
N
O

T
T I N G H

A
M

T
H

E
UNIVERSITY O

F

ESRC Centre for Research in
 Development, Instruction and Training

DEPARTMENT OF PSYCHOLOGY, UNIVERSITY OF NOTTINGHAM

UNIVERSITY PARK, NOTTINGHAM, NG7 2RD, U.K.

Modelling Learning as it Happens in a
Diagrammatic Reasoning Task

Frank E. Ritter and Peter A. Bibby

Technical Report No. 45

March 1997

Email: Frank.Ritter@psychology.nottingham.ac.uk

Phone +44 (0) 115 951-5292 Fax +44 (0) 115 951-5324

Modelling Learning as it Happens in a Diagrammatic Reasoning Task

Frank E. Ritter and Peter A. Bibby

ESRC Centre for Research in Development, Instruction & Training
Department of Psychology
University of Nottingham

Nottingham, England NG7 2RD

Frank.Ritter@nottingham.ac.uk

Technical Report No. 45

Abstract

We have developed a process model of problem solving with a simple control panel device. The
model accounts well for many aggregate measures, including those from a study reported here
(N=10): problem solving strategy, average fault-finding time, and the relative difficulty of faults.
To further test the model, we compared the model's sequential predictions—the order and relative
speed that it examined interface objects and answered with a subject solving five tasks, making it
one of the first models to have its sequential predictions compared with human data as they both
learn. We found that the predicted actions matched and mismatch in systematic ways. The corre-
spondences showed that: (a) subjects were reflecting or checking their work; suggesting that
learning mechanisms can, in some instances, model the speed of learning while not completely
modelling the mechanism; (b) mouse movements in the interface provide support for the model's
predictions of what the subject attended to; providing further evidence that protocols can be
augmented with mouse traces; and (c) while the comparison of sequential predictions may be
becoming more tractable, the effects of learning raises new difficulties, such as assigning credit to
model structures that change with performance.

Acknowledgements

We would like to thank Ellen Bass, Gordon, Baxter, Fernand Gobet, Clayton Lewis and Mark
Steedman for comments and discussions. Sam Marshall provided extensive comments and
programmed the model; Shara Lochun assisted with the analysis.

Support for this work has been provided by a grant from the Joint Council Initiative in HCI and
Cognitive Science, number SPG 9018736, and by the ESRC Centre for Research in Development,
Instruction and Training.

Table of Contents

1. Understanding How Learning Occurs ... 1

1.1 Previous models of learning tested with sequential data................................... 1

1.2 The next step in testing models that learn.. 2

1.3 The diagrammatic reasoning task.. 3

1.4 The Diag model.. 3

1.5 New mechanisms and approaches in the model... 5

2. Comparison with Aggregate Data.. 7

2.1 The experimental task... 7

2.2 The aggregate data ... 7

2.3 Qualitative comparison ... 8

2.4 Quantitative comparison ... 8

2.5 The need for a finer level of comparison .. 13

3. Comparison with Sequential Data.. 13

3.1 The sequential data... 13

3.2 Our protocol analysis theory... 14

3.3 The alignment .. 14

3.4 Operator support .. 16

3.5 The time course of the comparison... 18

3.6 Review of alignment ... 18

4. Summary and Conclusions ... 21

4.1 Reasoning with diagrams .. 22

4.2 Learning through reflection.. 22

4.3 Further development of trace-based protocol analysis..................................... 23

4.4 Practical, usability problems of trace-based protocol analysis.......................... 27

4.5 Implications for future models and modellers... 28

5. References.. 30

Modelling learning while it happens 1 March 1997

1. Understanding How Learning Occurs

There is a speedup effect in the time taken to solve problems that is nearly universal across tasks
and subjects (Rosenbloom & Newell, 1987). A major question has been how do people learn to
perform such tasks more quickly? Cognitive models have used several mechanisms to account
for learning, such as knowledge compilation and strengthening in the ACT family of models
(Anderson, 1993), connection strengthening in PDP models (Rumelhart, McClelland, & group,
1986), and rule creation from impasses using analogical reasoning (VanLehn & Jones, 1993) and
chunking mechanisms (Feigenbaum & Simon, 1984; Larkin, 1981; Rosenbloom & Newell,
1987).

Each of these learning mechanisms has successfully accounted for improvement and has proven
useful in a explaining patterns of learning in a variety of different domains (e.g., Tower of Hanoi:
Anzai & Simon, 1979; Ruiz & Newell, 1989; physics problem solving, Larkin, 1981; Lisp
programming, Singley & Anderson, 1989; computer games, Bauer & John, 1995). However, the
learning produced by these mechanisms has been compared with two particular types of human
data. Most often, response times aggregated across trials, subjects, or both, have been used (e.g.
Ram, Narayanan, & Cox, 1995). A few models have also been compared with behaviour before
and after sometimes extensive amounts of practice performing the task. That is, the models using
these mechanisms started by performing the task like a novice subject, and after extensive appli-
cation of the learning mechanisms performed like expert subjects (Larkin, 1981).

1.1 Previous models of learning tested with sequential data

There is a problem that arises from the cross-sectional nature of the comparisons done so far.
The learning mechanisms utilised by these models have not been compared with individual
behaviour while learning was occurring. The actual path for an individual from novice to expert,
to a certain extent, remains predicted but untested. The types of behaviour that occur during
learning and that may lead to expert behaviour have rarely been examined by direct comparison
with a process model while a subject learns.

There are a few pieces of work where learning has been examined in the most detail. Perhaps the
model that was first compared to actual learning is that of Anzai and Simon (1979). The changes
in strategy across four episodes of solving the Tower of Hanoi was modelled by their adaptive
production system. While the model's behaviour was not compared to the subject's behaviour on
an action-by-action level, Anzai and Simon did show that the model produced the same qualita-
tive strategy shifts as the subject.

VanLehn (1989; 1991) examined learning in several domains including the Tower of Hanoi. He
modelled learning by proposing what and when rules were learned but these rules were not creat-
ed by an automatic mechanism. Nintendo-Soar (Bauer & John, 1995) modelled how novices
could learn to become experts, but the model was only compared with expert data. Able (Larkin,
1981) was a model of the transition between novice and expert behaviour in physics problem
solving in terms of the application order of principles. It used an impasse driven learning mech-
anism to automatically learn rules while solving problems. The acquisition of these rules repre-
sented the transition from novice to expert. However, only the initial and final behaviour were
compared with novice and expert behaviour.

There are also several Act models that also come close to examining learning while it happened.
While the ACT (Anderson, 1993) architecture implementations now include learning capabilities,
typically models built within these frameworks that have been tested with sequential data (e.g. the
Anderson tutors) model learning by adding hand-written rules based on the subject's perfor-
mance. Blessing and Anderson (1995) provide an ACT model that learns, but its predictions were
ested with aggregate data.

Modelling learning while it happens 2 March 1997

Cascade (VanLehn & Jones, 1993) has modelled how good and poor students learn while reading
solved physics problems. In its most complete comparison, Cascade was used to model nine indi-
vidual subject's behaviour while they studied 28 worked physics problems, learning as they exam-
ined the problems and sometimes explained the steps to themselves. Cascade generally predicted
the goals that subjects would explain and how what was learned would transfer to other problems.
This work shows that being able to model subjects while they learn is possible and useful. This
work did not examine the time course of learning and ignored the order of actions, which are
both examined here, but ignoring these aspects allowed them to examine far more data.

Perhaps the first model to have its behaviour compared with a subject while they both learned was
Altmann's (1995) model of browsing by a programmer. While the subject did not particularly
appear to learn, the model predicted that the subject was learning episodic and other knowledge
while examining program code.

1.2 The next step in testing models that learn

A next step in studying the time course of learning in detail appears to be to compare the perfor-
mance of a model including timing information as it learns with a subject's behaviour while the
subject learns. In addition to testing the model in question, this may help us see where and how
learning occurs.

We have developed a process model that learns, called Diag, that performs several problem-solv-
ing tasks with a simple control panel device based on a switch and light interface. The model can
locate faults based on the status of the switches and whether or not lights are on. Diag and its
architecture predicts that automatic compilation and improvement while performing a task will
occur in a measurable way in this domain. Because it learns while solving problems, it accounts
fairly well for most aggregate measures of behaviour in this area, even while we know that
subjects are learning.

