
In J. Carroll (Ed.), 2001. Human-computer interaction in the new millennium. 125-147. Reading, MA: Addison-Wesley.

1 31 October 2000

User interface evaluation: How cognitive models can
help

FRANK E. RITTER*,
Penn State University

GORDON D. BAXTER
University of York

GARY JONES
University of Derby

and

RICHARD M. YOUNG
University of Hertfordshire

* Contact author, School of Information Sciences and Technology, Penn State, 512 Rider Building,

120 S. Burrowes St., University Park, PA 16801-3857 (814) 865-4453 (office), 865-5604 (fax)

ritter@ist.psu.edu

2 31 October 2000

Abstract

Cognitive models are computer programs that simulate human performance. They have been

useful to HCI by predicting task times, by assisting users, and by acting as surrogate users. If

cognitive models could interact with the same interfaces that users do, the models would be easier to

develop and would be easier to apply. This approach can be encapsulated as a cognitive model

interface management system (CMIMS), which is analogous to and based on a user interface

management system (UIMS). We present several case studies showing how models can interact

using mechanisms designed to apply to all interfaces generated within a UIMS. These interaction

mechanisms start to support and constrain performance in the same ways that human performance

is supported and constrained by interaction. Most existing UIMSs can and should be extended to

create CMIMSs, and models can and should use CMIMSs to look at larger and more complex tasks.

CMIMSs will help to exploit the synergy between the disciplines of cognitive modeling and HCI by

supporting cognitive models as users.

Support has been provided by DERA and by the UK ESRC Centre for Research in Development, Instruction and Training.

The views expressed in this paper are those of the authors and should not be attributed to the UK Ministry of Defence. In

addition to the authors and those cited, we would like to thank Joe Mertz, Josef Nerb, Sarah Nichols, Gary Pelton, Paul

Hall, and David Webb who have helped implement these examples. We thank Jans Aasman, Erik Altmann, Paul Bennett,

Michael Byrne, Wayne Gray, Steve Sawyer, and several anonymous reviewers for comments.

3 31 October 2000

1. THE SYNERGY BETWEEN COGNITIVE MODELING AND HCI

Cognitive models -- simulations of human behavior -- now perform tasks ranging in complexity

from simple mental arithmetic to controlling simulations of complex real-time computer based

systems, such as nuclear power plants. In the future these models will become even more powerful

and useful.

We describe here an approach for allowing cognitive models1 more direct access to the interfaces

users see. This is done by adapting ideas taken from user interface management systems (UIMSs)

and extending them so that cognitive models can interact with any interface built within the UIMS.

This will allow cognitive models to be utilized as an interface design and evaluation tool on a wider

range of interactive systems as previously envisioned (e.g., Olsen, Foley, Hudson, Miller, & Meyers,

1993). There are advantages of this approach for HCI and for modeling.

1.1. The Advantages for HCI

Human-computer interaction (HCI) has used cognitive models successfully in three main ways

(John, 1998). The first way is to help examine the efficacy of different designs by using cognitive

models to predict task performance times (e.g., Sears, 1993). The GOMS family of techniques

(Card, Moran, & Newell, 1983; John & Kieras, 1996) particularly have been successfully deployed.

These models can help create and choose better designs, sometimes saving millions of dollars (e.g.,

Gray, John, & Atwood, 1993). The next step is to provide these and more complex models in

design tools to provide feedback for designers.

The second way is by using cognitive models to provide assistance such as with an embedded

assistant. In particular, models can be used to modify interaction to help users with their tasks. This

technique has been employed in cognitive tutors (e.g., Anderson, Corbett, Koedinger, & Pelletier,

1995). Some of these model-based tutors can be regarded as an example of what are commonly

described as embedded agents or embedded intelligent assistants. The next step is to make the

development of such models a more routine process.

The third way is by using models to substitute for users. These models are useful for populating

synthetic environments (Pew & Mavor, 1998), for example, to simulate fighter aircraft crews in a

simulated war scenario (Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999). In the future they

will also lead to models that can test interfaces by behaving like a user. Using models as users has

been envisioned before (e.g., Byrne, Wood, Sukaviriya, Foley, & Kieras, 1994; Lohse, 1997), but

1Unless specified, 'model' refers to the model of the user, and 'simulation' refers to the simulation of the task.

4 31 October 2000

has not yet been widely applied. The next steps are to provide models with more realistic inputs

and outputs mirroring human performance and to apply them more widely.

A real impediment to each of these uses has been the difficulty of connecting the cognitive

models to their task environment (Ritter & Major, 1995). Either the connection or the interface has

to be built -- sometimes both. Further, this connection should mimic the limitations and capabilities

of human performance.

1.2. The Advantages for Models

Providing models with access to interfaces facilitates further development of the models and will

open up new applications and expand existing ones. The main advantage is that the models will

gain access to a much wider range of tasks than can be simulated in modeling languages. Early

modeling work examined static tasks, keeping track of the task state in the model's head, at least

partly because it is difficult to develop a model of an interactive task without providing the model

with a capability to interaction with an external world (for a review of early models, see Ritter &

Larkin, 1994). If previous models (e.g., Bauer & John, 1995; Howes & Young, 1996; John, Vera,

& Newell, 1994) had been able to use the same interface as the corresponding subjects used, they

would have been applied and tested on more tasks and would have been able to cover a wider range

of behavior, skills, and knowledge.

Creating an model that is embodied (i.e., with perception and motor actions) further constrains a

model by restricting the model to interact only through its hand and eye. Although the constraints

imposed by physical interaction may be relatively small on simple puzzle tasks, they are much more

significant on interactive tasks. The models presented later incorporate knowledge related to

interaction such as where to look on the interface to find information. The models require a depth

and range of knowledge about interaction, predicting that users do too.

Keeping the task simulation distinct from the cognitive model has three advantages. First, it

makes development easier because the model and the simulation can be tested and debugged

independently. Second, it makes it less likely that the modeller will unintentionally incorporate

assumptions about the task into the cognitive model, or about cognition into the task simulation.

