recorded for subsequent analysis. The
trainee may choose to attempt the intercept without help. Otherwise,
TRIO is available throughout the run to provide specific guidance
to aid his understanding, and to help the trainee notice and avert
major errors that threaten the success of the intercept. This is
accomplished in TRIO by the use of daemons.

A daemon is a continuously active, rapidly executing program
that monitors the state of task-critical parameters to detect a specific
event, such as the imminent loss of radar contact (also called radar
lock) or missile threshold. Daemons are used in TRIO primarily to
detect and report imminent errors in time for correction by the trainee.
For example, the missile envelope daemon’s test checks to see if the
current range is less than the maximum firing range. If its event occurs,
a daemon takes two actions. It records the event on the history list
for use in the post-flight-performance analysis debriefing narrative.
It also alerts the trainee so that he can try to take corrective action.
The alert is communicated as a short message in a daemon display
window, possibly accompanied by flashing, speech, or alerting sounds
generated by the speech-output device. This warning may just be a
static warning like the missile daemon’s warning to ““Load the phoenix
missile” (if the student has failed to do so), but it may also be customized
to the current situation. For example, another daemon warns the
student when he asks the simulated pilot to go above the maximum
ceiling by computing the current maximum ceiling and reminding
the student what it is. After the warning is generated, an action may
also be taken by the daemon to correct the error. For example, some
daemons reset a student-specified parameter, such as the plane’s speed,
to be within the safe range.

The daemons in TRIO are invoked either individually or in toto
by the instructor, the student, or by other programs in TRIO. Their
use is particularly valuable during the early phases of training when
it is instructionally useful to develop a trainee’s awareness of critical
events that need attention and must be acted on.

Rapidly changing tactical situations such as those occurring in
air battle engagements impose intense attentional demands. For real-
time tasks with high cognitive loads, guidance must be presented in
a way that allows a trainee to maintain his attention on the tactical
situation while noticing and assimilating instructional communica-
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tions. Interrupting real-time problem solving in an intrusive way can
actually impair training (Munro, Towne, Cody, & Abromowski, 1982).
So the guidance offered by TRIO, which may come when the trainee
is absorbed in the intercept, is communicated in a clear and
nonintrusive manner without stopping or slowing the action or
breaking the trainee’s concentration. This is accomplished by the use
of terse spoken warnings about correctable inflight errors. Their use
- does not further task the visual workload of the student, and it provides
all the desired guidance.

The Daemon System (DaemonS) provides this capability in TRIQ.
It checks all the daemons on a frequent periodic basis for applicability
to the current situation. If one of them applies, its warning is given
to the student through the speech-generation device. Only one daemon
is allowed to fire at a time—this ensures that the student is not
overwhelmed with advice.

Figure 10.4 shows a student about to lose radar contact with the
bogey because the student has allowed the bogey to drift too far to
the right. The system warns the student, who may be attending to
other instruments, of this imminent event. The daemon’s warning
that is spoken to the student is displayed here below the radar screens.
If the student does not heed the warning by taking corrective action,
he will lose radar contact, as shown in Figure 10.5. It is very difficult
for novices to complete an intercept after losing radar contact. This
warning may enable the student to complete the intercept and continue
to learn.

Daemons help make the instruction in TRIO flexible. The student
can select with the main menu which groups of daemons he would
like available when running in guided practice mode. Daemons allow
the student to control the amount of advice that he receives, and the
areas that the daemons cover, such as safety-of-flight rules, or the
use of radar-range scales. The debriefer is also able to activate daemons.
This opens up a rich world of possibilities. For example, when the
student makes an error, the debriefer can specify daemons to help
the student on the next guided-practice flight. If the debriefer-selected
daemon fires again, the debriefer can point out and emphasize this
chronic error to the student.

Daemons do have limitations. Because they are being used in
a real-time simulation that has its own computational requirements,
there is a limit to the resources that are available. This limits the
number that can be active, and imposes the restriction that the test
be simple. The student’s ability to process a limited number of
corrections also limits the number that one would want active. The
faults and the daemon’s explanations must be easily understood by
the student. Complicated faults must wait for the more leisurely pace
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FIGURE 10.4 Display at radar lock daemon waming.

and clarity of expression provided by the debriefer. The debriefer, which
has more time and resources, should also deal with faults that cannot
be corrected in flight.

Performance Analysis and Student Debriefing

Following the practice run, TRIO analyzes and debriefs the trainee’s
performance. The trainee’s intercept control actions are mapped into
the solution space defined by tactical doctrine. The analysis of the
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trainee’s performance is based on the use of pattern matching methods
that translate and then compare the trainee’s actions in a solution
space to allowable performance behaviors. The solution space
represents alternative solution paths during each phase of the intercept
as permitted by the prescribed engagement rules and procedures. These
paths allow considerable variation in the kind, number, and timing
of trainee actions over those demonstrated by the expert program in
its execution of an intercept.

The trainee’s actions are examined by the performance analysis
program. The solution space analysis identifies faulty action sequences.
This is, those that could not be effective in realizing the
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appropriate subgoals in the intercept solution space, and determines
very specific reasons for their unaccaptability in terms of their adverse
effects on the intercept. The analysis enables TRIO to generate
gxplanations of what the trainee did wrong, where it happened, why
it was wrong, and what he should have done. The explanations are
given in terms of the top-level goal structure.

A debriefing program generates the corresponding narrative. The
narrative is driven by two major sources of performance-history data
—the solution space analysis and the procedural errors detected by
daemons during the run. During the trainee debriefing, TRIO replays
the relevant segments of the intercept together with the accompanying
narrative. The trainee’s actions and omissions, and relevant related
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events in the intercept situation, are identified during the presentation
through the use of ground tracks of the interceptor and bogey, the
associated radar displays, and related displays showing the state of
the flight instruments and key intercept parameters.

Figure 10.6 shows the series of ground tracks and radar displays
that the student saw while he was flying and which are redisplayed
by the debriefer. The debriefer’s output is shown in Figure 10.7.

CONCLUSION

The methods used in TRIO—goal-directed rules for expert
presentations, daemons for guided practice, and analysis based on
solution spaces for critiquing student performance—provide a rich
autonomous learning environment for real-time procedural tasks.
Providing an autonomous learning environment frees instructors to
spend more time on advanced topics. This training paradigm has
potential relevance for other real-time training applications in a variety
of operational environments. Examples include ship navigation, GCI
(ground controlled intercept), and flight-controller training. The
methods generated by TRIO are now being employed as the central
framework of an intelligent instructional system under development
for training Patriot air defense operators.

More complex real-time training (involving coordinated intercept
operations, for example) will require more sophisticated methods than

At #1 on the ground track display you
turned right &)mbably to increase your
lateral displacement). You increased it to the
proper amount.However. you should have
turned left to protect the carrier. -

You updated the TID range scale to 25 miles
too late (when the range was under15 miles).

At #2 you noticed that the bogey jinked,
and you responded quickly and correctly.
But it was too late because you had started
out of position.

FIGURE 10.7 Critic's output
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those currently used in TRIO. We are beginni i
of TRIO methods toward these ends. EINNINE (0 explore extensions
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