We examined the model's sequential predictions with respect to actual subject behaviour. This
comparison is a type of protocol analysis (Ericsson & Simon, 1993; Ritter & Larkin, 1994), and
serves two purposes here:

(a) Diag's behaviour, the actions it takes and the information it uses from the envi-
ronment, are core features of what makes it a process model. The order and
speed that the model examines interface objects and interacts with them are
predictions of subjects' sequential behaviour and attention while solving the
same tasks. The model's sequential behaviour is essentially a series of predic-
tions about what steps the subject will do and the information they will use to
perform the steps. Given the difficulty inherent in creating the model, in addi-
tion to the model's general behaviour, these sequential predictions should also
be used to understand the subject's behaviour. And

(b) The results of the comparison process will help indicate where to improve the
model. The model, based on previous models in this area, appears to match the
data fairly well. However, Diag, in order to perform the task, must make addi-
tional predictions about behaviour that can be tested as well. The model may
learn faster or slower within a trial than the subject, it may perform in too effi-
cient a manner, leaving out steps the subject does, and so on.

Comparison of a model’s sequential behaviour is an old technique (e.g. Feldman, 1962), and the
tools that we used suggest that it is becoming more tractable. For example, there are now tools
for automatically aligning the model's predictions with the subject's behaviour (Ritter & Larkin,
1994; Sanderson, Scott, Johnston, Mainzer, Watanabe, & James, 1994).

Modelling learning while it happens 3 March 1997

This approach may be becoming easier for theoretical reasons as well. Mouse movements can be
used as another stream of protocol data to support the model's predictions of attention and mental
structures (Kennedy & Baccino, 1995; Peck & John, 1992; Ritter & Larkin, 1994). They are less
ambiguous and this assists in the alignment process

In the remainder of this paper, we will first explain the task that both subjects and the model com-
pleted. The model will be explained, including how it accounts for the aggregate measures for 10
subjects doing exactly the same task. Next, the details of how the sequential behaviour compari-
son was performed are presented. Finally, we will discuss the results and what we discovered from
comparing the sequential predictions of a model that learns. Most importantly, we will see that
the sequential comparison allows us to point out that reflection can be an important aspect of
learning in this task, even when the task is short and the reflection not completely verbalised.

1.3 The diagrammatic reasoning task

The task that Diag and subjects solve consists of trouble-shooting a control panel device using a
memorised schematic. The device is similar to Kieras and Bovair's (1984) laser-bank device.
Figure 1 displays the circuit schematic, and Figure 2 displays the interface display that the
subjects saw, showing the switches in the schematic along with a light indicating that each compo-
nent is working. On the interface display, and later in the text and figures of this paper, straight-
forward abbreviations are used to refer to objects in the schematic. For example, PS stands for
power supply, EB1 is energy booster 1, and so on.

Before troubleshooting the device, subjects were given: (a) a general introduction to the problem;
(b) basic information on the interface; and (c) a schematic of the underlying circuit. Subjects
were then told that one component in the circuit was faulty, and were asked to indicate which one
by clicking on it with the mouse. Their reaction times and choices were recorded and analysed
for latency, correct number of choices, and so on. Previous work in this area has resulted in
summaries of behaviour in a series of related tasks such as operation of non-faulted circuits
(Bibby & Payne, 1993), and process models that perform multiple tasks but do not learn (Bibby
& Payne, 1996)

1.4 The Diag model

The explanation of the Diag model can be broken down into two parts. First, we note the model's
global structure and the routine mechanisms used. Second, we explain those mechanisms that are
new contributions or that are confirmations that mechanisms work in a new domain.

Diag is built using the Soar cognitive architecture (Laird, Newell, & Rosenbloom, 1987; Newell,
1990). The model we report here is a further development of an existing model (Bibby &
Reichgelt, 1993). The earlier version of the model was good at explaining subjects' performance
on the first few trials but learned far too quickly. While subjects continued to improve, the model
reached asymptotic behaviour rapidly and did not continue to learn. The model was changed by
adding ATTEND and COMPREHEND operators to the top space, consistent with Newell's (1990)
recommendations for modelling interaction.

The present version of Diag consists of 186 initial production rules. Figure 3 shows how these
are organised into 7 problem spaces and 21 operators in a hierarchical organisation. Lower level
operations are used to understand what is observed from the interface and to suggest what exter-
nal action to perform in the top problem space.

Knowledge of the schematic is represented within the model as linked lists organised as 'routes'
through the circuit as if the schematic was memorised. Diag recalls and follows these linked lists
to find the next component to examine. Visual interface information is represented as declarative
structures for lights and switches. This corresponds to the diagram condition reported in Bibby
and Payne (1993) and implements a common strategy (#1 in Bibby & Payne, 1996).

Modelling learning while it happens 4 March 1997

ENERGY
BOOSTER

ONE

MAIN
ACCUMULATOR

POWER
SOURCE

SECONDA RY
ACCUMULATOR

TWO

SECONDA RY
ACCUMULATOR

ONE

ENERGY
BOOSTER

TWO

LA SER
BANK

off on

eb1 eb2

sa1

sa2

ma

sa

Figure 1. Schematic of the laser-bank device.

PS EB1 EB2 MA SA1 SA2 LB

off on eb1 eb2 sa1 sa2 sa ma

off off off

Figure 2. The laser-bank interface that the subject uses to find the faulty component. Boxes (the
lights) below the abbreviations and above the switches (arrows) are greyed out to indicate

components are working.

When a problem is presented to Diag, the complete status of the interface and what can be seen is
represented in the top state as a 'fake' real world. This information is accessed by the combina-
tion of an ATTEND and a COMPREHEND operator that select the relevant object to examine and
retrieves information from this structure. The organisation of components on the interface dia-
gram and the use of the ATTEND and COMPREHEND operators moving sequentially across the
visual representation causes the components to be checked in sequence.

Diag typically learns additional rules while performing a series of troubleshooting tasks. What is
learned depends on the series of episodes. The model learns how to perform actions more direct-
ly without internal search, and which objects to attend to on the display without internal delibera-
tion. Both of these types of learning occur while performing the task. If fully learned problems
are not repeated, the model can learn a total of 217 new rules (chunks) over 20 problems.

Modelling learning while it happens 5 March 1997

interface-
select ion

INTERFACE- CHOICE

find-f ault

CHOOSE- COMPONENT

TEST- COMPONENT

select -
component

DIAG- SUGGESTION

INTERFACE- SUGGESTION

(SOLVE-PROBLEM)

 (TEST-COMPONENT)

(DIAG-SUGG.)
(CHECK-LIT)
(CHECK-SWITCH)
(CHECK-PREVIOUS)

COMPREHEND

REPORT

ATTEND
diagnose

SOLVE- PROBLEM

(INTERFACE-
SUGGESTION)

CHOOSE- SWITCH

DIAGRAM- CHOICE

diag.-select

CHECK- SWITCH

CHECK- PREVIOUS

t est -
comp

CHECK- LIT

DECIDE- STATUS

(COMPREHEND)

(CHOOSE-
COMPONENT)

(DECIDE-
STATUS)

check-world

Figure 3. Structural organisation of the Diag model showing its hierarchical structure. Triangles
represent problem spaces (with underlined names); circles represent operators (in small caps).

Links to sub-problem spaces to implement operators are represented by a link labelled with the
operator names in parenthesis.

1.5 New mechanisms and approaches in the model

Diag incorporates new modelling mechanisms and approaches. Two of these are generally inter-
esting and are likely to be applicable to other models of learning: Diag interweaves problem solv-
ing and learning and Diag interacts with an external world using an internal representation of the
world. One other mechanism may be architecture specific or may be applicable to other archi-
tectures: Diag interacts with the outside world solely through the top state in its hierarchy.

General mechanism: Learning while performing the task. As a result of the Soar architecture, but
a characteristic of nearly all problem solving behaviour, Diag learns while performing the task.