Third, it makes it easier to use different cognitive models with the same task simulation, or to apply

the same cognitive model to different tasks. When a model performs a task in its own 'mind', it is

difficult to utilize the model or the task elsewhere, because they are specific to a detailed set of

circumstances. Where a model is developed that works with one interface, there may be other

interfaces to which it can be applied as well.

Working with existing external simulations of tasks can make model development easier because

it removes the need to create the task simulation using cognitive modeling languages, which is a

5 31 October 2000

difficult activity. There is less development required because only one interface has to be created

and updated if the model (or others) suggest changes. There is also less question about whether the

model and the subject had access to the same material. Several of the case studies use simulations

that already existed, thus relieving the modeler from developing the task simulation.

Finally, this approach leads to theory accumulation. In the examples we describe later the

models are developed using a cognitive architecture (Newell, 1990), also referred to as an integrated

architecture (Pew & Mavor, 1998) when interaction is included. Cognitive architectures are theories

of the common modules and mechanisms that support human cognition. They are typically

realized as a programming language specifically designed for modeling, such as Soar (Newell,

1990) or ACT-R (Anderson & Lebiere, 1998). Cognitive architectures offer a platform for

developing cognitive models rapidly whilst still maintaining theoretical coherence between the

models.

Although there are tools to develop user interfaces, and there are tools that help develop

cognitive models, there are none that support connecting cognitive models to a wide range of

interfaces. In the rest of this paper we develop an approach to allow cognitive models access to the

same user interfaces as users. Section 2 describes the cognitive modeling process, and introduces

the concept of a cognitive model interface management system (CMIMS). Section 3 describes

examples where models perform interactive tasks using the same type of simulated eye and hand

implemented in different interface tools and modeling languages. These examples, when

considered together with a review of related systems, suggest possible applications and indicate

where further work is necessary. Section 4 assesses the implications of these projects and identifies

ways in which integrated models could be exploited in the development of user interfaces.

2. A ROUTE TO SUPPORTING MODELS AS USERS

The cognitive modeling process is unique in many respects, although the artifacts created by it are

similar to products generated during the development of interactive software applications. We

examine here the cognitive modeling process and introduce an approach to supporting cognitive

models as users.

2.1 The Artifacts of the Cognitive Modeling Process

The cognitive modeling process, particularly as applied to the interactive tasks examined here,

attempts to produce a cognitive model that performs like a human. The veracity of the cognitive

model is tested by comparing its performance with human performance. The differences between

the two are analyzed to understand why they occur, and then the cognitive model is appropriately

refined, in an iterative cycle (Ritter & Larkin, 1994).

6 31 October 2000

The cognitive modeling process can be viewed as producing three artifacts, each of which fulfills

a particular purpose. The first artifact is the cognitive model itself, which simulates the cognitive

performance and behavior of a human performing the task. As theory, it has primacy.

The second artifact is a task application or its simulation. Simple, static task applications, such as

small puzzles like the Tower of Hanoi where the state of the task normally changes only in response

to the user's actions, can often be implemented using the cognitive modeling language. Dynamic

tasks, however, where the state of the environment can evolve without outside intervention, are best

implemented separately. Where the original task is computer based, the simplest and most accurate

approach is to allow the model to use the original task environment.

The third artifact is a mechanism that supports interaction between the model and the task

simulation. It simulates human perception and action and provides a way for the model and

simulation to communicate. The need for this linkage mechanism is most apparent in tasks in

which the cognitive model has to interact with a task simulation implemented as a separate program.

There are existing tools that support the development of cognitive models, and of task

applications. There are few tools that support the creation of the type of linkage mechanism

required in cognitive modeling, however. User interface management systems are good candidates

to build upon.2

2.2 The Role of User Interface Management Systems

To provide models with access to the same interfaces as users, perhaps the best place to start is to

consider tools used to develop user interfaces. In interactive software applications, the

communication between the user interface and the underlying application is often implemented as a

separate component. This component consists of a set of functions that provide a robust, uniform

way of connecting the two. Cognitive models also require a set of capabilities that allow them to

interact with the task simulation but can be modified to approximate human limitations and

capabilities. Any initial considerations for a toolkit to support the cognitive modeling process will

therefore need to incorporate (a) a tool to create interfaces, (b) a run-time mechanism that lets the

cognitive model interact with the task simulation (i.e., a model eye and hand), and (c) a

communication mechanism that passes information between the cognitive model and the task

simulation.

User Interface Management Systems (UIMSs) provide a similar set of features for the

development of interactive applications, supporting interface creation and helping to manage the

2An alternative linkage mechanism is to recognize objects directly from the screen (Zettlemoyer & St. Amant,

1999).

7 31 October 2000

interaction when the interface is used (e.g., Myers, 1995). UIMSs can be used to create interfaces

and applications in their implementation language, or can create interfaces that are tied to external

applications. By definition UIMSs provide a set of features that very closely match our

requirements.

UIMSs also offer a way to apply this work widely. They are designed to create multiple

interfaces. Working within an UIMS will lead to the models being able to use any interface created

with the UIMS.

2.3. Cognitive Model Interface Management Systems

The approach we are creating by extending a UIMS to support models as users can be described as

a Cognitive Model Interface Management System (CMIMS), a system for managing the interactions

of a cognitive model analogous to how a UIMS manages a user's interactions. The name CMIMS

reflects the parallels with UIMSs, particularly the parallel needs between (human) users and

cognitive models.

Figure 1 depicts a CMIMS, showing the functional aspects of tying together a task simulation

and a cognitive model. On the left of the figure is the user interface of a task simulation and on the

right is the cognitive model. The first step in getting the model to interact with the task simulation

is to extend the cognitive model to be a more complete model of the user by adding a simulated

eye and a simulated hand to provide the model with capabilities for perception and action. We have

found that the simulated eye and hand are best implemented in the same environment as the task

simulation. The simulated eye needs access to the visible task objects (i.e., to the objects in the

display) to create descriptions for the cognitive model and the simulated hand needs to be able to

implement the model's actions in the environment. UIMSs provide facilities that support these

functional capabilities. In particular, in UIMSs there are tools to find which objects occlude other

objects (such as the simulated eye being over a textual label on the display), the capability to send

mouse and keyboard actions to the interface, and the ability to create displays and control panels.

