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Abstract 

We have developed a process model that learns in multiple ways while finding faults in a 
simple control panel device.  The model predicts human participants’ learning through its own 
learning. The model's performance was systematically compared to human learning data, 
including the time course and specific sequence of learned behaviors.  These comparisons show 
that the model accounts very well for measures such as problem-solving strategy, the relative 
difficulty of faults, and average fault-finding time.  More importantly, because the model learns 
and transfers its learning across problems, it also accounts for the faster problem-solving times 
due to learning when examined across participants, across faults, and across the series of 20 trials 
on an individual participant basis.  The model shows how learning while problem solving can 
lead to more recognition-based performance, and helps explain how the shape of the learning 
curve can arise through learning and be modified by differential transfer.  Overall, the quality of 
the correspondence appears to have arisen from procedural, declarative, and episodic learning all 
taking place within individual problem solving episodes.  
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1. INTRODUCTION 

There is a speedup in the time taken to solve problems that is nearly universal across tasks and 
participants (Rosenbloom & Newell, 1987).  A major question has been understanding how this 
speedup occurs.  Cognitive architectures and models have proposed several mechanisms to 
account for this learning, such as procedural knowledge compilation (e.g., Anderson, 2007; 
Gonzalez, Lerch, & Lebiere, 2003; Pavlik, 2007; Taatgen & Lee, 2003) and base level learning 
(Altmann & Trafton, 2002) in ACT-R, connection strengthening in PDP models (e.g., O'Reilly & 
Munakata, 2000), rule creation from impasses using analogical reasoning (VanLehn & Jones, 
1993), constraint elaboration (Ohlsson, 2007), and both declarative and procedural learning 
mechanisms (Feigenbaum & Simon, 1984; Gobet & Lane, 2007; Larkin, 1981; Rosenbloom & 
Newell, 1987).   

Each of these learning mechanisms has successfully accounted for some aspects of this 
speedup, and as a group they have proven useful in explaining patterns of learning in a variety of 
domains (e.g., the Tower of Hanoi: Altmann & Trafton, 2002; Anzai & Simon, 1979; Ruiz & 
Newell, 1989; physics problem solving: Larkin, 1981; Lisp programming, text editing, and simple 
differential calculus: Singley & Anderson, 1989; computer games: Bauer & John, 1995; and 
complex interface use: Gonzalez, Lerch, & Lebiere, 2003; Lee & Anderson, 2001; Taatgen & 
Lee, 2003).  Problematically, the learning produced by these mechanisms has been compared 
with aggregate data.  Response times aggregated across trials, participants, or both, have been 
used most often to test the models (e.g., Ram, Narayanan, & Cox, 1995; Taatgen & Lee, 2003)1. 

The method of comparison between models and behavior has varied.  A few models have 
been compared with behavior before and after extensive amounts of practice performing a task.  
That is, the models using these mechanisms started by performing the task like a novice 
participant, and after extensive application of the learning mechanisms performed like expert 
participants (e.g., Larkin, 1981), and recent models have matched learning at several points in 
time (e.g., Anderson, Bothel, Byrne, Douglass, Lebiere, & Qin, 2004; Gonzalez et al., 2003; 
Taatgen & Lee, 2003).  

There are a number of issues that remain in understanding how problem solving is learned.  
First is the actual path of learning by an individual.  It takes several years for a person to become 
expert in problem solving in a complex domain.  When comparing novices and experts in such 
domains, the cross-sectional methodology used prevents acquiring a full understanding of the 
learning process as it occurs.  For example, Able (Larkin, 1981) was a model of the transition 
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between novice and expert behavior in physics problem solving in terms of the application order 
of domain principles.  It used an impasse-driven learning mechanism to learn rules automatically 
while solving problems.  The acquisition of these rules represented the transition from novice to 
expert.  However, only the model's initial and final behavior were compared with novice and 
expert behavior.  Modeling exercises of this kind inevitably hide a large proportion of the 
learning that takes place.  At the same time, models of this kind do provide useful insights into 
the learning process.   

Second, there is the issue of the grain size of the measures analyzed.  Most models have 
been compared with aggregate reaction time or performance data.  Only a few models have 
examined the details of problem-solving strategy.  For example, Anzai and Simon (1979) 
observed the changes in strategy across four trials of solving the Tower of Hanoi and modeled 
these changes using an adaptive production system.  The model's behavior was not compared to 
the participant's behavior at an action-by-action level, but Anzai and Simon did show that the 
model produced the same qualitative strategy shifts as the participant.  Other researchers have 
focused on the goals that participants have attempted to reach as they solve problems.  Cascade 
(R. M. Jones & VanLehn, 1992; VanLehn & Jones, 1993) modeled how good and poor students 
learn while reading solved physics problems.  In its most complete comparison, Cascade was 
used to model nine participants’ behavior individually while studying 28 worked physics 
problems, learning by examining the problems and sometimes explaining the steps to themselves.  
Cascade predicted the goals that participants would explain and how what was learned would 
transfer to other problems.  This work did not examine the time course of learning, but it is 
otherwise a very good example of where the detailed predictions of a model that learns have been 
verified with behavioral data.   

Third, there is the issue of the automatic learning mechanism.  In detailed studies, VanLehn 
(1989, 1991) examined learning in several domains including the Tower of Hanoi.  He modeled 
learning by proposing when rules were learned and what the learned rules contained, but these 
rules were created by hand.  There are several ACT-R models that also come close to examining 
how and when learning occurs.  While the ACT architecture implementations include learning 
capabilities, models built within this framework often have modeled learning by adding hand-
written rules based on the participant's performance (e.g., the ACT-R tutors, Anderson, Conrad, 
& Corbett, 1989).  There are also models that learned automatically in both ACT-R (Gonzalez et 
al., 2003; G. Jones, Ritter, & Wood, 2000; Pavlik, 2007; Taatgen, 2005; Taatgen & Lee, 2003) 
and Soar (Altmann & John, 1999; Altmann, Larkin, & John, 1995; Bauer & John, 1995) and that 
have been compared with human problem-solving protocols but these comparisons did not 
examine the time course of individuals’ learning, or did not match individuals very well (Nerb, 
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Ritter, & Krems, 1999).   

Is it possible to construct a general learning mechanism that could capture learning at the 
rate learning occurs in individuals?  Many would believe the answer to this question is yes, but a 
general learning mechanism has yet to be implemented and compared with the time-course of 
individual behavior.   

While prior work on learning within cognitive models has advanced the scientific 
understanding of learning in specific domains and across participants, these issues (individual 
learning paths, time granularity, and automatic learning mechanism) are the next issues in 
understanding cognitive skill development.  This paper reports the results of comparing the 
performance of a process model that learns to participants' behavior.  It addresses these issues by: 

(a)  comparing participants' behavior individually with the model's behavior as they both 
complete 20 problem-solving tasks.   

(b)  comparing participants' behavior with the model's behavior using several different 
kinds of aggregation. 

(c)  using a computational architecture that has an automatic learning mechanism, thus 
avoiding the need to hand-craft production rules that capture learning.  

 As a result, the method, model, and analyses proposed in this paper constitutes a new 
theory of learning and performance improvement that accounts for individual differences in 
learning at a low time granularity via a consistent (but flexible and generalizable) learning 
mechanism. From this, we can draw new scientific insight into the nature of the famous (but in 
completely understood) learning curve at a far deeper level than was possible in prior work. 