Modelling learning while it happens 6 March 1997

Diag learns how to resolve impasses in performance when they occur. The knowledge that is
learnt can be applied in later episodes. What is learned, when it is learned and how it is learned
arises from an interaction between the architecture, the knowledge, the organisation of the knowl-
edge, and the experience the model has of problem solving. In Diag, these interact to create three
types of learning. (a) Operator implementation, where specific knowledge about how to apply an
operator is learned through search in another problem space. This is done for several operators
(e.g. CHOOSE-COMPONENT). (b) Operator creation, augmentation, and proposal, where an oper-
ator is created in one problem space for use in another. This is done solely for ATTEND.
(c) State augmentation rules, which augment the state with derivable knowledge. For example, the
rule can be learned that if EB1 has been checked and the current light you are looking at (the
main accumulator) is not lit, the component MA is broken.

During the course of solving the fault-finding tasks newly learned rules transferred across epi-
sodes. However, there was no transfer of newly learned rules within an episode because the model
does not backtrack in its problem solving. These learned rules typically implement operators
such as DIAG-SUGGESTION (suggesting which component to check based on the diagram) or
CHECK-SWITCH-DIAGRAM (deciding how switches should be positioned if a device is not work-
ing). The most powerful rules, those that speeded up performance the most, proposed the
ATTEND operator earlier on the basis of previous problem solving within an episode. We have
called these rules episodic chunks since they contain information about what problem-solving has
already taken place. These learned rules provide the model with a long-term memory for its own
reasoning.

General mechanism: ATTEND and COMPREHEND operators. Many previous cognitive models
have had the whole world directly accessible for problem solving. For example, models that solve
the Tower of Hanoi might have the contents of the three posts completely included in working
memory. In simple tasks, such as the Tower of Hanoi, this probably results in little difference in
behaviour because perception in such cases is relatively infrequent, effortless, and error free.

In more complicated tasks, particularly tasks that use visual processing, having access to the entire
external state may hide essential features of the task and the interaction between the problem solv-
er and the environment. Rather than view the entire world at once, we used explicit operators to
represent acquiring the perceptual components of the task. This created a different structure for
problem solving. The model was continually deciding where to look, looking there, checking the
part it saw, and then deciding where to look next (if necessary). In later work, we have started to
represent the world outside of the model even more explicitly, and using even more specific
behaviour to examine and interact with the world (Bass, Baxter, & Ritter, 1995; Jones & Ritter, In
press).

Perhaps specific mechanism: Serialisation through the top level. Diag uses a distinct approach for
interacting with the outside world by using the top-level state. This mechanism is so far only used
by the Soar architecture. This approach may be a general answer for how to serialise learned
behaviour. If this is true in some global sense, other architectures should use it; after some time,
if this approach is used only in Soar, it suggests that there is something unusual about the Soar
architecture, and that the Soar architecture is not general enough, or that the other architecture
designers have not attempted to solve this problem.

In an architecture that supports learning, when a hierarchical or sub-goaling control approach is
used and learning and output can occur at any level, the model can end up learning a series of
external actions to apply to a given initial state. On seeing a similar state, this knowledge can later
apply, proposing to do the several operations in parallel (everything at once) that had been initial-
ly performed serially (in order). One way to solve this problem is to serialise all input and output
through the top level of the hierarchy. The Soar architecture requires input from the outside
world to appear on the top state, and for output to the outside world to be initiated from changes
to the top state. This is an explicit architectural commitment that appears to be necessary in order
to learn how to interact with the outside world (Laird & Rosenbloom, 1995, p. 35).

Modelling learning while it happens 7 March 1997

To avoid doing everything at once, an approach taken in Soar is to force all output through the
top state. If a subgoal requires an external action to be performed, this must be added to the top
state, typically by removing the goal stack and selecting an operator to add the request to the top
state. The goal stack may then be re-built (the rebuilding of the problem solving context might
not occur if the input from the outside world gives rise to a different situation requiring a differ-
ent response). Diag uses a hierarchy of problem spaces and goals with this method of interacting.
It is similar to the method of goal reconstruction proposed in Teton (VanLehn & Ball, 1991).

This approach to interaction makes a testable prediction, that there will be a loss of context when
initiating an interaction with the environment. We have not directly tested this, but we have since
found evidence that this effect may exist (Irwin & Carlson-Radvansky, 1996). This may not be a
real result, it may be merely an artefact of the way this model is built in this architecture. Yet,
previous attempts to learn to interact have had problems where they learned too much too quick-
ly, and ended up attempting to do several things at once. It may turn out that not this but a simi-
lar mechanism is necessary for serialising interaction with the outside world.

2. Comparison with Aggregate Data

Ideally, models or theories will openly state the lists of regularities that they explain up front.
This can help establish a minimum and continually raising set of requirements for models to
achieve in a given domain, and eventually, across domains (Newell, 1990). This has also been
called 'criterion-based psychological modelling' (Ritter, 1992).

Our initial belief in this model came from the fact that it could account for several regularities in
aggregate measures in similar tasks using other taught representations besides a schematic. Table
1 notes the regularities that Diag accounts for that have been reported in previous work. These
regularities are robust, and have been found in other studies (Bibby & Payne, 1993, 1996; Bibby
& Reichgelt, 1993), as well as being consistent with the aggregate and protocol studies reported
here. These regularities can be separated into qualitative effects and quantitative effects. We
examine a selection of them below.

2.1 The experimental task

As noted in Table 1, the first test of a process model is that it can do the task of interest. The
current version of Diag can do two tasks; fault finding: it can find the fault in the device given a
configuration of lights and switches, and the switch task: it can find the switch that needs to be
flipped to make the device work given a display and the assumption of a fault-free system.
Normally, noting that a process model can do the task is redundant, but in this case, we wish to
emphasise that the model can do more than the fault-finding task, although only the fault-finding
task is examined here.

2.2 The aggregate data

In order to directly compare this version of Diag against performance on the task it models, data
was collected on ten subjects solving fault-finding tasks (and only solving fault-finding tasks,
unlike previous studies). After subjects memorised the schematic, their response times were
measured and recorded across 20 problems (trials). Subjects saw different, randomised series of
trials, so we also ran Diag on the same series.

We compared the model to the subjects' performance in three ways. The first analyses examines
the qualitative nature of the models behaviour and compares it to the strategy that subjects report-
ed using. The second set of analyses provide aggregated indices of performance over all 10
subjects. The third set of analyses look at individual subject's performance in comparison to the
model’s predictions. The times taken when errors were made by subjects solving the fault-find-
ing task were removed from the analyses since the model did not make any errors.

Modelling learning while it happens 8 March 1997

Table 1. Selected regularities in solving the troubleshooting task.

Perform the task. As a minimum, the model must predict that subjects can perform the basic
task. This is also an important aspect to being a process model, that is, specifying the initial
process a subject uses to perform the task.

Problem-solving strategy. The approximate problem solving strategy that most subjects used is
exemplified in a subject's retrospective protocol that we quote here:

"...check each component in turn to see if its indicator light is lit. If it is, move on to the next
component. If it is not lit, check to see whether it should be lit. If it is not receiving power,
move on to the next component. If it is receiving power, then it is broken" (Bibby & Payne,
1996).

Faults with components remote from the power supply take longer to solve. The serial strategy
that most subjects adopt leads to a difference in reaction time for diagnosing the possible faults
both quantitatively and qualitatively. Figure 4 (below) shows the average time to solve the seven
fault-finding tasks for 10 subjects averaged over 20 trials.

Subjects become faster with practice. After practice with the same fault or with different faults
subjects get faster. However, the rate of improvement is not smooth for individual subjects,
apparently as different amounts of learning transfer between different fault-finding trials.
Surprisingly, the rate of improvement is not well fit by a power law for individual problem-solv-
ing times. For example, the second time to solve a particular fault is slower than is expected and
often slower than the first trial.

2.3 Qualitative comparison

Three qualitative effects stand out of the data that correspond to the previous findings but are
based on this task and this circuit representation. These can be compared with the model's
performance on a general level.

Problem solving strategy. Diag performs the fault-finding tasks using the general strategy that
subjects use. Sequential checking of components from left to right is emergent from the inter-
face representation and the model's knowledge about how to check components and their
connections.

Remote faults take longer. Faults with components remote from the power supply are further
down the routes and take subjects longer to solve. The model also takes more time for more
remote faults. Figure 4 shows that as faults occur on components further to the right of the
display and further along the schematic paths, they generally take longer for subjects and the
model to find them.