The second step is to link the cognitive model to the simulation, also that the model’s eye can

observe the simulation and pass back information to the cognitive model, and so that the model's

hand can pass actions to the simulation. The end result is a model of a user in contact with a task

environment, where information about the environment, and actions on the environment, is

conveyed and constrained by the simulated eye and hand.

The resulting configuration is shown in the linked boxes across the middle of Figure 1. The

model of the user is now split into two parts, with the simulated eye and hand implemented in the

same software environment as the simulation, whilst the cognitive model is separate. Interaction

between the model and simulated eye and hand occurs via a communication mechanism; its nature

8 31 October 2000

will vary depending on implementation language and machine choice. Incorporating the simulated

eye and hand into the UIMS potentially allows them to interact with any interface in the UIMS.

Thus, it provides models with routine access to interfaces.

The arrows underneath the boxes represent the scope of the various tools. Particularly where the

user's task involves interaction with a computer interface, the task simulation is well supported by

standard UIMSs. The dashed extension to the UIMS arrow denotes that the facilities needed to

implement the eye and hand can usually be based on existing facilities in the UIMS. However, the

simulated eye and hand place requirements that not all UIMSs or related systems currently satisfy.

Next, the CMIMS arrow reflects our suggestion for the development of Cognitive Modeling

Interface Management Systems. A CMIMS would need to include the simulated eye and hand, as

well as the communication mechanism between them and the cognitive model.

Architectures will differ in how they represent and use the results of vision, and how they prepare

to perform motor output. For all of the architectures, however, visual search is required to find

information to examine, the amount of information available at any point is limited, and

performing visual search takes time. Similar restrictions apply to the motor output.

CMIMS
Cog modelling tool,
e.g. a cognitive
 architecture

Model of user

Cognitive
model

UIMS

User
User

interface
Communication

mechanism

Fig. 1. A cognitive model tied to a user interface of a task simulation, where the model and the
simulation may be running in different environments (programming languages, processes, and/or
computers). The hand and eye are implemented in the same UIMS as the task simulation.

In the far left of Figure 1, the circle labeled User indicates that the cognitive model can work with

the same task interface as users. This feature supports gathering data to test the model. It also

indicates that the user can work with the model serving as a helper or agent within the user's

interface.

9 31 October 2000

2.4 A Functional Model Eye and Hand

The Sim-eye and Sim-hand3 are the most important parts of the CMIMS. They bring the model

into contact with the interface. We have created an initial set of functional capabilities and empirical

regularities on which to base models of interaction (Ritter, Baxter, Jones, & Young, in press). With

each additional refinement to the implementation, the models had more capabilities and have

exhibited more of the regularities.

These capabilities and regularities, such as the size of visual acuity and the speed of motor

movements were chosen based on a literature review (Baxter & Ritter, 1996) as important for an

initial model of interaction. These capabilities are fundamental necessities to support interaction,

and the regularities are the most important constraints on performance.

Models exhibiting a greater number of empirical regularities can be created with these

capabilities. This could, for example, include relative recognition rates of different colors. The

most important point is first to support the process of providing cognitive models access to

interfaces in UIMSs by providing these functional capabilities. Providing functional capabilities

first and then modifying the Sim-eye and Sim-hand to match more empirical regularities has

proved to be a useful development strategy. For example, by giving the Sim-eye and Sim-hand

visible representations, the modeler can observe their behavior on the display screen, and uses these

observations to refine the implementations and use of the Sim-eye and Sim-hand.

The Sim-eye and Sim-hand are controlled by the model through a simple command language.

The Sim-eye can be moved around the display using the saccade command to move the eye, and

can inspect what appears at the current location on the display using the fixate command. The

saccade and fixate commands are implemented using functions in the UIMS for handling mouse

actions, manipulating display objects, and drawing. Once implemented, the Sim-eye can see

(access) every object on interfaces built within that UIMS provided that the UIMS uses a regular

representation of objects that can be accessed at run time. Users and the model see the same display

(to the limit of the theory of vision implemented in the Sim-eye).

The Sim-hand also has a set of commands that allow the model to move its mouse around the

display, and to perform mouse actions, such as press-mouse-button, release-mouse-button, and so

on. The Sim-hand implementation will vary based on the UIMS's relationship to its operating

system.

3 In order to emphasise the distinction between the model's capabilities and human capabilities, we refer to the

model's implementation of visual perception as the Sim-eye, and the model's implementation of motor action as

the Sim-hand.

10 31 October 2000

In our models, which do not look at very rapid interaction, cognition generates an interaction

command and then waits for the perceptual and motor operations to complete. While our models

have used these capabilities in a synchronous way, this design allows cognition and interaction to

occur in parallel.

We next examine how this functional model of interaction can support models as users. These

case studies show that it is possible to create CMIMSs, and the advantages in so doing.

3. EXAMPLE COGNITIVE MODELS THAT INTERACT

We have created a series of cognitive models that interact with task simulations. We present here

examples developed using tools that can be described as UIMSs. Two further examples are

available that use a Tcl/Tk based CMIMS to model dialing a variety of telephones (Harris, 1999;

Lonsdale & Ritter, 2000) and exploratory search in interfaces (Ritter et al., in press). A different set

of examples would yield a different set of lessons, but we believe only slightly different. We see

many commonalties across this diverse set. We also review some other systems that model

interaction.

3.1 A Simplified Air Traffic Control Model

The first task simulation is a simplified air traffic control (ATC) task (Bass, Baxter, & Ritter, 1995).

It was designed to explore how to create a general eye, and to let us understand what a model would

do with an eye. Such a model could also help support the user by predicting what they would do,

and then to assist them or do it for them.

We had access to ATC task simulators, but not to one that we could have our model interact with,

let alone interact in a psychologically plausible way. A task simulation had to be developed,

therefore, to allow the task to be performed both by the cognitive model and by users. The user

interface, shown in Figure 2, is a simplified version of an air traffic controller's display screen. It

includes some of the standard features that would appear on a real controller's screen, such as range

rings. The current position of the aircraft is indicated by a track symbol (a solid white square) that

has an associated data block depicting the aircraft identifier (cx120), its heading (135°), its speed

(150 knots), and its altitude in hundreds of feet (e.g., 200 represents 20,000 feet).