We begin by explaining the task.  Next, we explain the model and how we gathered the 
human data.  Next, we offer a detailed comparison between both aggregate and individual 
measures of the model's and participants' performance, which provides empirical support for the 
model.  We conclude by examining the implications of this work for problem solving, including 
how the different types of learning contribute to this result, the learning curve, and reasoning with 
diagrams. 

Because we believe that science should proceed in the most transparent fashion possible, we 
have put the model and its architecture, a reimplementation of the stimuli and instructions, and 
the data and most of the analyses on the web (acs.ist.psu.edu/projects/diag/).  This may help set a 
standard for models in this area (cf. Thimbleby, 2004), and will help other scientists to evaluate, 
extend, and improve upon our work. 
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1.1 The fault-finding task and data collection methodology 

Participants and the model solved the same task, trouble-shooting a control panel device using a 
memorized schematic.  The device’s interface, its internal schematic, and task instructions are 
shown in Fig. 1.  The device is similar to Kieras and Bovair's (1984) laser-bank device. Prior 
research using a similar task (Kieras, 1988; Kieras & Bovair, 1984) has shown that instructions 
for this task need to convey to participants knowledge of the structure of the system, knowledge 
about the underlying principles that control the behavior of the system, and knowledge about how 
to perform tasks using the structure and principle information.  

Ten participants, all University of Nottingham undergraduates aged between 19 and 21 
years were paid £5 for participating.  At the beginning of each data collection session participants 
were given a picture of the control panel (an example is shown in Fig. 1a), a general introduction 
to the device (Fig. 1b), and a schematic of the underlying circuit (see Fig. 1c) showing how the 
components of the system were connected through a series of switches. Participants were asked to 
memorize these materials.  While studying the instructions they were allowed to ask questions of 
the experimenter who fully understood the task.  The participants were also told that a fault 
existed when a component indicator light was not lit when it was receiving power.  Taken 
together, this information was sufficient for participants to be able to identify faults. 

Participants were asked to study the instructional materials, paying particular attention to 
the schematic representing the organization of the components and switches.  After a period of 5 
minutes participants were asked to draw the schematic.  If they could accurately reproduce the 
schematic, the instructions were removed and the experiment began.  If participants were unable 
to draw the schematic they were given an additional 5 minute period in which to study the 
instructional materials.  No participant took more than 10 minutes to learn the materials.  

< Insert Fig. 1 about here.> 

Next, the fault-finding task was described in detail to the participants and a diagrammatic 
example of the task was given.  Then participants were introduced to the device and shown how 
to select the faulty component.  The device was simulated in HypercardTM on an AppleTM Power 
Mac 4400.  Participants were told that one component in the circuit was faulty and were asked to 
indicate it by clicking on it.  Each participant received 20 example faults that they had to identify.  
This series was chosen randomly without replacement from a fixed set of 20 faults, and thus the 
series varied for each participant2. Participants’ reaction times and choices were recorded and 
analyzed for latency and number of correct choices. 
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1.2 The Diag model 

We constructed a computational process model in the Soar cognitive architecture that solves the 
fault-finding task.  The model, called Diag, solves problems via search in solution spaces, and 
learns while doing the task.  We will address each of these aspects (Soar, fault-finding, and 
learning in this section3). 

1.2.1. The Soar architecture 

The Diag model was built using the Soar 6 cognitive architecture (Laird, Newell, & Rosenbloom, 
1987; Newell, 1990). Here we briefly describe the relevant aspects of the architecture that 
influence and support Diag's problem solving and learning functions. We refer the interested 
reader to more in-depth introductions to and explanations of the architecture (e.g., Lehman, Laird, 
& Rosenbloom, 1996; Lewis, 2001; Ritter, 2003), some of which are available online (Laird, 
2003; Ritter & Young, 1996), including further information, references, and a more complete 
bibliography in the Soar FAQ.   

Soar represents problem solving as search in problem spaces (Newell, 1980; Newell, Yost, 
Laird, Rosenbloom, & Altmann, 1991) and search through problem spaces (Ritter & Larkin, 
1994).  Operators transform states and are implemented with production rules that create and 
propose operators, and then implement operators after the architecture has selected an operator 
based on the proposals.  Rules can also modify states directly, typically representing simple 
inferences, such as if a switch is on then power flows through it.   

When there is a lack of knowledge about how to proceed, an impasse is declared.  An 
impasse can be caused by, among other things, a lack of operators to apply, an operator that does 
not lead to changes in the information available for problem solving, or not knowing which of a 
set of operators to choose.  An impasse is a data structure, similar to a goal, that allows further 
knowledge about how to resolve the impasse to be obtained through problem solving based on the 
particular impasse, including the state and operator (if one exists) that existed when the impasse 
occurred.  Thus, the impasse is typically resolved by proposing an operator to apply to a state that 
did not have an operator, changing the state based on the operator that was being applied, or 
providing information about which operator to choose where there were multiple operators. 

Soar models that learn have a hierarchically organized set of problem spaces, as problem 
solving in one impasse may lead to further impasses that are sometimes resolved in further 
problem spaces.  When knowledge about how to resolve an impasse becomes available from 
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problem solving, Soar's learning mechanism4 creates a new production rule.  This new production 
rule will contain as its condition (left-hand side) the information in the higher context that led to 
the impasse so that the program can recognize the same situation in the future; it will contain as 
its action (right-hand side) the information that was acquired during the problem solving to 
resolve the impasse.  In the future, the rule can eliminate the need for repeating the same problem 
solving when a similar situation (as defined by the condition) occurs.  The bottom-up approach is 
where rules are learned from the bottom of a trace through the hierarchy.  Soar was designed to 
model human learning rates (Rosenbloom & Newell, 1987), so we use it here. 

1.2.2. How the model finds faults 

The model begins at the level of minimum competence—the point at which participants are able 
to pass the training test showing that they have memorized the schematic, but before any 
significant gains in efficiency have been made.  The model therefore assumes an understanding of 
power flow through the device, how to recognize a faulty component, and a basic knowledge 
about diagnosing a fault.  The knowledge is available but has not been integrated. 

Diag finds the fault using the circuit structure, working from left to right.  Knowledge of the 
schematic is represented within the model as routes through the circuit as if the schematic 
diagram was memorized (thus the name, Diagrammatic, or Diag-Soar).  Portions of these routes 
(such as EB1 is connected to MA) are recalled and followed to find the next component to 
examine.  Interface information obtained from a simple model of vision about the states of the 
lights and switches is represented in declarative structures made up of attribute-value pairs.  The 
combination of schematic and interface knowledge corresponds to the diagram experimental 
condition reported in Bibby and Payne (1993) and implements a common strategy, that of 
following paths through the circuit (Strategy 1 in Bibby & Payne, 1996). 