Practice leads to faster responses. With practice subjects can find faults faster. This improvement
shows substantial transfer across tasks. Knowledge in tracing through the circuit improves perfor-
mance finding faults elsewhere in the circuit.

2.4 Quantitative comparison

An analysis of the aggregate data was conducted. First, the time taken to solve the different fault-
finding tasks were compared to the number of model cycles (decision cycles) it took to solve that
task. Second, the time per trial was compared to the number of model cycles per trial. Third, the
average time per subject was compared to the average number of model cycles for each run of

Modelling learning while it happens 9 March 1997

Soar Decision Cycles

Problem Solving Time

PS EB1 EB2 MA SA1 SA2 LB
0

5

10

15

20

25

0

20

40

60

80

100

120

140

P
ro

bl
em

 S
ol

vi
ng

 T
im

e
in

 S
S

oar M
odel C

ycles

Problem Type

Figure 4. Comparison of problem solving time for subject and model for all correct trials aggre-
gated by fault type.

the model solving the same series of problems.

Figure 4 shows the comparison between the time for each fault and the model cycles for each
fault aggregated over all the subjects and trials. For both the time taken to solve the problem and
the model cycles, there is a general increase in time taken to solve the problems from left to write
across the device interface, though this is not as apparent as in previous research (Bibby &
Reichgelt, 1993). The previous research looked at the first time a task was attempted, ignoring
learning. Learning has a strong effect. For example, if PS is the first fault that a subject attempts
it will take a long time. At the same time, due to inter-task transfer, if LB is first encountered later
in the sequence it will take substantially less time to solve.

Overall, the pattern of similarity between the model's cycles and the subjects' problem solving
time is striking. The correlation between the fault-finding problem solving time and the model's
decision cycles is r = 0.99 (p < 0.05).

Figure 5 shows the problem solving time and the model cycles aggregated over subjects for the
20 trials. Again there is a strong relationship between the time the model and the subject took to
solve the problems (r = 0.99, p < 0.05). There are three points of interest that can be seen from
this comparison. First, these data do not show a perfect power law of practice. Nerb, Krems and
Ritter (1993) have argued that the power law is often artifactual and the result of averaging over
aggregate data. Individual subjects rarely fit a power function as well as might be expected.
What is clear from this set of data is that the power law does not necessarily emerge even when
aggregating over subjects. As this model indicates, decrements in time with practice depend on
the task on each trial and a smooth curve will only occur with averaged data. Second, a post-
experiment analysis of the problem series indicated that there was a problem with the random
assignment of faults, particularly that the first two problems were not randomly distributed,
appearing on average early in the circuit. To obtain a smooth curve, the average difficulty of
problems must remain the same across the series. Finally, based on the relative scales in Figures 4
and 5 and the theoretical predictions of the model cycle taking 50 to 500 ms (Newell, 1990), it
appears that the model underestimates the solution time. This is a common problem in models of
this kind. Models are often too intelligent, either not performing all the task actions or
performing them more effectively.

Modelling learning while it happens 10 March 1997

Soar Decision Cycles

Problem Solving Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

0

50

100

150

200

250
P

ro
bl

em
 S

ol
vi

ng
 T

im
e

(s
ec

s)
M

odel C
ycles

Sequential Presentations

Figure 5. Comparison of average problem solving time for subjects and model aggregated by trial
for all correct trials. The model saw 10 different fault orders corresponding to the series seen by

the 10 subjects.

Figure 6 shows the total problem solving time per subject and the total model cycles for Diag
solving the same series of problems. The correlation between subjects' overall performance and
the model's cycles is r = 0.32 (p > 0.1). This result is surprisingly different from aggregating
over task or trial. Simply using the aggregate time per subject and the average number of model
cycles per run of the model we obtain an apparently contradictory picture. To make sense of this
pattern of results each set of model cycles per run of the model were regressed onto the problem
solving times for each subject individually.

Table 2 shows that the average proportion of variability accounted for overall is 82%. However,
the regression was not significant for two of the subjects (S1 and S5). When these subjects are
removed from the analysis the average proportion of variability increased to 92%. A second
check on this result is to examine the B coefficient that represents the number of seconds per
model cycle. Newell (1990) suggests that the it will be between 30 and 300 ms. According to this
analysis S1 has a rate of 14 ms and S5 has a rate of 7 ms. Both these values are implausibly fast.
All the other subjects' rates lie with the range that Newell specified, and that have been found in
previous work. When S1 and S5 are removed the average rate is 154 ms per cycle. Where Soar
problem solving models have been compared with subjects, the model cycle rate is generally long
(341 ms, Nerb, Krems, & Ritter, 1993; 145 ms, Peck & John, 1992 analysed in Ritter, 1992),
indicating that models are too intelligent, performing the task more efficiently than subjects
(taking less cycles) or not performing as much of the task as the subjects (e.g. not modelling
moving the mouse). Models of simple tasks often come quite close to matching data with a 100
ms cycle without adjustments such as reading rate and disambiguating regions of text (Lewis,
1993, p. 201), simple reaction times (Newell, 1990), and covert visual attention (Wiesmeyer, 1991).

For those subjects who were well matched by the model’s predictions, the model's times indicate
that not all differences in the subjects' total times were due to individual differences. The model's
times indicate that some of the differences were due to the different series of faults that each
subject saw. Figure 7 shows one subject's problem solving times plotted against Diag's model
cycles. Similar patterns occur for those other seven subjects where the model cycles were a good
predictor.

Modelling learning while it happens 11 March 1997

Soar Decision Cycles

Problem Solving Time

P
ro

bl
em

 S
ol

vi
ng

 T
im

e
(s

ec
s)

D
ecision C

ycles

0

2

4

6

8

10

12

14

16

54

56

58

60

62

64

66

68

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Figure 6. Comparison of problem solving time for subject and model aggregated by subject for
all correct trials. In the comparison, the model saw the same fault order as seen by the subject.

Table 2. Regression coefficients for regressing model time on subject time for correctly solved
problems in each series. B is in units of second per model cycle. N is the number of correct

answers for each subject out of the 20 possible. * indicates that the r value is not significant at the
.05 level, all others are significant at the .05 level.

Subject R2 B N

S1 0.028 * 0.014 19
S2 0.960 0.170 16
S3 0.939 0.176 19
S4 0.880 0.147 20
S5 0.066 * 0.007 20
S6 0.955 0.175 18
S7 0.923 0.150 19
S8 0.839 0.117 19
S9 0.984 0.149 17

S10 0.871 0.151 18

Mean 0.824 0.138 18.4

We examined how the fit varied across time for the eight subjects for whom Diag's model cycles
provides a good fit to their problem solving times. When the fit was compared across repeated
exposure to a particular type of fault another regularity appeared. For the first example of a task
the model was generally very good at predicting the time taken to solve the problem. For the
second example of the same fault the model often underestimated the time it took subjects to
solve the problem. For the third example of the task the model often overestimated the time it
took subjects to solve the problem. Out of 47 occasions across subjects and tasks where it was
possible to find the same fault that had been successfully identified three times, this pattern
occurred 32 times. Figure 8 gives four examples of this pattern.

Modelling learning while it happens 12 March 1997

.

Problem Solving Time (secs)
Decision Cycles

PS MA SA2 LB EB1EB2SA2 SA2EB2 EB2 SA1 SA1PS EB1 MA LB MA SA1 LB
0

5

10

15

20

25

30

0

20

40

60

80

100

120

140

160

180

200

Figure 7. Comparison of the reaction times of subject 9 with Diag's solution times for the same
series of faults.

MA MA MA LB LB LB SA1 SA1 SA1 EB1 EB1 EB1
0

10

20

30

0

20

40

60

80
Problem Solving Time
Decision Cycles

T
im

e
in

 s
ec

on
ds

T
im

e in m
odel cycles

Figure 8. Comparison of a single subject's reaction times with Diag's solution times arranged by
exposure to type of fault.

Interestingly, it did not appear to matter whether the fault had been seen early or late in the learn-
ing trials or whether the tasks were close together or far apart in occurrence. In Figure 8 the
initial MA fault was the third trial for this subject. The second MA fault was trial 9 and the final
MA fault was trial 11. The first SA1 fault was encountered on trial 8, the second SA1 fault was
on trial 13 and the third SA1 fault was on trial 20.