The simulation is a simplified version of an approach air traffic control up to the point where

aircraft would normally be handed over to ground controllers. So, for example, when an aircraft is

directed to change its heading, the turning time is not based on a detailed aircraft model. The task

simulation does, however, provide facilities that allow the model to control the behavior of the

aircraft by instructing it to change its speed, heading, and altitude. When an aircraft comes close

enough to the airport it is removed from the display and tagged as landed.

11 31 October 2000

The basic task involves learning how to direct a single aircraft to land at an airport located at the

center of the display. The choice of flight path is based on finding and reading the wind speed and

direction. The aircraft has to be guided along a path identified by a number of way markers, which

appear on the screen as crosses. A crucial element of the task is that change of heading commands

must be issued at the appropriate time, which requires that the cognitive model be able to detect

when an aircraft is approaching a way marker.

The simulation was implemented using the Garnet UIMS (Myers, Giuse, Dannenberg, Vander

Zanden, Kosbie, Pervin, et al., 1990), chosen because it was familiar and provides fairly general

support for creating interfaces. The model was implemented in Soar.

3.1.1 Visual Perception and Action. The Sim-eye was implemented as part of the user interface

developed within Garnet. The visible representation of its data structure consists of a transparent

rectangle outlined in white (representing the area of the screen that would normally project onto the

fovea of a real eye, the area of most acute vision. When a fixate command is sent by the model, the

details of the objects appearing inside the foveal rectangle are sent back to the cognitive model as

symbolic descriptions. This Sim-eye includes a coarse level of vision outside the fovea, providing

to cognition the location of objects that appear outside the fovea. The Sim-eye is moved around

the ATC display window (center left in Figure 2) by the model placing saccade commands to be

processed into the Soar-IO facility. When the Sim-eye saccades, previous visual elements are

removed from cognition, a plausible theory of visual input (Horowitz & Wolfe, 1998).

The Sim-hand was initially implemented as simple function calls to the task simulation via the

Soar-IO facility. Later, a Sim-hand (Rassouli, 1995) was included. The revised version of the ATC

cognitive model helped to illustrate two of the difficulties involved in modeling task interaction. (a)

Some eye-hand coordination knowledge is needed, and further work needs to be done to explore

the best way to gather this from subjects and include it in models; and (b) there is an opportunity to

gather and include additional regularities about visual attention, including those relating to mouse

movements, such as moving the mouse to a flashing light or object.

3.1.2 The communication mechanism. The communication mechanism is implemented by a

system called MONGSU (Ong, 1994), based on UNIX sockets. It allows any pair of Lisp or C-

based processes to communicate using list structures and attribute-value pairs.

12 31 October 2000

ATC Simulation

File RadarScope Command Communication Logging Information Utilities

WIND HEADING - 10 0 10
20

30

40

50

60

70

80

90

100

110

120

130

140

150

160
170180190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340
350

cx120
135
150
200

Plane Information

Fig. 2. The ATC simulation display showing the model's fovea (the white rectangle on the left hand
side of the figure), before it moves to the plane labeled "cx120".

3.1.3 Summary. The ATC model demonstrated that a simple but functional Sim-eye could be

created using an existing UIMS. This model used knowledge that has not often been seen in a

cognitive model: where to look and how to visually monitor. Knowledge about the ATC display

had to be included in the cognitive model because when and where to look at the screen is domain

dependent.

Moving the Sim-eye around to see objects on the display slowed down the performance of the

model because it had to work to get information -- all the problem information was not resident in

the model. The model had to find both the wind heading and the plane using its peripheral vision.

Surprising to us at the time, but quite clear in hindsight, is that the eye is not just the fovea -- the

periphery is needed even for simple search, otherwise the model has tunnel vision and must

carefully scan the entire screen with its fovea. So, an apparently trivial task became an intricate

process, involving its own level of problem solving and search based on the external interface.

These behaviors suggest that knowledge acquisition studies of expert performance should not just

examine what experts do but must also examine what they look for, and where and when they look.

13 31 October 2000

The symbolic descriptions returned upon a fixation are based on the graphical object hierarchy

in Garnet. It is easy to create a general Sim-eye when all the objects to be recognized are part of a

hierarchy.

The use of sockets as a communication mechanism added an extra layer of complexity because

it required the modeller to start two processes instead of one. Establishing a connection that is

external in some way is also more prone to human and network errors than working within a single

process.

3.2 Tower of Nottingham Model

The Tower of Nottingham is a puzzle where wooden blocks are assembled to form a pyramid of

five different size layers each comprising four blocks of the same size, with one pinnacle block. It

has been used extensively to study how children's abilities to learn and communicate develop.

The extensive interactive nature of this model and its task, including learning while searching, is a

fairly useful, simple way to explore some of the important and common issues in interaction in

many screen-based manipulation tasks. The model's and subjects' visual search and object

manipulations in service of problem solving are analogous to manipulation in graphical user

interfaces and to some aspects of graphic design in drawing and CAD/CAM packages.

The blocks simulation is written in Garnet. The complexity of the task precludes simulating the

task with a cognitive modeling language. The model is written using the ACT-R (v. 3.0) cognitive

architecture (Anderson & Lebiere, 1998), although an earlier model was in Lisp.

3.2.1 Visual Perception and Motor Action. The task simulation, shown in Figure 3, includes a

Sim-eye and a pair of Sim-hands represented graphically, which makes its behavior readily visible.

The Sim-eye and Sim-hand are controlled using commands similar to the ATC system's commands,

particularly moving the Sim-eye to a location and fixating upon that location, and moving the Sim-

hands. The command language was extended to enable the Sim-hands to grasp, release, and rotate

blocks. Although this level of representation is more abstract than mouse movements it represents

the atomic cognitive actions in this task, allowing the model and the modeler to represent interaction

in an appropriate way.

When the Sim-eye is requested to fixate, it passes back to the model the relevant blocks and

block features as moderated by area of the eye the blocks are in. There is a small difference

between the level of information available from the Sim-eye's fovea and parafovea. The features

and sizes of blocks in the fovea are reported accurately, and those in the parafovea are subject to a

small, adjustable amount of noise. This mechanism provides a way to mistake similar sizes and

similar features.