Fig. 2 shows how the 20 operators that perform this problem-solving task are grouped into 
7 hierarchically organized problem spaces.  This hierarchical structure and Soar’s learning 
mechanism are what gives rise to the learning while problem solving.  These problem spaces and 
operators are implemented by 170 production rules.  The model does not explain how this 
knowledge is acquired, which remains a substantial and open problem.  Few models start from 
nothing and progress from task instructions to expert behavior (although see Anderson, 2007, Ch. 
5, and Taatgen & Lee, 2003, for recent work in this area).  These knowledge structures would 
arise out of natural language processing, processing of graphical representations, and problem 
solving to generate the initial task description.   
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Fig. 3 describes the model’s performance, showing the operators and their order as 
performed by the model in solving the EB1 fault for the first time. The operator applications are 
numbered for reference.  This figure was inspired by similar graphs (John, Vera, & Newell, 1994; 
Lehman et al., 1996; Newell, 1990). This graph illustrates the cyclical behavior of the model 
choosing a component to check and then checking it.  We will use this figure to explain the 
model's behavior and structure.  The full model trace is available from the web site (e.g., in EB1-
trace.txt, a trace of the model solving the Energy Booster 1 fault).  The explanation here provides 
a high level description of the model’s behavior.   

< Insert Figures 2 and 3 about here. > 

Choosing a component to examine.  The SOLVE-PROBLEM operator [labeled 1, Fig. 3] 
sets up the problem state. After it does this, no rules fire, and no operator is proposed to apply.  
The architecture creates an impasse (see the description of Soar above, or the online materials to 
read more about impasses in Soar) in the Diagnose space, noting that there is no operator to 
apply.  The model then starts its pattern of interaction by working to choose a component to 
check (ATTEND), and comprehending what was seen (COMPREHEND).  These actions are 
performed by operators in Soar.  This pattern may be seen in the repeated return to the ATTEND 
and COMPREHEND operators [labeled 10-11, 24-25, 34-35, 43-44] at the top of Fig. 3 and later 
in Fig. 4.   

To resolve the impasse (which is to create an operator in the DIAGNOSE problem space) 
the model selects a problem space to resolve this problem of a lack of operator in the top problem 
space.  This space is FIND-FAULT, and it selects an operator, CHOOSE-COMPONENT [2], that 
chooses a component to attend to first.  Initially, CHOOSE-COMPONENT cannot be applied 
directly without learning—the knowledge of which component to choose is in yet another 
problem space.  Another impasse results, and the next operator, DIAGRAM-SUGGESTION [3] 
attempts to suggest which component to attend to based on knowledge about the diagram.  It, too, 
initially lacks the knowledge to be applied, and a further suboperator, DIAGRAM-CHOICE [5], 
helps suggest which component to attend to based on the model’s diagram (schematic) knowledge 
and what previous components have been checked.  This knowledge is kept in the Diag-select 
problem space as a set of paths through the circuit.  DIAGRAM-CHOICE [5] selects the next 
component to attend to using the previous component checked (or none) and the paths through the 
circuit.  With no previously checked components, the power source is selected.   

In less formal terms, the model knows the structure of the diagram and the structure of the 
interface, but has not compiled this into knowledge about which component to check at each 
point in time.  Because knowledge in Soar is organized around the operators, problem spaces, and 
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their hierarchical relationship to each other, knowledge about how to implement an operator is 
often put in a lower problem space by the modeler to represent the knowledge state of a 
participant who has just studied the task instructions but not yet put them into practice.  Learning 
compiles this knowledge into a more efficient form that is used in the higher problem space 
where the operator is applied. 

As the DIAGRAM-CHOICE operator returns its result to the higher problem space, a rule 
is learned (LR-1, see Table 1)5, that notes that when the operator DIAG-SUGGESTION is 
applied with no previously checked components, that the Power Source should be checked.  The 
learning process and the learned rules are examined in more detail in the next section.   

< Insert Table 1 about here. > 

A similar result is obtained as the model consults its interface knowledge with 
INTERFACE-SUGGESTION [5] and INTERFACE-CHOICE [6].  INTERFACE-CHOICE uses 
a similar mechanism to the schematic route following, but the representation is based on the order 
of the components in the interface as shown in Fig. 1a.  The power source is suggested to check, 
and a similar rule (LR-2) is learned to implement the INTERFACE-SUGGESTION operator the 
next time it is applied and there is not a previous component checked, suggesting that the power 
source should be checked. 

In this example, the suggestions from these two operators examining the diagrammatic 
knowledge and the interface knowledge concur on the Power Source.  These two operators do not 
necessarily concur—if the last component checked was Energy-Booster 2 (EB2), for example, the 
next in sequence on the interface is Main Accumulator (MA), whereas the next in the circuit path 
is a secondary accumulator (SA1 or SA2).  This conflict of two different suggested components 
to check results in an impasse.  The SELECT-COMPONENT problem-space and its operators 
resolve such problems.   

The model then starts to check if the light is lit for the Power Source component (TEST-
COMPONENT [7] and CHECK-LIT [8] operators in Fig. 3).  The process of testing the 
component entails the gathering of evidence to support or reject the hypothesis that the selected 
component is faulty.  This requires comparisons between the internal representation of the device 
and its real-world status.  The REALITY-CHECK operator [9] leads to noting on the top state the 
component that needs to be examined.   

Deciding to access the state of the world.  The next stage is interacting with the (simulated) 
world and understanding the implications of what was observed.  At the start of problem solving, 
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the model does not know the state of the world and has to look.  With the top state annotated with 
a component to check, the ATTEND operator [10] can be and is proposed. This process of 
regularly thinking about what component to check and checking gradually constructs a more 
complete representation of the real world within the model.  

Accessing the external world using the top problem space is a way in Soar to avoid learning 
to do two contradictory things at once (Chong, 2001; Chong & Laird, 1997; John, 1996; Laird & 
Rosenbloom, 1995; Newell, 1990, p. 261-268).  If the model needs to know the status of whether 
a component is lit or not and its status is unknown, then the REALITY-CHECK operator sets up 
an ATTEND operator (in the top problem space) to examine the state of the Power Source’s 
indicator light.  A rule (LR-3) is learned at this point to propose attending to the Power Source 
light when the CHECK-LIT operator is selected for the Power Source, but its status is unknown.  

Accessing and processing the state of the world.  ATTEND [10] and COMPREHEND [11] 
operators are next used in the top problem space (shown in Fig. 2) to model interaction.  This 
approach is consistent with Newell's (1990, e.g., p. 262-264) suggested use and with Laird and 
Rosenbloom's (1995) architectural constraints on interaction.  Rather than view the entire world at 
once, the model uses explicit operators to represent acquiring perceptual information.  The model 
continually decides where to look (CHOOSE-COMPONENT), looks there (ATTEND), checks 
the part it saw (COMPREHEND), and then decides where to look next (if necessary, again with 
ATTEND).  The organization of components on the (memorized) interface schematic and the use 
of the ATTEND and COMPREHEND operators moving across the representation of the interface 
cause the components to be checked in a basically left to right sequence.  In the case of the EB1 
fault (and all problems), Diag starts by attending to the Power Source. 

The information on the Power Source is returned by the ATTEND operator [10] and 
comprehended with the COMPREHEND [11] operator.  To do this, TEST-COMPONENT [12] is 
applied to implement the COMPREHEND operator, and problem solving starts again but this 
time with the additional information that the Power Source light was on.  It is now possible to 
reapply the CHECK-LIT [13] operator that initiated the attend-comprehend process. 

The CHECK-LIT operator [13] this time checks the implications of the light’s status (using 
the DECIDE-STATUS operator [14]).  This may require further information about the switches, 
but for the Power Source, a result can be returned immediately that the Power Source is OK.  A 
rule (LR-4) is also learned that implements the TEST-COMPONENT operator [12] more directly, 
that if the Power Source light is on and no other components have been tested, then the Power 
Source is OK.   
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If the first component was found to be non-faulty, a tidying operator—RESET—is selected 
before CHOOSE-COMPONENT is selected again.  RESET [15] updates the top state to indicate 
that the component just checked is now the last-checked one.   