Modelling learning while it happens 13 March 1997

In order to estimate the size of the differences between the model and the data on the second and
third same fault trials, the times taken on those trials was transformed into model cycles by divid-
ing by the estimated cycles/s. A difference was calculated between the model's actual cycles and
the predicted cycles. The difference in cycles between the model and the subject on the second
trial was approximately constant (mean = 7.75 s; sd = 1.136). At the same time the difference in
cycles between the model and the subject on the third example of the fault was also constant,
although this effect was not quite as reliable (mean = -2.91 s; sd = 1.33).

2.5 The need for a finer level of comparison

Model development can be seen as a two step process, of first establishing that a model is worth
taking seriously because, for example, it can account for a large amount of the variance in the
data, and then second, finding ways to improve the model (Grant, 1962). Initially, in order to
understand how well this version of Diag fits the data, we compared its performance with aggre-
gate measures. It generally fits this data rather well, for it performs the task of interest and
accounts for a large amount of the variance in reaction times a series of faults. Because the
model accounts fairly well for the data these comparisons do not provide strong suggestions for
where the model can be improved.

One way to improve Diag is simply to cover more types of data and a broader task. There remain
many regularities that this model does not explain. For example, a worthy and important regular-
ity (although one not addressed by this model) is to explain how the initial performance was
learned through observation, instruction or other methods (e.g., Huffman & Laird, 1995;
Kitajima & Polson, 1996).

Another way to improve Diag is to explore in more detail the area of its behaviour that it already
models well, that of fault finding. One way of doing this is to compare Diag's sequential actions
with the sequential behaviour of a subject. Diag's actions, because they are generated within a
cognitive architecture, can be treated as predictions that subjects will take the same steps, in the
same order, and at comparable times.

Using the sequential predictions of Diag has other advantages as well. It will allow us to explore
why the second trial for a particular fault takes longer, and it will allow us to look inside an other-
wise atomic reaction time, perhaps seeing how and where learning occurs. This type of sequential
comparison is not often done, so while it is becoming easier, it is not yet routine. This compari-
son may also provide additional methodological suggestions.

3. Comparison with Sequential Data

In order to further understand Diag's behaviour and find out where to improve it, we compared its
sequential predictions (its actions) with a subject's verbal and non-verbal protocol while solving
five problems. This comparison highlighted several places to improve the model, allowed us to
see a new way that the subject learned, and also allowed us to further understand and extend the
methodology of trace-based protocol analysis (Ritter & Larkin, 1994).

3.1 The sequential data

We recorded a subject on video tape while he solved a series of five fault-finding problems. He
was a university student without extensive electronics experience recruited for a small payment.
As in previous studies (Bibby & Payne, 1993), the subject had been instructed in the task. In this
case he had studied only the schematic representation of the circuit to the point where he had
memorised it. After a warm-up talk-aloud task he performed the task five times and his talk-
aloud protocol was recorded and later transcribed. His mouse movements were coded into
regions around the major components in the interface and his mouse click on the faulty part
indicated the end of a episode. He performed the task correctly four times, generating 50 verbal
utterances and 41 codable mouse movements. His performance times are comparable with exist-

Modelling learning while it happens 14 March 1997

Table 3. Basic tenets used in creating the alignment between Diag’s actions and the subject's
utterances and mouse movements.

• Task actions of the subject, that is, reporting the fault by clicking on it, were aligned
with the model's task actions, generation of a request to report the fault.

• Mouse cursor positions that did not stay in one place for more than 100 ms were noted
as "not alignable".

• Mouse positions held longer than 100 ms were aligned with the model's operator that
adds or uses such state information.

• Utterances were aligned to operators that add state information, act on state infor-
mation or both;

• Utterances and the model operations giving rise to such structures were aligned in
order of entry to the model's working memory where possible

ing subjects. While this data may not seem extensive, it represents about 1% of the total verbal
protocol data compared with sequential model predictions through 1994 (Ritter & Larkin, 1994).

3.2 Our protocol analysis theory

The basic protocol theory that we used to guide the alignment of the model's predictions and the
subject's actions was taken from Ericsson and Simon (1993), with the extensions suggested by
Peck and John (1992), and Ritter and Larkin (1994). The basic tenets of this approach are listed
in Table 3.

3.3 The alignment

The data from the five episodes were semi-automatically aligned with the trace of the model solv-
ing the same series of faults. Table 4 shows the results of these alignments. The second section
of the table indicates and for each episode how well verbal utterances were matched. These verbal
columns indicates how many verbal utterances were aligned with the model's trace. About one-
third of the utterances were not codable (like "uhhm" and "So...") and were excluded from later
analysis.

The worst correspondence occurred during Episode 4 where the subject got the wrong answer.
This should be somewhat expected, the model solved the problem correctly, and much of what
the subject said and did would thus not match, although the initial behaviour corresponded
reasonably well. This episode was dropped from further analyses.

The last column in the second section notes the verbalisation rate. It has been conjectured that
experts may verbalise less (although Ericsson & Simon, 1993, p. 250-251, report studies where
expertise increases verbalisation; vanSomeren, Barnard, & Sandberg, 1994, p. 34 report that
expertise decreases verbalisation). While the subject is certainly not an expert, this drastic
improvement, along with the verbalisation rate decrease in Episode 5, suggests that verbalisation
may indeed be an inverted U-shaped curve, with novices also less able to verbalise.

The third section of the table indicates how well the mouse movements could be aligned. There
were many mouse movements that were not codable (e.g. random jinks and preliminary move-
ments), and there were also a relatively large amount of mouse movements over items in the inter-
face that could not be aligned with objects that the model was considering. These may indicate

Modelling learning while it happens 15 March 1997

areas where the model could be improved (e.g. it should more directly examine switches), or they
could indicate actions in the motor movements that are not yet modelled, as several of these
movements represent initial movements towards a target.

The last section of the table deals with time and the relative speeds of the model and subject. The
first column in this section is the time it took the subject to solve the task. This time varied
between tasks because faults earlier in the circuit (starting from the power supply) took less time,
and faults later in the series took less time due to practice. Later columns show how many model
cycles (decision cycles) the model took to solve the problem, and the relative ratio between model
and subject time.

Having a good measure of the processing rate is important. It will allow us in the future to make
a priori predictions of reaction times and the time course of problem solving behaviour based on
the model's performance on the task, without empirical measurement. Fixing the cycle rate in
architectures will be a complicated problem because there are so many uncertainties, including
the subjects, the tasks, the strategies to solve the tasks, and the architecture itself. It will take
numerous tasks and repeated attempts to fix a proper value for each parameter, just as the
measurement of atomic weight had to evolve.

Theoretically, the predicted order of magnitude of this rate should be between 3 and 30 cycles
per second (Newell, 1990). The preliminary attempt to measure that rate here fits that range.
The rate probably should not wander in this range, but be a constant. The results here suggest
that this rate will be closer to 3 cycles per second rather than 30.

There are several reasons to believe that this rate is not yet fully settled. The model does not
interact with the environment, which would increase what the model did per task and thus
decrease the time per cycle. The model does not verbalise. Subjects, while they talk aloud, typi-
cally take longer to solve a problem. Either comparing the model to a subject that did not
verbalise or having the model verbalise would also decrease the time per cycle. And, as we shall
see shortly, the model does not include a significant amount of reflection near the end of the
problem solving. People appear to do this and including it would increase what the model did
and thus also decrease the time per cycle.

The subject's performance improves rather quickly in this simple task over the five trials. It is
hard to compute because his tasks vary, but based on the model's more repeatable performance, if
Episode 6 were a power supply fault, it would be solved in 53% of the first episode’s time; if
Episode 6 was a main accumulator fault, it would be solved in 7% of the initial time (there is
much more processing to be lost, and there are no switches requiring interaction).