14 31 October 2000

Once an action is completed the cognitive model is informed. The model can then manipulate

the Sim-eye to verify the results. Although actions are currently always completed successfully, it is

especially useful for the Sim-eye to fixate when fitting blocks together or disassembling block

structures, because this can change the model's representation of the current state of the task.

The model thus predicts that some mistakes are caught before they are executed. The features of

blocks in the parafovea are not always correctly seen. If a block is incorrectly seen as having the

target features when it is in the parafovea, the eye will saccade to the block to prepare to pick it up

and the hand will move to the block as well. When the block image is located in the fovea, the

correct features will be seen and the action abandoned. This behavior of moving hands to blocks

but not picking them up seems to occur in adults, and suggests there are types of mistakes that are

not fully overt. This type of mistake is likely to occur for adults using interfaces as well.

Fovea Parafovea

Fig. 3. The Tower of Nottingham. The fovea is the small black outlined square in the center of the
block in the top left corner. The parafovea, shown as a dashed line, extends approximately two
fovea widths in each direction beyond the fovea. The left Sim-hand has picked up one of the
largest blocks.

3.2.2 The Communication Mechanism. Interaction between the cognitive model and the task

simulation uses Lisp function calls because both are in Common Lisp. The cognitive model sets up

a goal in ACT-R for each interaction it wishes to perform. Each goal causes the appropriate

function for the Sim-eye or the selected Sim-hand to be called. When the interaction is complete,

the relevant goal in the cognitive model is noted as achieved. The model can then terminate the

goal and continue its behavior.

3.2.3 Summary. This case study further indicates that the Sim-hand and Sim-eye are generally

applicable, and that they can be used by a different cognitive architecture, in this case, ACT-R.

Using a common language for the model and the task simulation makes them easier to implement,

test, and run.

15 31 October 2000

The importance of perception in task performance that had been found in the ATC model was

confirmed. Explicitly controlling the Sim-eye and Sim-hands changed the model's behavior.

Including perception and explicit motor actions forced the model to expend time and effort to find

and assemble blocks. The performance of the model matches the performance of adult subjects on

the task reasonably well because the whole task was modeled and the necessary learning could

occur in visual search, in cognition, and in output. The model spent approximately half of its time

interacting with the simulation, suggesting that any model for a task involving interaction requires

an external task in order to accurately reflect human behavior.

We were able to examine more closely how problem solving develops. Several important

developmental theories were implemented in the model, and their predictions compared with

children's data, showing that changes in strategy choice is the most likely candidate for what

develops in children (Jones, Ritter, & Wood, 2000).

3.3 Electronic Warfare Task Model

The final example is a simulated eye and hand in SLGMS, an object oriented, real-time dynamic

UIMS. Tenet Systems, the UK sales agency for SLGMS, developed the Sim-eye and Sim-hand

under our direction. They had access to the SLGMS system's source code, which is necessary for

developing a CMIMS. The design, and to the best of our knowledge the implementation, allows the

model to interact with any SLGMS interface.

In the upper window of Figure 4 there is a simplified interface that was used to develop and test

the Sim-eye and Sim-hand. In the lower window is a control panel based on what we learned from

the Tcl/Tk models (Ritter et al., in press). The control panel displays the current state of the Sim-

eye and Sim-hand, making debugging easier because the state it visible and the Sim-eye and Sim-

hand can be manipulated prior to programming the model.

3.3.1 Visual Perception and Motor Action. The Sim-eye has been extended to provide

perception of objects located in parafoveal and peripheral vision with several configurable options

to facilitate theory development, such as fovea size and how shape and color interact to attract

attention. By default, the detail provided for objects appearing in the parafovea is less than that of

objects appearing in the fovea, but greater than that of objects appearing in the periphery. Only a

few features like location and motion are available for peripheral objects, whereas shape, color,

orientation, size, and location are available for foveal objects. There were many new types of

objects in this task, so this implementation allowed for the eye to be appropriately adjusted based on

further relevant experimental or published information. The commands to manipulate the Sim-eye

and Sim-hand are the same as in previous examples.

16 31 October 2000

Fig. 4. The Dummy Application Window is a simple test application. The control panel includes
controls (upper left of this window) for the Sim-eye and Sim-hand, and continuing along its top,
two displays showing the current position (screen view) and detailed contents of the fovea (eye
view). Along the bottom are listings of objects sent from the eye to the model, and the commands
in each direction sent through the linkage mechanism. Normally these two windows are on
different monitors.

3.3.2 The Communication Mechanism. The connection between the cognitive model and the

task simulation is based on the ideas in the MONGSU interprocess communication utility that we

used in the ATC example. The cognitive model is being implemented in Soar (v. 7.1), which

incorporates Tcl/Tk and hence provides built-in commands to manage socket communication.

3.3.3 Summary. We have learned several lessons. First, the transfer of the general Sim-eye and

Sim-hand design to another development environment provided further evidence of the generality

of this design. The Sim-eye and Sim-hand were implemented in SL-GMS in just two weeks,

demonstrating that CMIMSs can be quickly understood and implemented by others.

Using two separate display screens, with the simulation (driven by the cognitive model) on one

screen and the control panel (driven by the modeller) on the other, solves several problems. During

debugging there is a need for the modeller to be able to view the interaction control panel and the

17 31 October 2000

task simulation simultaneously. By using a dedicated display screen, the control panel can be

extended to incorporate additional debugging facilities. Using separate screens allows the cognitive

model to control the Sim-hand's mouse pointer on one screen, whilst the modeller has control of the

mouse pointer for the control panel on the other screen. Without this capability the modeller

cannot query the model while it runs and the model and modeller come into conflict trying to use

the same mouse.

An initial model of a corresponding radar task with this display was implemented in Soar before

the Sim-eye and Sim-hand implementations became available. None of the model's 70 production

rules scan the display or perform interaction. It is clear that tying this model to the interface in

Figure 4 will profoundly change the model's task from a geometry task of computing intercept

angles to a scanning and monitoring task with geometry as only a subcomponent.