Repeating this process through the circuit.  The process now starts over with the 
CHOOSE-COMPONENT operator [16], looking for the next component to check, and checking 
it.  There are some different operators used when switches are examined and when multiple paths 
are found, but the basic process remains the same (a full trace is at the web site).  This process 
continues until a part is found that should be lit and is not lit.  Fig. 3 shows this process of 
ATTEND and COMPREHEND operators (and suboperators) occurring several times for the EB1 
fault as the Power Source switch, the Power Source indicator light, the Energy Booster switch, 
and the Energy Booster 1 light are checked.  After checking the Energy Booster 1 light the model 
confirms the previous component is lit (with the DECIDE-STATUS operator [47]), and then 
reports the broken component (REPORT [48]). 

1.2.3. How and what the model learns 

Diag learns while performing the task. What is learned on each trial, when it is learned, and how 
it is learned arises from the architecture, the knowledge and its organization, and the model's 
previous problem-solving experience.  Learning creates three types of knowledge in Diag. The 
model learns how to perform actions more directly with less internal search, which objects to 
attend to in the interface without internal deliberation, and the implications of what it receives 
from the world.  Learning these types of knowledge occur while performing the task. Each of 
these types of knowledge can be seen individually in other architectures and models.   

The three types are: (a) Operator implementation, where specific knowledge about how to apply 
an operator is learned through search in another problem space.  Several operators are elaborated 
in this manner (e.g., INTERFACE-CHOICE, DIAGRAM-CHOICE, and DECIDE-STATUS).  
This represents a type of procedural learning.  Table 1 shows several examples of these learned 
rules (LR-1, LR-2, LR-4).  This learning includes knowledge about how to augment an operator 
and how to implement it.   

(b) Operator creation, where an operator is created in one problem space for use in a higher 
space.  The ATTEND operator is created in this way.  With practice, the model learns which 
objects to attend to.  It is the transfer and application across faults of the ATTEND operator that 
give the largest improvements because it takes the most steps to create. These new rules serve as 
a kind of episodic memory noting the results of problem solving because they contain information 
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about what problem-solving has already taken place.  Table 1 shows two examples of these 
learned rules (LR-3, LR-9).   

(c) State augmentation rules, which add to the state derivable knowledge as a type of 
semantic, declarative learning.  For example, the model can learn that if EB1 has been checked 
(and was working) and the main accumulator’s light is not lit, then the MA component is broken.  
Table 1 shows a similar example for the Energy Booster 1 fault (LR-31). 

The number of rules learned in a series of problems varies according to the order, types, and 
number of tasks. The maximum number of rules that can be learned is 287.  On average, the 
model learns around 200 new rules over the 20 problems in each series of problems, more than 
doubling the number of rules in the model.  When all the rules are learned, the model knows what 
components to attend to (without deliberation) and the implications of attending to a component 
(either to attend to the next component or declare the problem solved). The knowledge that is 
learnt can be applied to later tasks.   

The effect of learning is shown in Fig. 4, which shows the order of operator applications the 
second time the EB1 fault is diagnosed.  Fewer operators are used (34 vs. 48), and lower level 
operators are not used as often (compare with Fig. 3).  There is less problem solving between the 
ATTEND operators because more is known.  This is indicated in Fig. 4 through the operator 
number labels.  These labels show the operator numbers from the first trace shown in Fig. 3, and 
several operators in the sequence are missing because their effects have been learned.  For 
example, the DIAGRAM-CHOICE and INTERFACE-CHOICE operators, 4 and 6, are not 
necessary in the second run.  When no more can be learned, which happens after three trials with 
a single problem (shown in traces on the web site), behavior consists of a series of ATTEND and 
COMPREHEND operators until the REPORT-FAULT operator, creating a recognition-based 
process.  

< Insert Fig. 4 about here. > 

During the course of solving fault-finding tasks newly learned rules can transfer across 
trials where the paths checked include the same components.  There is no transfer of newly 
learned rules within a trial because the model does not revisit any components in its problem 
solving.   
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2. COMPARISON OF THE MODEL'S PREDICTIONS WITH THE  
PROBLEM-SOLVING DATA 

We show that Diag can account for several regularities that are robust in that they have been 
found in other studies (Bibby & Payne, 1993, 1996; Bibby & Reichgelt, 1993), as well as being 
consistent with the data reported here.  A number of strategies are used to compare the model 
against the participants’ data.  First, we consider whether the structure of the model’s behavior is 
generally the same as that reported by participants in this fault-finding task.  Second, linear 
regression techniques are used to identify which measure of the model’s behavior best predicts 
the participants’ problem solving times.  Third, the participant’s problem solving times are 
aggregated over task, trial and participants and compared with the model’s predictions using the 
best measure of fit.  Finally, individual participant’s problem solving times are compared against 
the model for each individual separately.  The first three comparisons are typical of the kinds of 
model comparison reported in the literature.  The final comparison, comparing individual 
performance against a model that learns automatically with random trial sequences is a novel 
contribution.  This is important because it demonstrates that it is indeed possible to produce fine-
grained predictions over a range of learning using an automatic learning mechanism.  

2.1 General performance of model and data 

The first test of a process model is that it can do the task of interest.  The current version of Diag 
can find any fault in the device given a configuration of lights and switches.  More importantly, it 
implements the same strategy that participants have previously reported. The approximate 
problem-solving strategy that most participants used is exemplified in a participant's retrospective 
protocol: 

"...check each component in turn to see if its indicator light is lit.  If it is, move on to 
the next component.  If it is not lit, check to see whether it should be lit.  If it is not 
receiving power, move on to the next component.  If it is receiving power, then it is 
broken" (Bibby & Reichgelt, 1993, p. 274). 

Diag performs the fault-finding tasks using this strategy.  Sequential checking of components 
from left to right is emergent from the schematic of the internal structure of the device, the 
interface representation, and the model's knowledge about how to check components and their 
connections.  As we will see in the quantitative comparisons, the model's predictions have a high 
correspondence with the participants' reaction times.   
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Participants clicked on the wrong component on 8% of the trials; this is an average of 1.5 
errors each.  The errors appeared randomly distributed across trials, across tasks, and across 
participants.  The trials where errors were made by participants solving the fault-finding task were 
removed from all the regressions because the model did not make any errors.  We have looked for 
regularities in these errors, and only found that they are usually close to the correct answer and 
usually take about the same amount of time to find as the correct answer should have taken. No 
attempt to model errors was made.   

2.2 The choice of prediction variable: Model cycle or interface object 

Using hierarchical linear regression, we examine which of three measures of processing time 
provides the best prediction of problem solving time: (a) the number of interface objects 
examined, (b) the model’s processing time (as decision cycles6) with learning turned off, and 
(c) the model’s processing time with learning on.  Given that the different examples of the fault-
finding task require participants to examine different numbers of components and switches, the 
first measure of processing time examined was a count of the minimum number of objects that a 
participant had to examine based on a simple task analysis.  This measure is similar to the 
measure successfully used by Kieras (1992) to predict the time taken to use a device averaged 
across learning.  A second predictor of processing time is derived from the model itself.  The Soar 
environment allows the modeler to run a model with learning switched on or off over the same 
series of problems that the participants saw.  If a model is run with learning switched off then the 
modeler can assess the impact of learning on task performance when learning is switched on. 