The last set of columns labelled learning notes that the model learns 101 new rules in the course
of problem solving. The number of rules learnt and applied per episode varies between episodes
indicating different amount of transfer, both in the rules that can transfer and thus the rules to be
learnt. The rate of learning is fairly constant across episodes when adjusted by model cycles at
one new rule learned every 6.4 cycles (range: 5.8 to 7.4) or 0.81 s (range: .43 to 1.7). This is
approximately as predicted (Newell, 1990, p. 318). The rate of transfer is a rule every 1.59
cycles (range: 0.5 to 3.3) or 0.59 s (range: 0.065 to 1.46). Note that the transfer rate varies, indi-
cating that there are differences between episodes. This variance suggests that the noise that is
typically seen with practice with respect to the power law of practice is not always noise, but some-
times represents genuine differences from the power law due to differential transfer.

Ritter and Larkin (1994) reported that verbal utterances appeared to be uttered approximately 1 s
after the model predicted that the mental structures entered working memory. Without this
adjustment the matched behaviours correlated on average r = 0.788 across episodes, with the
subject's times adjusted this way they correlated r = 0.780. This study does not support this lag,
but it lacks the extensive required task actions to fully measure it.

Modelling learning while it happens 16 March 1997

Table 4. How the model accounted for segments in each of the five episodes. NA indicates utter-
ances (like "Uhmm") or mouse movements (like the first of two moves towards a target) that were
not appropriate to code against the model. The last set of columns indicates the number of cycles
the model took to find the fault; the time the subject took to find the fault; and the corresponding
ratio, which includes in its calculation an additional 2.5 s to model the output of the mouse click,

but does not include any slowdown of the subject due to verbalisation.

Utterances Mouse Processing times Learning

Episode
& fault

Matched/
possible

N A Words
per

m i n .

Matched
/

possible

N A Model
cycles

Subject
Time

(s)

Model
Cycle
per S

New
rules

Trans-
fer

1: Power
supply

3/3
 (100%)

(3) 56.9 2/5
(40%)

(5) 58 21 3.14 9 0

2: Main
accum-
ulator

10/12
(83%)

(3) 98.7 6/17
(35%)

(25) 186 46 4.28 25 3

3: Laser
bank

12/14
(86%)

(1) 131.0 2/3
 (67%)

(8) 301 27 12.29 47 19

4: Main
accum-
ulator *

6/17
(35%)

(13) 41.0 2/11
(18%)

(18) 60 13 5.71 10 19

5: Energy
booster 1

3/4
(75%)

(1) 87.7 5/5
(100%)

(7) 58 17 4.00 10 2

Totals or
mean

34/50
(68%)

(21) 83.1 17/41
(41%)

(63) 663 124 5.95†

5.88‡

101 43

Excluding
Episode 4

28/33
(85%)

(8) 93.6 15/30
(50%)

(45) 603 111 5.97†

5.93‡

91 24

* Subject’s answer was incorrect.
†Weighted by time.
‡Weighted by episode.

3.4 Operator support

Figures 9 and 10 are operator support graphs (John & Vera, 1992) created from the comparisons
summarised in Table 4. Figure 9 shows the operations and their order as performed by the
model in Episode 1. The small blocks indicate the model operators connected in order of appli-
cation; these are annotated by symbols shown in the legend indicating the type of data matched
to the operators. Implicit mouse movements are those movements that must be compared to
internal actions of the model; overt mouse movements are those that can be matched to overt task
actions. When a data segment was not matched, a symbol indicating the data and its type appears
at the bottom of the figure, between the nearest matched segments. Figure 10 shows all the
segment matches across the four correct episodes. Most operators that would be verbalisable or
matched by mouse actions have multiple support. Together, they suggest that most of the opera-
tors in the model are either supported by data or are required to perform the task.

Modelling learning while it happens 17 March 1997

 0 10 20 30 40

Operator counts

solve-problem

attend

comprehend

report

choose-component

diag-suggestion

interface-suggestion

diagram-choice

interface-choice

test-component

check-lit

check-switch-diagram

check-switch-decide

check-previous-diag

check-previous-decide

decide-status

choose-switch

choose-previous

reality-check

reset

Diag Ops

Sat Jun 1 01:14:10 BST 1996

m m m

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

Figure 9. The support each operator in the model received in Episode 1.

 0 20 40 60 80 100 120 140

Operator counts

solve-problem

attend

comprehend

report

choose-component

diag-suggestion

interface-suggestion

diagram-choice

interface-choice

test-component

check-lit

check-switch-diagram

check-switch-decide

check-previous-diag

check-previous-decide

decide-status

choose-switch

choose-previous

reality-check

reset

Diag Ops

Sat Aug 24 18:51:21 BST 1996

m v v

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

m m m

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

m m m mv v

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

v

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

Figure 10. Support for each operator in the model across all correct episodes.

Modelling learning while it happens 18 March 1997

3.5 The time course of the comparison

Figure 11 shows the time course of how the model's sequential predictions matched the subject's
overt and implicit behaviour while correctly solving the tasks. In these figures the y-axis repre-
sents the model's time and the x-axis the subject's time. Each correspondence between their
behaviours is indicated by a symbol indicating what type of subject data was matched, and its
location on the axis indicate the relative times. Unmatched subject behaviour is indicated by
boxes at model time 0, with their type (mouse or verbal) indicated by the letter in the box.

If the model and the subject were solving the task at the same rate, a straight line with unitary
slope would be created by the plotted correspondences. Deviations from this line indicate that the
model and the subject are performing parts of the task at different relative rates, with some typical
problems having diagnostic patterns (Ritter & Larkin, 1994).

In Episode 1, shown in Figure 11.a, the rates at which the subject and the model perform the task
do not match so well. The relatively horizontal lines indicates that interface objects in the
subject's early verbal utterances could be matched to objects the model used quite late in the
process, and that the subject spent a considerable portion of their time with the solution in mind.
There is also evidence that the model and the subject performed two actions in different orders;
this is indicated by the negatively sloped segment around 6 s on the subject's axis.

Figure 11.b (Episode 2), shows a slightly better correspondence. Initially, the subject checks the
power supply switch and the model does not. This is reasonable behaviour for the subject; the
model only checks the switch if the light is off, although in this case, the switch is after the device.
Then the subject and model perform the task in a similar way for about 10 s. The subject then
appears to dwell on the main accumulator for the remainder of the episode, going back at the end
to recap the end steps of their reasoning processing.

Figure 11.c (Episode 3), shows the subject and model performing the task in roughly comparable
times until the subject jumps from the main accumulator to the next object, the laser, faster than
the model makes the transition. He then dwells on examining the laser indicator's state (it is off),
and later dwells on that it is broken before reporting it as the fault.

Figure 11.d (Episode 5), shows the subject and model now performing the task in roughly the
same way, at a relatively constant rate. On this episode there was only one unmatched action.

3.6 Review of alignment

How well the model's actions could be aligned with the model varied in clear ways across these
episodes. While the mismatches are not so bad that we should not take this model seriously, they
are now large enough and systematic enough to make suggestions for improving the model in
ways that the aggregate data could not do.

Early on, the subject performed actions that could not be aligned with the model and dwelt on
items of interest. The early episodes included more backtracking by the subject and periods
where the model was not doing anything (e.g. the plateau in Episode 2 starting at 12 s) while the
subject clearly was. If we examine the utterances during these periods, we can find indirect evi-
dence for reflection because problem solving is not going on. Although the order of the mouse
movements more directly suggests this, the order of the utterances would not indicate this; the
comparison with the model highlights this effect. We also saw that the subject examined the
switches more often, which the model checked only when it had to, assuming default settings.

Modelling learning while it happens 19 March 1997

Subject time in seconds

M
o
d
e
l t

im
e
 in

 s
e
q
u
e
n
tia

l o
p
e
ra

to
r

a
p
p
lic

a
tio

n
s

0 10 20 30 40

0
1
0

2
0

3
0

4
0

Sat Aug 24 18:43:11 BST 1996

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

m

Figure 11.a. The relative processing rate plot for Episode 1.

Subject time in seconds

M
o

d
e

l t
im

e
 in

 s
e

q
u

e
n

tia
l o

p
e

ra
to

r
a

p
p

lic
a

tio
n

s

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0
1

0
0

Sat Aug 24 18:43:15 BST 1996

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

vm

Figure 11.b. The relative processing rate plot for Episode 2.

Modelling learning while it happens 20 March 1997

Subject time in seconds

M
o

d
e

l t
im

e
 in

 s
e

q
u

e
n

tia
l o

p
e

ra
to

r
a

p
p

lic
a

tio
n

s

0 10 20 30 40

0
5

0
1

0
0

1
5

0
2

0
0

Sat Aug 24 18:43:18 BST 1996

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

vm

Figure 11.c. The relative processing rate plot for Episode 3.