3.4. Related Systems

Other examples where models interact with simulations provide further lessons. The related systems

presented here have used three UIMSs, and typically can present displays on more than one type of

machine. The simulation languages are usually closely tied to the UIMS.

The Soar agent simulations (Jones et al., 1999), which support large scale military training

exercises, and MIDAS (Corker & Smith, 1993), which is a design tool for aviation systems that

includes a model user, interact directly with simulations without a perceptual/motor filter via

function calls for actions and data structures for perception. This approach to interaction has the

advantages that it is easy to implement; it is not tied to a specific cognitive architecture; and, most

importantly, it can quickly provide a rich environment and task for the models. Interacting through

simple function calls, however, fails to provide as much constraint on cognition. In this approach as

well, humans cannot necessarily use the same systems, which reduces the ability to test and validate

the models.

The models and simulations in APEX and Driver-Soar illustrate some of the possible applications

and results that are available from employing models as surrogate users. APEX (Freed &

Remington, 1998) is a design tool to predict errors in complex domains. It has been applied to air

traffic control systems and cockpits. It provides cognitive models in its own architecture, simulated

eyes and hands, and a communication mechanism between them. It is not based on a UIMS but

modelers can see the interface. APEX starts to model the effects of interaction, how visual displays

can support problem solving, and how errors can arise in air traffic control. It is limited in the types

of tasks that can be examined, however.

Driver-Soar (Aasman & Michon, 1992) is a detailed model of driving that interacts with a

software car to navigate through simulated road intersections. In addition to a simulated eye,

18 31 October 2000

Driver-Soar includes interaction modalities not addressed here, including head movements, further

hand movements, and feet. These interaction modalities are implemented both in a Pascal based

and a Lisp based simulation. While there are displays for modelers to watch the model's behavior,

users cannot interact with the simulation in the same way. Driver-Soar's predictions have been

compared with detailed human measurements, showing that such predictions can be quite accurate.

EPIC (Kieras & Meyer, 1997) is a system addressing the intricate details of perception and

action. Cognitive models are written in its own production system that can communicate directly

with a model eye and hand that interact with an interface simulator. Interfaces to be examined are

implemented separately using a special production system to provide information to the model at

either set times or upon set conditions. Later versions access a visual display shared with users.

EPIC can be used to make accurate predictions of interaction behavior such as menu use. Some of

EPIC's capabilities and the regularities they are support have been used by Soar models (Chong &

Laird, 1997) and by ACT-R/PM (Byrne & Anderson, 1998).

The only other system that could properly be described as a CMIMS is ACT-R/PM (Byrne,

1999). It is a theory of perception and motor behavior realized in Macintosh Common Lisp. It

provides an environment in which ACT-R models can interact with task simulations (psychological

experiments, for example) that humans can use as well. The interaction is modeled on a detailed

level, down to 50 ms (we have neither designed nor tested our functional models for this level of

precision). The generality and utility of the ACT-R/PM analysis of perception and action has been

demonstrated through multiple use by models (Byrne, 1998; multiple examples in Taatgen &

Aasman, 2000).

ACT-R/PM is similar in many ways to the previous models of interaction we have built. We

believe that part of the reason for the success of ACT-R/PM is that it provides the facilities required

by a basic CMIMS. The ACT-R/PM model of perception is based on graphical objects in

Macintosh Common Lisp so it can include a graphic display that can be seen by the modeller and

used by subjects. Furthermore, its reuse -- the incorporation and adaptation of some of EPIC's

results, particularly the general structure (i.e., parallel execution of perception and action) and the

motor component -- are consistent with the approach of theory reuse that we advocate.

The major difference, if there is one, lies in the choice of priorities. ACT-R/PM is more

concerned with detailed psychological predictions, but is not yet positioned to be a tool that can be

widely used to develop user interfaces for two reasons. (a) ACT-R/PM was not designed to interact

with every interface that can be built in Macintosh Common Lisp (Byrne & Anderson, 1998).

However, it can already recognize most objects and can be extended by the modeler. (b) ACT-

R/PM is not in a major graphic interface tool. In the context of Figure 1, it provides a linkage

mechanism to a good UIMS but not a common or widely portable UIMS.

19 31 October 2000

Some of these systems are more accurate and allow cognition and interaction to occur in parallel.

Often, they have not put development effort into their own usability and have not used more

general UIMSs (such as SLGMS, Tcl/Tk, or Visual Basic). With time, these approaches will

converge because they only represent different development priorities -- none of the developers

would argue, we believe, that accuracy or the model's own usability are unimportant.

3.5. Limitations of This Approach

There are several limitations to the current generation of systems that could be classed as CMIMSs.

The examples presented here cover only a small subset of all possible tasks and interfaces. As a

functional model, these implementations of the Sim-eye and Sim-hand intentionally do not cover

all that is known about interaction, nor do they include all forms of interaction. These models do

not yet include fine-grained behavioral regularities or those that are based on emergent perceptual

phenomena, for example, recognizing blank space as a region. When we have used these Sim-eyes

and Sim-hands more, we will be in a better position to know where we need to extend the accuracy

of perception and motor actions. In certain tasks, having a simpler representation of behavior will

be useful (e.g., checking the function of an interface, qualitative learning effects) in the way that

Newtonian mechanics is compared with quantum mechanics.

The problem most often raised with respect to using models to test interfaces is that the interface

must be completely specified before the model can be applied. There are several responses to this

limitation. First, the limitation does not appear to be insuperable, but it would be an entirely

separate project to apply models to sketchy designs (e.g., Szekely, Luo, & Neches, 1993). Second,

there are many systems and approaches requiring a full design before their analysis can be done.

Interfaces may be particularly prone to requiring a full specification before their use and efficiency

can be estimated (e.g., Gray, Schoelles, & Fu, 1998). Third, this approach will put designers in

touch with the limitations of users in testing preliminary designs. With experience, the designers

may learn to avoid problems based on their experience with the model user. Finally, tests of the

interface are immediately informative and problems can be directly rectified. An unusual

advantage of this approach to testing interfaces, is that unlike electrical circuits, testing is done with

the actual system.