The results of the first regression analysis are shown in Table 2.  When entered first, the 
simple analysis of the task predicts 10% of the variability in the participants’ time to solve each 
correctly answered problem (N=185).  When the model’s processing time with learning off is 
added it predicts a further 3.7% of the variability.  While entering both these measures accounts 
for a significant proportion of the variability it is not a substantial proportion.  Taken together 
they predict only about 14% of the total variability in participants’ problem-solving time.   

When model cycles with learning on is entered, it accounts for an additional 57.7% of the 
variability in the participants’ problem-solving times.  This result suggests that cycles with 
learning on is the best predictor of participant performance.  

< Insert Table 2 about here. > 

To test whether the simple task analysis or the cycles (with learning off) added any extra 
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explanation beyond that offered by the model through cycles with learning on, the order of entry 
into the regression equation was changed so that model time with learning on was entered first 
into the hierarchical regression.  This is reported in Table 3.  Like the first hierarchical linear 
regression, a simple task analysis prediction based on the number of objects examined was 
entered but this time entered second and cycles with learning off was entered last.  

When the cycles with learning are used alone to predict the variability in problem-solving 
time it accounts for 71.5% of the variability and neither the simple task analysis nor the cycles 
without learning accounts for any additional variability in participants’ problem-solving time 
regardless of their order of entry into the equation.  We also examined entering model cycles as 
the second variable and simple task analysis third.  This had nearly identical results and is 
therefore not reported here.   

< Insert Table 3 about here. > 

We thus use model cycles with learning as the basis of our predictions.  This provides a 
slope of 128 ms per cycle in the model and an intercept of 3.328 s to account for the time to move 
the mouse and click on the fault.  

2.3 The model's predictions tested 

The following analyses examine the correspondence between the model's predictions and the 
problem-solving time data, and thus where the model could be improved.  There are several 
comparisons available.  First, the model may fail in fitting the general learning profile. Second, 
the model may fail in matching specific examples of the task (e.g., SA2).  Third, the model may 
fail in modeling individual participants. For each of these analyses the predicted times (in 
seconds) (as 128 ms * model cycles + 3.328 s) are compared with the observed problem-solving 
times. 

Fig. 5 shows the comparison between the predicted and observed average times and 
standard errors in seconds for each fault aggregated over participants and trials for model and 
data.  For both the predicted and observed times there is a general increase in time taken to solve 
the problems from left to right across the device interface. Overall, the pattern of similarity 
between the predicted and the observed problem-solving times by problem type is striking7.  The 
model fits the data well with respect to type of fault.  As Fig. 5 shows, the overlap between the 
predicted and observed distributions of time is substantial for each of the types of faults, and the 
correlation is 0.99.   
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< Insert Fig. 5 about here. > 

Fig. 6 shows that there is a strong relationship between the times the model predicted over 
the series of 20 trials and the time participants took to solve the problems when trials are 
aggregated over participants and faults.  A learning curve is usually a monotonically decreasing 
curve (Newell & Rosenbloom, 1981).  These data, while highly correlated (r=0.99), are not 
monotonically decreasing.  A post-experiment analysis of the series of faults indicated that there 
was a problem with the random assignment of faults, particularly that the first two faults were not 
randomly distributed, appearing on average early in the circuit.  To obtain a smooth, 
monotonically decreasing curve, the average difficulty of faults must remain uniform across the 
series (Nerb et al., 1999).  However, we know that the different faults are not equally difficult.  
The model and the participants both found that faults immediately after the first two faults in each 
series took longer to solve because they are later in the circuit.  Overall, the model's predictions 
about learning across trials are well matched. 

< Insert Fig. 6 about here. > 

The third way in which the model may match the data is its degree of fit for individual 
participants.  Each participant saw a different order of the 20 problems.  Fig. 7 shows the total 
problem-solving time per participant based on the 10 different series of problems that the 10 
participants saw, and the predicted times aggregated over these sets of trials and faults.  It is 
apparent that Participant 5’s problem-solving times are substantially below those predicted. 

< Insert Fig. 7 about here. > 

To explore differences between participants further, each set of model cycles per run of the 
model was regressed against the problem-solving times for each participant individually and the 
correspondence was graphed.  Table 4 shows that the average proportion of variability in 
problem-solving time per participant accounted for by model cycles was 79%.  However, the 
regression was not significant for two of the participants (P5 and P7).  When these participants 
are removed from the analysis the average proportion of variability increased to 95%.  A second 
check on this result is to examine the B coefficient that represents the number of seconds per 
model cycle.  According to this analysis P5 has a rate of 10 ms per cycle and P7 has a rate of 50 
ms per cycle.  Both of these values are substantially lower than the average slope (B) coefficient 
(140 ms/cycle) of the individual regressions or the result of the global regression (128 ms/cycle). 
P5 is performing quickly and with little learning; P7 is harder to characterize, but may be using a 
different strategy than what was taught. 

We examined how the fit varied across time for the eight participants for whom Diag's 
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model cycles provided a good fit to their problem-solving times.  Fig. 8 shows these fits8.  The 
model’s predicted times used here are the model cycles adjusted to the average time per model 
cycle for each participant.  These fits are compelling, in that the model and data are close across a 
range of different series of faults across eight participants.  As a group, these plots show 
substantial amounts of learning, of transfer, and of correspondence between the model’s 
predictions and the participants’ performance.   

Fig. 9 shows the plots of the predicted and observed problem-solving times for the two 
participants whose problem solving time was not well predicted by Diag.  On these plots the 
general regression coefficients are used to create the predictions because the individual regression 
was not significant.  For Participant 5 the predicted times are always longer and sometimes 
substantially so; they appear to know how to perform that task and do not improve.  For 
Participant 7 there is no clear pattern with the participant sometimes taking more time than 
predicted and sometimes taking less time than predicted.   

< Insert Table 4, Fig. 8, and Fig. 9 about here. > 

2.4 Summary 

In summary, the model appears to implement the same strategy as most participants performing 
this task.  Diag’s ability to model the strategy emerges from the structure of the representations of 
the task environment, both the device interface and the instructions, and the operators that search 
through the problem spaces.  Following the traditional Soar approach of predicting problem-
solving times on the basis of model cycles, it was found that Diag’s predictions closely fit the 
aggregated data when examining the specific fault task and the learning profile over 20 trials.  
The version of the model that best predicted the participants' performance was the Diag model 
with learning.  It provided substantially better predictions than Diag without learning or a simple 
task analysis.  Moreover, Diag was successful at modeling the participants' performance when 
aggregated over faults and trials.  Individual regression analyses indicated that the model fit 8 out 
of 10 participants' problem-solving times very well.  The plots of individual fits show a close 
correspondence based on learning and transfer. 

Diag failed to model two participants.  Their percent correct was not significantly worse 
than average.  This suggests that they had adopted an equally successful problem-solving strategy 
but not the one that Diag uses.   
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3. DISCUSSION AND CONCLUSIONS 

In this paper, we have presented a model that both learns and transfers its learning, exhibiting 
significant and human-analogous performance time decreases (in some cases by an order of 
magnitude). The model a does not merely accurately predict problem-solving time for human 
participants; it also replicates the strategy that human participants use, and it learns at the same 
rate at which the participants learn. To achieve these three dimensions (time, strategy, and 
learning rate) of significant similarity to several different human participants shows that the 
model and architecture represent well-founded theories of human cognition. 