Subject time in seconds

M
o

d
e

l t
im

e
 in

 s
e

q
u

e
n

tia
l o

p
e

ra
to

r
a

p
p

lic
a

tio
n

s

0 5 10 15 20

0
1

0
2

0
3

0
4

0

Sat Aug 24 18:43:26 BST 1996

Overt mouse behavior
Implicit mouse behavior
Verbal utterance
Unmatched behavior

v

Figure 11.d. The relative processing rate plot for Episode 5.

Modelling learning while it happens 21 March 1997

We could only see that reflection, or a similar process, was occurring because of direct, detailed
comparison between predicted and actual behaviour. The quality of the reaction time predictions
of the model suggested that the model and the subject performed the task in roughly the same
way, and because it accounted so well for the reaction times while learning was occurring.

We do not have complete access to what the subject was doing with the time they spent at the end
of the early episodes, or exactly what was learned. We suspect that the time spent at the end of the
task in some kind of apparent review served several roles in this task. It may have been fruitless
time, not directly leading to improved performance except by its removal. It may have been
reflection that led to increased confidence in the current strategy, which would not directly show
up, but in that the increased confidence lead to less reflection. It may have led to a strategy that
more closely matches the model, but this may be contradicted by how the subject and model
perform fairly equivalently in the initial aspects of the task. The next step for this model is to
include one or more of these mechanisms.

A tentative explanation can now be put forward for the effect in Figure 8, where the subject takes
a relatively longer time than the model on the second repetition of a problem, but not on the first
or third. While the protocol subject did not see a problem three times, it appears that the model is
learning in a more linear way than subjects, who appear to spend more time on early trials reflect-
ing.

It is not clear in complex models like Diag how many degrees of freedom there are. We believe
that there are more degrees of freedom in Diag than in a ten term polynomial function. However,
there are reasons to believe that the number of degrees of freedom are smaller than one might
expect. The architecture is fixed for this model, the fundamental assumptions in it are taken as
given, and offer no degrees of freedom for fitting this data. The initial knowledge of 173
production rules fits the initial behaviour. Later behaviour must be matched by the initial and
learned rules that arise in problem solving, for no action is taken to adjust the learned rules other
than what the architecture automatically creates. Overall, we believe that this use of a fixed archi-
tecture including learning and performance of the task substantially decreases the degrees of
freedom in the model, however, we are not yet able to quantify this decrease.

The data accounted for by the model is also larger than it appears. In addition to the standard
role that reaction times play, this model attempts to predict aspects of their sequential nature, that
is, the order of the actions. The protocols that are matched are particularly dense because they
include verbal utterances. These utterances come from a vocabulary of unknown size, so we do
not know of a way to quantify the amount of additional data this provides. Overall, we do not
feel that the ratio of degrees of freedom to the amount of data is unreasonable.

4. Summary and Conclusions

Diag is one of the first models that has had its sequential predictions compared with human data
as they both learn using their own learning processes. That this learning effect is based on the
architecture, starts to get the investment in an architecture to pay off. This admittedly has not yet
happened as often as architectural proponents would like and analysts need (Ritter, 1995).

Comparing the sequential predictions of a model that learns with sequential subject data was a
worthwhile exercise. The model fits the data fairly well, accounting for several types of aggregate
data well and even predicts individual trial reaction time data for the majority of subjects. When
the time course of behaviour within an individual episode was examined with respect to the
model's sequential predictions, however, the model's behaviour did not compare so favourably
with the subject's. Indeed, it suggested that the simple use of the learning mechanism provide in
the model's architecture does not account for how the subject appears to have been learning
through a process similar to reflection, either directly leading to new strategies or indirectly by
decreasing the amount of reflection.

Modelling learning while it happens 22 March 1997

This detailed level of analysis suggests several important problems for understanding learning by
using modelling, points out a new direction for learning research, and encourages the develop-
ment the model tracing approach. The model sheds some light on how people reason with dia-
grams and learn through reflection. The comparison of the model's performance with sequential
data pointed out some theoretical and practical problems with this methodology. And, most
importantly, it has told us where to improve our model. We explore these statements in turn.

4.1 Reasoning with diagrams

We can derive some implications from the model because it fairly well reflects behaviour on
reasoning with diagrams. The model supports the idea that subjects still use the diagram infor-
mation in a cyclical, iterative fashion even after some practice at the task. It suggests that subjects,
like the model, learn only the information from the diagram that is relevant to the context of each
stage of the problem-solving. That is, while they use the diagram, they only learn to apply the
part of the diagram that they use.

The comparisons here showed that subjects still used the diagram after solving the task. This is
supported by the single subject's behaviour directly, and by how well the model's time predictions
fit the aggregate data. We believe that if subjects were learning more or less about the diagram
than the model was, the match would be poorer.

A deeper understanding of this task elaborates the view of diagrammatic reasoning (Larkin &
Simon, 1987). The learning mechanism in the model and the subject data suggests that after
practice, performance of this type of task is recognition-driven rather than model-driven behavi-
our. But during learning, the interface is used as an external resource to support problem-solving
and recognition.

4.2 Learning through reflection

The speed up in performing this task could have come from several sources, including improved
planning, faster typing and other sources. For example, in a pseudo-algebra task, Blessing and
Anderson (1995) found that improved performance came not only from step-skipping but also
from decreased initial planning time and decreased typing times.

The existing model and how it uses the chunking learning mechanism speeds up the model's
performance using several strategies already. Some learned rules are useful for implementing
operators directly, and some rules implement the effects of operators directly as augmentations to
the state. Other learned rules represent the use of proposing operators in the top state, which are
shifts of external attention. With practice with the task, rules based on information requiring less
problem solving get created. The detailed comparison between the subject's and the model's
behaviour suggests that despite the existing methods the model is not learning in all the ways the
subject did, and should also reflect on its performance.

By noting the time course of the work through comparison with a model performing the task, we
saw that subjects spent time at the end of the task performing a sub-task that disappeared with
practice. The type of utterances are similar to the type of utterances towards the ends of the epi-
sodes of Anzai and Simon's (1979) subject who also reflected. The similarity of the utterances
and behaviour suggests that in this task it was a more covert type of reflection that lead to a faster
response. Without the explicit comparison including time, it would have been more difficult to
see this behaviour as including reflection.

The need for reflection. This work suggests that an important cause of speedup for the subject
was reflection. If this is true, part of the speedup could be attributed to an improved diagnosis
strategy, perhaps including step-skipping (Blessing & Anderson, 1995), and part of the speedup
may be due simply to less time spent reflecting.

Modelling learning while it happens 23 March 1997

If reflection is necessary to learn in this domain, then practice under highly paced conditions,
where subjects did not have time to reflect, should decrease their performance. Nielsen and
Kirsner (1994) have created an example model of this effect. In a highly paced problem solving
task, the subject may have a stack of several subgoals. In order to learn anything, the model must
find the solution in the bottom-most subgoal and learn a rule before the situation changes
destroying the stack. If the external situation is too highly paced, the model cannot solve the
initial problem, and thus cannot reason about more complex problems.

Including reflection-based learning appears to be necessary for cognitive architectures to
progress. Most learning mechanisms provide simple speedup. The rule strengthening mecha-
nism in ActR and rule composition (Lewis, 1987) do not support strategy changes very well. The
most typical uses of the chunking mechanism in Soar also will not produce strategy changes
(although, see Bauer & John, 1995, and Bass et al., 1995).

"Listening to the architecture" failed here. Another interesting aspect of this work is that the need
for and role of reflection in learning cannot come initially from 'listening to the architecture' (e.g.
Newell, 1990, p. 331). The need for reflection does not arise, at least not directly, out of this
architecture, although some architectures may choose to support it directly (Ram, et al., 1995).
Reflection appears to arise from the subject's knowledge—knowledge that suggests that perfor-
mance is not optimal; knowledge that performance could be improved; and knowledge about
how to improve performance. In Anzai and Simon's (1979) model that learns through a type of
reflection, they note the interplay between general learning mechanisms and the importance of
specific task knowledge. This is particularly true for this task.