4. COGNITIVE MODELS AS USERS IN THE NEW MILLENNIUM

Supporting cognitive models as surrogate users is possible. The case studies show that Sim-eyes

and Sim-hands can be used by a variety of models interacting with a range of interface tools. It is

now possible to routinely apply theoretically grounded cognitive models to real world HCI tasks.

In this section we review the approach, noting how it can contribute to the development of cognitive

models and what it means for the future of interfaces.

20 31 October 2000

Building a Sim-eye and Sim-hand for each computational cognitive model might be as ad hoc as

building each new model in Lisp -- you could lose the constraints imposed by an Integrated

Cognitive Architecture. Here, eyes and hands have been built in several UIMSs from the same

design. This reimplementation of the same approach provides a form of constraint because it the

design is reused and the capabilities and regularities are noted explicitly. A more important aspect

is that the Sim-eye and Sim-hand are now available in several widely used software tools, so reuse

should be a possibility in the future.

Modelers should use these Sim-eyes and Sim-hands to provide their models with an interactive

capability. ACT-R/PM's hand is available at www.ruf.rice.edu/~byrne/RPM/; the Tcl/Tk eye/hand will

be available at ritter.ist.psu.edu. Similarly, newer cognitive architectures should provide at least one

CMIMS for their models.

Authors of interface design tools and of UIMSs should include support for cognitive models as

users. The functional capabilities and experimental requirements noted here and in related

documents (Baxter & Ritter, 1996; Ritter et al., in press) show what is necessary to support cognitive

models as a type of user and some of the experimental regularities that can be included. This list

will help create models of interaction in other UIMSs.

4.1. Implications for Models

The models presented here would not have been possible to develop without access to external

simulations. The models are far more complex because they interact with tasks, tasks too complex

to simulate in a cognitive modeling language.

Including a theory of interaction has both provided models with more capabilities and also

constrained the speed and abilities of the models, in a way approximating human behavior.

CMIMSs provide a way to encapsulate these constraints. Interacting has required adding new

knowledge and new types of knowledge to the models, including where to look and what to do with

what it sees. This result suggests that there are types of knowledge (i.e., visual knowledge) that the

user has to know that is not often taught or referenced. When users do not know where to look,

they have to search through the interface using peripheral vision. The amount of knowledge and

effort it typically takes the models to interact suggest that the difficulty of what users have to do has

been consistently underestimated. This approach thus helps make more complete cognitive

architectures.

The case studies show that this approach supports several kinds of reuse. Multiple models can

use the same interface (e.g., through the Sim-eye and Sim-hand with the Tower of Nottingham

simulation). The same model can use multiple interfaces (e.g., the Soar phone model, Lonsdale &

Ritter, 2000). Models as well as users can work with the same interface (e.g., the ATC task). This

21 31 October 2000

approach will contribute to the reuse of models envisioned for cognitive architectures (Newell,

1990) and provide a further constraint on the architecture.

There are several other systems that model interaction. The approach to modeling interactive

tasks that we have adopted falls somewhere between the extremes of allowing models to directly

access the internals of the task simulation and modeling interaction in full psychological detail.

Focusing on functional capabilities has allowed us to apply this technique widely, but the next step

will be to incorporate more experimental regularities to model human performance more closely.

Enforcing further experimental regularities (as summarized in ACT-R/PM and EPIC) on the

functional capabilities we have created in Tcl/Tk would provide a system that both people and Soar

could use, and one that has numerous existing interfaces and tasks.

4.2. Implications for Interfaces

There are at least two significant ways in which CMIMSs can be used to facilitate the improvement

of user interfaces. First, cognitive models can be used to evaluate user interfaces. By using

cognitive models in place of people, we could start to ask what-if questions about user interfaces,

such as changing the interface and examining the effects on task performance. Models of phone

interaction are starting to be able to do this (Lonsdale & Ritter, 2000). It becomes possible to

dynamically evaluate how an interface is used, and where important events like errors may occur

(Freed & Remington, 1998). Cognitive models of interface use, such as IDXL (Rieman, Young, &

Howes, 1996) and the other models of problem solving and task performance we have described,

could be developed further and applied. The models can also be used to inform the design of user

interfaces by indicating which parts of the interface are used the most or are hard to learn.

Second, the ability to embed more accurate user models opens up a range of applications, such

as more accurate intelligent assistants to help novices. With the interaction process in hand, it will

allow more time to be spent developing the models. Models as embedded assistants would

encapsulate knowledge about a new range of possible behaviors, that is, interaction. This

knowledge would then be used to determine what the user should do next, and provide appropriate

assistance to the user when requested or if the user selected an inappropriate course of action.

Although there is a synergy between the disciplines of HCI and cognitive modeling, it has not yet

been fully exploited. Several results and techniques in HCI have been discovered using cognitive

modeling (John, 1998), but few of the lessons from HCI have been reapplied to increase the

understanding and application of the models. We have highlighted one particular area where we

believe UIMSs can be exploited to help in the development of cognitive models. It will take time to

learn how to take advantage of all the benefits that come through supporting cognitive models as

users, but it will provide a new way to test interfaces.

22 31 October 2000

REFERENCES
Aasman, J., & Michon, J. A. (1992). Multitasking in driving. In J. A. Michon & A. Akyürek (Eds.), Soar: A

cognitive architecture in perspective. Dordrecht, The Netherlands: Kluwer.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned.
Journal of the Learning Sciences, 4(2), 167-207.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.

Bass, E. J., Baxter, G. D., & Ritter, F. E. (1995). Creating cognitive models to control simulations of complex
systems. AISB Quarterly, 93, 18-25.

Bauer, M. I., & John, B. E. (1995). Modeling time-constrained learning in a highly interactive task. In I. R. Katz,
R. Mack, & L. Marks (Eds.), Proceedings of the CHI ‘95 Conference on Human Factors in Computer Systems.
19-26. New York, NY: ACM SIGCHI.

Baxter, G. D., & Ritter, F. E. (1996). Designing abstract visual perceptual and motor action capabilities for use
by cognitive models (Tech. Report No. 36). ESRC CREDIT, Psychology, U. of Nottingham.