We tested the model’s predictions using several different measures of participant/model 
agreement that varied in grain size.  The model’s predictions match aggregated data fairly well at 
three different levels: task type, trial number, and total time by participant.  The model 
predictions were also compared against each individual participant’s problem-solving times.  We 
found that the match for eight participants was very good (the model’s predictions line up with 
the individual problem solving times with correlations above 0.9); and it modestly matched one 
participant’s (r2 = 0.18) and failed to match one participant's problem-solving times (r2 = 0.07). 

The model incorporated an automatic learning mechanism that successfully reproduced 
individual paths of learning.  The model allows us to see where and how expertise arises through 
repeated problem solving at a fine grain of analysis.  The comparison of the model’s performance 
with human behavior shows that the model is a useful representation of what most participants 
do, learn, and transfer in this task.  How the model achieves this provides a number of important 
insights into the cognitive processes involved in learning and raises issues that could usefully be 
considered by models in the future.  We discuss these issues next.   

3.1 Several different types of learning contribute to the learning curve 

How does the model learn?  When the model is examined in detail it is clear that there are several 
different kinds of learning taking place, even though this task is relatively simple. Fig. 10 helps 
describe the learned rules by showing the initial rules and all of the learned rules.  Each problem 
space starts with some initial rules (the white blocks).  The operator augmentation and operator 
result rules are a type of procedural learning.  The operator-creation rules can be seen as episodic 
learning, and the state augmentation rules can be seen as declarative learning.  

< Insert Fig. 10 about here. > 

Learning in Soar is typically viewed as procedural.  Performance improvement through the 
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acquisition of new rules to implement operators, where specific knowledge about how to apply an 
operator is learned through search in another problem space, has been used to explain the speed 
up in performance on a wide variety of tasks (e.g., Seibel-Soar and R1-Soar, Newell, 1990).  The 
fault-finding model implemented here takes advantage of this architectural approach.  Such 
procedural learning accounts for a major part of the learning that takes place in Diag (208 rules, 
or 72.5% of the learned rules), as shown in Fig. 10.  

Another kind of learning produced by the model is a type of episodic learning.  As the 
model attends to different objects in the world it learns which objects it has looked at, which 
objects it should look at next, and what to do if an object is presently in a specific state.  This type 
of episodic learning is a produced through the ATTEND and COMPREHEND operators in Soar.  
As rules are built that encode the information about what has been looked at and what should be 
looked at next, the model is effectively building a trace of its own problem solving.  This trace is 
dependent on the interaction between the internal states of the model and the external world that 
those internal states represent.  If the model did not need to attend to objects in the external world, 
it would not build the episodic rules that it needs to manage its attentional demands.  This 
learning is in some ways similar to Able (Larkin, 1981) and Able-Soar (Ritter, Jones, & Baxter, 
1998).  Episodic learning accounts for fewer of the generated rules (70, or 24.4%), but many are 
in the top problem space so they are useful because they save extensive amounts of work.   

Finally, the model also learns to construct declarative knowledge structures that add 
information to working memory directly summarizing the results of prior problem solving.  When 
that problem state is experienced a second time, a rule fires that simply augments the state with 
the previous results.  There are relatively few of these rules (9, or 3.1%).  They appear late in 
learning, but (as in human learning) such recall provides significant speedup when problem 
solving is already relatively fast.  

The procedural, episodic, and declarative learning that take place all contribute to the speed 
up in performance on this task and appear necessary to predict transfer of learning between 
problems in this task. The model predicts that procedural, episodic, and declarative learning all 
play an important part in the speed up in performance. Given the high degree of fit between the 
model and the participants' behavior, failing to implement any of these types of learning leads to 
less accurate predictions.   

For example, the first time Diag solves the Laser Bank fault (the most complex task), it 
takes 332 cycles and learns 57 rules. On the second solution, it solves it in 185 cycles and learns 
38 more rules, and on the third it finds the fault in 88 cycles and learns 29 rules.  When fully 
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learned (on the fourth trial), Diag solves the task in 14 cycles.   

By artificially teasing apart each of these learning mechanisms, we can see the importance 
of each mechanism.  We performed two such example analyses; first, we ran the model with each 
of the types of learned rules included separately, and then we ran the model with each of the types 
removed. If the 208 learned procedural rules (operator augmentation and operator result) alone 
are included with the initial model, the model finds the Laser Bank fault in 194 cycles.  If only the 
70 learned episodic rules (operator creation) are included with the initial model, the model cannot 
solve the problem because the goal stack is left in an inconsistent state, unsurprising, because 
these operators are predicated on prior experience, and thus do not apply to novel situations.  If 
only the 9 learned declarative rules (state augmentation) are included with the initial model, the 
model finds the fault in 322 cycles, only 10 cycles faster than the initial run of the model without 
learning.  

The second way is to examine removing each kind of learned rule from a fully learned 
model.  If only the learned procedural rules are removed, the model cannot solve the problem 
(again, basically due to unusual goal structures); if only the episodic rules are removed, it takes 
189 cycles (instead of 14), and if the declarative rules are removed, it takes 19 cycles (instead of 
14).  Each rule type makes an important contribution, but the savings are of different sizes and 
come at different points in problem solving, as in human problem-solving.  This analysis again 
makes it clear that to fit individual participant data accurately it is likely that procedural, episodic, 
and declarative learning all need to be modeled simultaneously, and that learning types interact.  
At least part of the reason that other models may not attain such good fits to their respective data 
is that they tend to focus on only one kind of learning.  Here, all the rules are needed to solve the 
problem in 14 cycles.  

It is important to remember that in this model, although different kinds of learning take 
place, a single learning mechanism is responsible for that learning.  The differences in the types 
of learning depend strongly on the requirements of the task itself and the initial representation of 
the task prior to learning.  To complete the task participants need to recall declarative information 
about the structure on the environment and remember where they are in the task, thus requiring 
the use of episodic information.  The proceduralisation of the ensuing behavior is a natural 
consequence of the learning mechanism.   

The close fit of this theory to the learning data provides a possible explanation of the shape 
of learning curves and their variance—this model suggests that performance does not speed up 
according to a simple curve, but according to how much previous learning transfers on each trial.  
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It also explains why and how the model and participants are sensitive to the order of problem 
presentation (Ritter, Nerb, O'Shea, & Lehtinen, 2007).  While many theories posit this effect, 
Diag makes a more detailed and substantiated prediction.  Previous studies attempt to use the 
same task throughout, for example, the same set of light patterns across blocks (e.g., Seibel, 
1963); other studies have some variation in the task across the series where the learning is 
measured, for example, different job-shop tasks (Nerb, Ritter, & Krems, 1999), writing different 
books (Ohlsson, 1992), playing solitaire with shuffled decks (Newell & Rosenbloom, 1981), and 
solving similar yet different math problems (Neves & Anderson, 1981).  If the tasks become 
harder (or much easier) in the course of a series of trials, Diag predicts that for individual series 
the power law of learning will not be obtained and instead a more complex curve will be seen.  
Indeed, our work predicts that even the Seibel task would vary by which pattern of lights was 
presented each time due to ordering effects (a brief analysis is presented in Nerb, Ritter, & 
Langley, 2007).  The series of problems shown in Fig. 7 illustrate this.   

The results in Figure 7 suggest that (at least in some cases) the variation in performance is 
not noise, but is differential transfer of learning across problems of similar surface features but 
different difficulty.  (Where noise appears within a series of the exact same task, such as cigar 
rolling (Snoddy, 1926), Diag suggests that perhaps the tasks are not the same for the subject.)   

When these problems are averaged together, the power law appears showing the importance 
of a more detailed analysis.  These predictions are consistent with several cognitive theories of 
transfer, including those by Singley and Anderson (1989), and Kieras and Polson (1985).  We 
have shown that a Soar model can compute the transfer while learning at the same rate as many 
individual participants, and that a finer grained analysis this model predicts a non power-law 
learning rate on a trial-by-trial basis. 

3.2 Reasoning with diagrams 

From the model, we can derive some implications about how participants reason with diagrams 
and interfaces.  The model supports the idea that problem solvers use the memorized diagram 
information in a cyclical, iterative fashion, even after some practice at the task.  Diag also 
suggests that participants, like the model, learn to use only the information from the diagram that 
is immediately relevant to the context of each stage of problem-solving. While they use the 
diagram to solve problems, they learn to apply only that part of the diagram necessary for the 
task; they do not learn, for example, the reverse path through the circuit.   

The model and the participants both use the internal representations and the external user 
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interface to support problem-solving.  Diag and the participant data suggest that after practice, 
performance of a similar task is driven by recall of each object attended to in a process called 
recognition-driven problem-solving (Chase & Simon, 1973; Klein, 1989).   

One implication of Diag is that if a new task were presented to a trained model, it will need 
more problem-solving on a new task.  This fits with findings reported by Bibby and Payne (1993, 
1996), who looked at a range of problem-solving task (including fault-finding) and instructional 
materials (including diagnostic tables and diagrams).  They found that over a period of 80 trials, 
differences in performance between participants who learned from different instructional 
materials disappeared, only to re-emerge when participants were presented with new tasks. 

Diag can explain these results.   As expertise in the task increases the reliance on the 
instructions (in the current case the diagram) decreases.  It is important to note that the problem 
space that represents the diagram is not lost to the model; merely the need to refer to it directly 
decreases with practice.  When a new task is presented, the model is forced to refer back to the 
diagram to extract the relevant information.  The current modeling enterprise suggests an 
explanation of how the long term consequences of receiving particular instructions emerge from 
the requirement to re-use the instructional representations in new contexts to solve new tasks, and 
it provides an implementation of Rasmussen’s (1983) levels of knowledge. 

In complicated tasks, particularly for tasks that use both internal and external 
representations of the task, forcing the model to interact to obtain information makes information-
seeking behavior to be treated as an explicit task.  Including interaction as a task helps bring the 
model timing into agreement with participants (Byrne & Kirlik, 2005; G. Jones & Ritter, 2000; 
St. Amant, Horton, & Ritter, 2007; Taatgen & Lee, 2003).  This approach to interaction is 
consistent with ACT-R/PM (Byrne, 2001), EPIC (Kieras & Hornof, 2004), and EPIC-Soar 
(Chong & Laird, 1997) in that these approaches have models interact with tasks through 
simulated perception and motor action. 

3.3 Architecture timing predictions 

Having a good measure of the processing rate of the model is important for making a priori 
predictions of reaction times and the time course of problem-solving behavior based on the 
model.  Such predictions can assist with the complicated task of fixing the architecture's timing 
predictions due to many variables, including differences in participants, tasks, task strategies, 
process models, and the architecture itself.   



How, When, and What Learning Happens 23 October 26, 2007 

Soar was originally designed to have a model cycle taking approximately 100 ms.  Newell 
intended that to mean within an order of magnitude around 100 ms, more specifically, between 30 
and 300 ms (Newell, 1990, p. 224, expresses a cycle as ~~100 ms, and on p. 121 this double tilde 
is defined as "times or divided by 3").  Thus, the average predicted cycle time of 140 ms observed 
in this comparison fits well within these bounds.  Soar models of simple tasks often come quite 
close to matching data with a 50-100 ms cycle without adjustments.  These include simple 
reaction times (70 ms, Newell, 1990, p. 273 et seq., but with a modified, minimum operator time), 
covert visual attention (50 ms, Wiesmeyer, 1991, p. 48), and performing the Wicken's dual-task 
(50 ms: Chong, 1998, Appendix F).   

Where Soar models have been compared with more complex behavior, the model cycle rate is 
usually greater than 100 ms (313 and 368 ms, Nerb, Ritter, & Krems, 1999; 145 ms, Peck & John, 
1992 analyzed in Ritter, 1992, p. 146).  Situations where the cycle corresponds to a longer period 
of time can indicate that the model is too intelligent, in that it is performing the task more 
efficiently than participants (and thus taking less cycles because of a more efficient strategy) or 
not performing as much of the task as the participants (e.g., not modeling interaction, errors, or 
search).  This situation is better than having the cycle time being too short, where the model is 
performing more information processing than the participant (Kieras, Wood, & Meyer, 1997).  
The model cycle time reported here may also be unusual because it is one of the first reported for 
individuals (as opposed to aggregate data).  In general, we believe that it will take numerous 
tasks, strategies, and repeated attempts to fix a proper value for parameters such as processing 
rate.  The work reported here fits very well within the range and helps to further define this time. 

3.4 Conclusions 

Constructing a model that reproduces individual data during learning helps us examine how 
cognitive skills develop.  We have shown that it is possible to construct a model using a general 
learning mechanism that can capture learning at the rate it occurs on an individual, trial-by-trial 
level. This approach contrasts with previous models of learning during problem solving, which 
have often succeeded by hand-crafting rules and inserting them into the model as the problem 
solving progresses.  Hand-crafting rules gave the cognitive modeler a high degree of control, but 
at the cost of explaining how such rules arise.   

In this paper, a single learning mechanism embedded within a cognitive architecture, Soar, 
has proven itself sufficient for performing the modeled task, matching aggregate data, and 
matching and sequential data at a detailed level, including the rate of individuals learning over a 
series of 20 trials.  Although there is a single learning mechanism, it is important to note that this 
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single mechanism produced several types of learning: through practice, the model acquires 
procedural, episodic, and declarative knowledge .  The close fit with the data suggests that the 
model's ability to acquire, transfer, and use this knowledge accounts for how the human 
participants learned, and shows how learning and problem solving can lead to more recognition-
based performance.   

It is possible that models in other architectures will be able to duplicate these results. 
Models will require a variety of knowledge, including where to look, how to choose what to 
examine (the internal or external representation of the circuit), and how to learn through 
interaction.  They must also include multiple types of learning, which appears to lead to the 
learning curve in general and to support a theory of transfer based on the individual tasks 
performed. A model built in a different architecture, but of the same task and matching the same 
data, would help modelers better understand and differentiate among architectures and their 
learning mechanisms.  We welcome such contributions—as mentioned earlier, our data, along 
with our model, is available on the web. 
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Table 1.  Examples of the rules learned when solving the EB1 problem repeatedly, summarized 
from the model trace in the online file eb1-trace-bottomup.txt. 