Byrne, M. D. (1999). ACT-R Perceptual-Motor (ACT-R/PM) version 1.0b5: A users manual. Houston, TX:
Psychology Department, Rice University. Available at <http://www.ruf.rice.edu/~byrne/RPM/project.html>.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Lebière (Eds.), The
atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.

Byrne, M. D., Wood, S. D., Sukaviriya, P., Foley, J. D., & Kieras, D. E. (1994). Automating interface
evaluation. In Proceedings of the CHI ‘94 Conference on Human Factors in Computer Systems. 232-237. New
York, NY: ACM.

Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

Chong, R. S., & Laird, J. E. (1997). Identifying dual-task executive process knowledge using EPIC-Soar. In
Proceedings of the 19th Annual Conference of the Cognitive Science Society. 107-112. Mahwah, NJ: Lawrence
Erlbaum.

Corker, K. M., & Smith, B. R. (1993). An architecture and model for cognitive engineering simulation analysis:
Application to advanced aviation automation. In Proceedings of the AAIA Computing in Aerospace 9
Conference. . San Diego, CA: AIAA.

Freed, M., & Remington, R. (1998). A conceptual framework for predicting error in complex human-machine
environments. In M. A. Gernsbacker & S. J. Derry (Eds.), Proceedings of the 20th Annual Conference of the
Cognitive Science Society. 356-361. Mahwah, NJ: LEA.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a GOMS analysis for predicting
and explaining real-world task performance. Human-Computer Interaction, 8(3), 237-309.

Gray, W. D., Schoelles, M., & Fu, W.-T. (1998). When milliseconds matter: Implementing microstrategies in
ACT-R/PM. In Proceedings of the 5th ACT-R Workshop. 130-135. Psychology Department, Carnegie-Mellon
University.

Harris, B. (1999). PracTCL: An application for routinely tying cognitive models to interfaces to create interactive
cognitive user models. BSc thesis, Psychology, U. of Nottingham.

Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 357, 575-577.

Howes, A., & Young, R. M. (1996). Learning consistent, interactive, and meaningful task-action mappings: A
computational model. Cognitive Science, 20(3), 301-356.

John, B. E. (1998). Cognitive modeling for human-computer interaction. In Proceedings of Graphics Interface '98.
161-167.

John, B. E., & Kieras, D. E. (1996). Using GOMS for user interface design and evaluation: Which technique?
ACM Transactions on Computer-Human Interaction, 3(4), 287-319.

John, B. E., Vera, A. H., & Newell, A. (1994). Towards real-time GOMS: A model of expert behavior in a highly
interactive task. Behavior and Information Technology, 13, 255-267.

23 31 October 2000

Jones, G., Ritter, F. E., & Wood, D. J. (2000). Using a cognitive architecture to examine what develops.
Psychological Science, 11(2), 1-8.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). Automated
intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27-41.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with
application to human-computer interaction. Human-Computer Interaction, 12, 391-438.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial
Intelligence, 33(1), 1-64.

Lohse, G. L. (1997). Models of graphical perception. In M. Helander, T. K. Landauer, & P. Prabhu (Eds.),
Handbook of Human-Computer Interaction. 107-135. Amsterdam: Elsevier Science B. V.

Lonsdale, P. R., & Ritter, F. E. (2000). Soar/Tcl-PM: Extending the Soar architecture to include a widely
applicable virtual eye and hand. In N. Taatgen & J. Aasman (Eds.), Proceedings of the 3rd International
Conference on Cognitive Modelling. 202-209. Veenendaal (NL): Universal Press.

Myers, B. A. (1995). User interface software tools. ACM Transactions on Computer-Human Interaction, 2(1), 64-
103.

Myers, B. A., Giuse, D. A., Dannenberg, R. B., Vander Zanden, V., Kosbie, D. S., Pervin, E., Mickish, A., &
Marchal, P. (1990). Garnet: Comprehensive support for graphical, highly-interactive user interfaces. IEEE
Computer, 23(11), 71-85.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Olsen, D. R., Foley, J. D., Hudson, S. E., Miller, J., & Meyers, B. (1993). Research directions for user interface
software tools. Behaviour & Information Technology, 12(2), 80-97.

Ong, R. (1994). Mechanisms for routinely tying cognitive models to interactive simulations. MSc thesis, U. of
Nottingham. Available as ESRC Centre for Research in Development, Instruction and Training Technical
report #21 and as ftp://ftp.nottingham.ac.uk/pub/lpzfr/mongsu-2.1.tar.Z.

Pew, R. W., & Mavor, A. S. (Eds.). (1998). Modeling human and organizational behavior: Application to
military simulations. Washington, DC: National Academy Press. http://books.nap.edu/catalog/6173.html.

Rassouli, J. (1995). Steps towards a process model of mouse-based interaction. MSc thesis, Psychology, U. of
Nottingham.

Rieman, J., Young, R. M., & Howes, A. (1996). A dual-space model of iteratively deepening exploratory
learning. International Journal of Human-Computer Studies, 743-775.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (in press). Supporting cognitive models as users. ACM
Transactions on Computer-Human Interaction.

Ritter, F. E., & Larkin, J. H. (1994). Using process models to summarize sequences of human actions. Human-
Computer Interaction, 9(3), 345-383.

Ritter, F. E., & Major, N. P. (1995). Useful mechanisms for developing simulations for cognitive models. AISB
Quarterly, 91(Spring), 7-18.

Sears, A. (1993). Layout appropriateness: A metric for evaluating user interface widget layouts. IEEE Transactions
on Software Engineering, 19(7), 707-719.

Szekely, P., Luo, P., & Neches, R. (1993). Beyond interface builders: Model-based interface tools. In Proceedings
of InterCHI ‘93. 383-390. New York, NY: ACM.

Taatgen, N., & Aasman, J. (Eds.). (2000). Proceedings of the 3rd International Conference on Cognitive
Modelling. Veenendaal (NL): Universal Press.

Zettlemoyer, L. S., & St. Amant, R. (1999). A visual medium for programmatic control of interactive
applications. In CHI ‘99, Human Factors in Computer Systems. 199-206. New York, NY: ACM.