 
LR-1:  IF the DIAG-SUGGESTION operator is applied to a state that has not had any components 

checked, THEN suggest checking the Power Source.  (Procedural, operator implementation) 

LR-2: IF the INTERFACE-SUGGESTION operator is applied to a state that has not had any components 
checked, THEN suggest checking the Power Source. (Procedural, operator implementation) 

LR-3: IF the CHECK-LIT operator in the Test-component problem space is to be applied to the Power 
Source and the Power Source light’s value is not known, THEN propose an ATTEND operator in the 
top problem space that will check the Power Source’s light.  (Episodic, operator creation) 

LR-4: IF the TEST-COMPONENT operator is to be applied to the Power Source and the Power Source 
light’s status is that it is lit, THEN set the component-status to be OK. (Procedural, operator 
implementation) 

LR-9: IF the CHECK-LIT operator in the Test-component problem space is to be applied to the Energy 
Booster 1 and the Energy Booster light’s value is not known, THEN propose an ATTEND operator in 
the top problem space that will check the Energy Booster 1’s light. (Episodic, operator creation) 

LR-31: IF the Energy Booster 1 is the component being checked, and it has been checked, and it is not lit 
and it should be lit, and the previous component checked was the Power Source, THEN the Energy 
Booster 1 is faulty.  (Declarative, state augmentation) 
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Table 2.  The results of a hierarchical linear regression for problem-solving time showing the 

proportion of variability accounted for by each predictor in (forced) order of entry, the change in 

variability from the previous step, and the statistical significance of that change. 

 
 

 Intercept B Beta ∆R2 R2 
Simple Task Analysis 5.169 0.956 0.317 .100** .100** 
Model Cycles (Learning Off) 1.402 0.121 1.082 .037* .138** 
Model Cycles (Learning On) 2.645 0.127 0.840 .577** .715** 
*p < 0.05, **p < 0.001 
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Table 3.  The results of a hierarchical linear regression for problem-solving time showing the 

proportion of variability accounted for by each predictor in (forced) order of entry, the change in 

variability from the previous step, and the statistical significance of that change. 

 

 Intercept B Beta ∆R2 R2 
Model Cycles (Learning On) 3.238 0.128 .845 .714** .714** 
Simple Task Analysis 3.261 0.000 -.001 .000 .714** 
Model Cycles (Learning Off) 2.645 -0.671 -.222 .001 .715** 
**p<0.001 
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Table 4.  The degree of fit (R2), intercept (in seconds), and regression coefficient (B, in seconds 

per model cycle) when cycles is regressed against problem-solving time, and the number of 

correct responses for each individual participant. 

 

Participant R2 Intercept B N 
P1 0.92** 1.87 0.14 19 
P2 0.98** 2.12 0.17 16 
P3 0.94** 2.12 0.18 19 
P4 0.97** 2.09 0.15 20 
P5 0.07 4.10 0.01 20 
P6 0.95** 2.27 0.18 18 
P7 0.18 9.50 0.05 19 
P8 0.94** 4.19 0.12 19 
P9 0.98** 2.53 0.15 17 
P10 0.97** 1.77 0.15 18 
Mean 0.79 3.26 0.14 18.5 

  **p<0.01 
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PS EB1 EB2 MA SA1 SA2 LB

off on       eb1 eb2    sa1 sa2        sa ma

off  off off

 

 

PS EB1 EB2 MA SA1 SA2 LB

off on       eb1 eb2    sa1 sa2        sa ma

off  off off

 

PS EB1 EB2 MA SA1 SA2 LB

off on       eb1 eb2    sa1 sa2        sa ma

off  off off

 

Fig. 1a.  The laser-bank interface that the participant used to find the faulty component.  Boxes 
(the lights) below the abbreviations and above the switches (the arrows) when grayed indicate 

components that are working.  The top interface illustrates a component fault (component EB1 is 
faulty).  The middle and bottom interfaces have a Secondary Accumulator Two (SA2) and a 

Laser Bank (LB) fault, respectively. 
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Imagine that you are on board a Klingon warship under attack from the Starship 
Enterprise for attempting to smuggle arms to the planet Orion III, your new allies.  
Your job is to operate the new laser weaponry developed using designs based on the 
phasers on board the Enterprise.  The laser system has been designed so that it can be 
made to work when some of the components are broken.   
 The laser system comprises a power source (PS), two energy boosters (EB1 and 
EB2), accumulators (MA, SA1 and SA2) and the laser bank (LB).   
 Power is routed through the system by changing the position of switches directing 
the power from the power source on to one of the energy boosters then to one of the 
accumulators and finally an accumulator is selected to send power to the Laser Bank.  
 If a component is in working order then its indicator light will come on when it is 
receiving power. 

 

Fig. 1b. General introduction to the device. 
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Off On

EB1 EB2

SA1
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Fig. 1c.  Schematic of the laser-bank device. On the interface display, and later in the text and 

figures of this paper, straightforward abbreviations are used to refer to components in the 

schematic.  For example, PS stands for Power Source, LB for Laser Bank, and the rest are given 

above on the switches.  
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Fig. 2.  Organization of the model showing its hierarchical structure.  Triangles represent problem 

spaces; circles represent operators (in small caps).  Links to sub-problem spaces to implement 

operators are represented by a link labeled with the operator name in parentheses.  
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Fig. 3.  Operator applications in the model the first time it solves the 

 Energy Booster 1 fault.   
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Fig. 4.  Operator applications in the model the second time it solves the Energy Booster 1 fault.  

The numbers on the operators correspond to their use in the previous run shown in Fig. 3.   
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Fig. 5.  Predicted and observed problem-solving times (means and standard errors) for the seven 

different faults averaged over participants and trials. 
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Fig. 6.  Predicted and observed problem-solving times (means and standard errors) for the 20 

trials averaged over participants and faults. 
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Fig. 7.  Predicted and observed average problem-solving times (means and standard errors) for 

the 10 participants and for the model run on the series each participant saw. (Each participant saw 

a unique series of problems.) 
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Participant 1  

Participant 6 

 
Participant 2  

Participant 8 

 
Participant 3  

Participant 9 

 
Participant 4 Participant 10 

Fig. 8.  Predicted problem-solving times (based on individual regressions) and the 
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observed times in task presentation order for the 8 out of 10 participants for 
whom Diag’s model cycles significantly predict problem-solving time.  

 

 

 

 

 

 

Participant 5 

 

Participant 7 

 

Fig. 9.  Predicted (using global regression coefficients) and observed problem-

solving times in task presentation order for the two participants for whom Diag 

does not significantly predict problem-solving time. 
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Fig. 10.  Initial and learned rules organized by problem space. 
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Notes 

                                                

1 Although Anzai and Simon (1979) did look at detailed performance, it was for only one 

participant. 

2 Two example series have been created as pdf files and are included on the web site.  Figures 8 

and 9 show all of the series. 

3 The model, an executable version of Soar for the Macintosh, example traces, example stimulus 

sets (recreated as pdf files), and the data reported below are available at 

acs.ist.psu.edu/projects/diag 

4 This mechanism is called chunking in Soar, but is a type of procedural learning.  

5 We relabel these learned rules as LR-1 and so on; in the trace file they appear as Chunk-1 and 

so on. 

6 For simplicity and clarity we refer to Soar’s decision cycle here as model cycle or just cycle. 

7 Altmann and Tafton (2002, Fig. 5) also found a fit this good for aggregate data.   

8 The differences between the predictions of the individual and global regression coefficients 

being used to generate predictions are small; both are included in the data analyses file on the web 

site.  