On the other hand, the Soar architecture can provide support for reflecting and offers some
suggestions about how to reflect in a useful way. A preliminary model of this type of reflection
uses an operator to consider all the knowledge available after an action to decide whether or not
to reflect, an abstract copy of the problem space to consider what else could have been done, and
creates new rules to transfer what is learned in the reflective space directly into modified behav-
iour (Bass, et al., 1995). It is consistent with IML (Ram, et al., 1995),, except it attempts to use
existing mechanisms within the architecture.

4.3 Further development of trace-based protocol analysis

The analysis of the sequential behaviour was fairly successful. It helped understand where the
model performed well and poorly, and it was able to suggest that the subject was reflecting in
some way. It also raised some serious questions about how to apply this model tracing technique
where learning occurs. We do not assume that these are fatal flaws for this methodology, but wish
to highlight the difficulties in some detail to assist future work.

Despite the breadth and depth of these difficulties, none of them preclude using this approach to
develop models. At the end of the day, two questions remain about models: are they worth
taking seriously (which this one is), and can you tell where to improve them (which we could
despite these difficulties). These difficulties restrict seeing every place of improvement; they
restrict what we can see and how quickly we can see it, but they do not totally obscure the model
so that it cannot be improved.

Avoiding the danger of averaging across even a single trial. This test of using sequential data
demonstrated an additional way that models can be wrong. Diag successfully fits reaction times
for a series of tasks while learning occurred but it did not match the time course of behaviour
generating those reaction times. The main result that the sequential analysis of the sequential data
revealed was that reaction times can be well modelled while their internal generation is incorrect.
This is doubly important in this case because the analysis was able to illuminate a new learning
approach that subjects and earlier work using aggregate measures did not discover (Bibby &
Payne, 1993; Bibby & Reichgelt, 1993; Kieras & Bovair, 1984).

Modelling learning while it happens 24 March 1997

The dangers of aggregating over individual data (Delaney, Reder, Staszewski, & Ritter, in press;
Siegler, 1987; Walker & Catrambone, 1993) can be expanded to include the danger of aggregat-
ing over a single trial from a single individual. When several steps make up a reaction time, then
it is possible to have the right basic units but get them in the wrong order or exclude some in a
regular way so as to still get a reasonable correlation with individual reaction times. When there
are ambiguities with a model or differences between models, one of the ways forward will be to
use within-trial timing to resolve ambiguities.

Formalising partial and multiple matches. Diag operationalises a theory of performance in a fine
grained way. In doing so, it attempts to extract much more from the data beside the time it took
to create the response. However, decreasing the grain of the comparison and including learning
strains the previous theory of comparison. This raises several questions about how to formalise
this comparison in terms of partial matches.

With this fine grained model, multiple aspects of a match become visible. With a smaller compar-
ison grain size, the several aspects to a match become visible:

(a) that the action occurred;

(b) that the action occurred in the correct order;

(c) that the data structure was mentioned;

(d) that the utterance included each of the possibly many attributes and values
that the model's data structure had.

If we maintain the view that comparisons should indicate where the model can be improved,
future comparisons may stop reporting whole behaviours as being matched, but instead reporting
a set of sub-comparisons. The subcomparisons are not as useful for keeping score as they are for
finding where the model can be improved.

This fine grained a model can lead to resegmentation of utterances. Consider, perhaps, what
could be segmented as a complete thought:

That goes to the main accumulator which is on and lit so
that's OK

When this is compared with the model's trace, in order to compare completely comparable items,
it must be resegmented into several smaller items:

That goes to the main accumulator

which is on

and lit

so that's OK

So we are able to present a more complete and theoretical definition of what comprises a
complete thought—items that appear in the model's trace. How to segment still remains a prob-
lem for sections that are not modelled. Any atomic utterance that is noted as 'verbal uncoded'
may be ambiguous in its granularity of decomposition unless there are model components that
can be used to decompose it. If the model suggests that the utterance: "That goes to the main
accumulator which is on and lit so that's OK" decomposes into four steps, all matched, then "That
goes to the laser bank and it's on and lit so that's OK" should also decompose into four steps, even
if all those segments currently are uncodable.

Modelling learning while it happens 25 March 1997

In order for trace-based protocol analysis to bring out the fact that, say, model A, which has the
right elements in the wrong order, is not as good as a model B, which has the right elements in the
right order, we need a more complete coding scheme that takes account of these factors. For
example, alignments with the subject on the previous version of Diag (v.16) did not differ much
on pure 'hits', but qualitatively the newer version of Diag had much stronger ties in the verbal and
mouse matches in the order and level of detail matched.

Utterances may match multiple objects in the model, for the model objects might not be atomic
or might appear as part of several problem solving steps. For example, the utterance "The main
accumulator is on" may match two operators and their corresponding state information: selecting
the main accumulator (operator and/or result) and checking its state (operator and/or result).

Many utterances also imply substeps that are necessary elements in the task (and remain as sub-
steps even in a fully-chunked or automatic model). For example, if the subject's first utterance is
"PS is lit", then the subject must have gone through a decision of what to check first or else decid-
ed to just use the fovea's contents to start. Strictly speaking, the mismatched data that suggested
that subjects were reflecting, could have been matched to grossly out of order model actions.
When and how to align actions matched out of order remains to be formalised.

Clearly, models can still be compared with data, and doing so is useful for improving the model.
At this point, as our models become more complicated, how to do this in a clear, consistent and
efficacious manner requires additional thought.

Supporting comparisons of hierarchical model structures. Hierarchical models pose a new prob-
lem when aggregating support for a model structure. In the past, if a single model structure gave
rise to behaviour and a subject exhibited this behaviour, the structure could be simply credited as
supported by data. In Diag, because of its hierarchical nature, there are often several structures
active at any one time, so there is always a question of where to assign credit. If the state informa-
tion is shared between the two levels, which level is considered as the corresponding structure?
This problem exists even if you initially create the minimal model necessary to do the task, and
expand it only to account for subject data (e.g., as in Peck & John, 1992 and in most other
models).

There are several ways out of this dilemma of how to assign credit for the correspondences, none
of them completely satisfactory. One could simply provide support to only the top level in the
goal hierarchy. Lower levels would be allowed, but because they do not directly give rise to
external behaviour, they would not receive support (and would rely on the necessity to do the task
to avoid being unfalsifiable). One could provide support to the lowest level, which is what we did
here. This tends to leave the top levels unsupported until learning occurs. An additional
approach is to provide support for all operators or their states in the hierarchy when the subject
and model correspond. This seems a bit generous.

If we continue with this learning mechanism and this type of model, we will need to consider
passing on support to higher levels. A structure supported at a lower level may be incorporated
in a higher level structure. This could give rise to structures for which no direct evidence has
been found as a whole, but which has support for each of its components.

While even Newell and Simon (1972) matched behaviour to production rules acting like opera-
tors, strictly speaking, this is not correct and has lead us into this dilemma. Under strict terms,
only like can be compared with like. The subjects' utterances, or, more fairly, the references of
those utterances, are references to internal states. These should only be compared with state
representations in the model. Similarly, output is not a process (at least in the Soar architecture
yet), but a state annotation picked up by the motor system for actual action.

Modelling learning while it happens 26 March 1997

Figure 12. Example match of verbal and mouse movements to multiple model actions in
Episode 3, segments 20-21.

20: mouse move(over: Laser Bank)

21: "which is not lit"

-> O: Attend (LB)

-> O: Comprehend (LB)

-> O: Check-lit (LB)

Operator/state equivalence breaks down. Newell and Simon (1972, p. 157) noted that subjects'
sequential behaviour could be compared with the behaviour of a process model in terms of either
the states or the operators (where simple productions have been sometimes treated as operators).
This has been a fruitful simplification often used (e.g. John & Vera, 1992). It reduces the size of
the model's trace for comparison, and simplifies the matching process.

This work indicates that there will be difficulties keeping this equivalence as cognitive models
become more sophisticated. There are several problems in assigning credit and performing the
comparison. Operators in this model were more complicated than previous models. They take
arguments that can give rise to slightly different instantiations with slightly different behaviours.
Does the operator have support if the operator is correct and the arguments are wrong to corre-
spond to the subject's behaviour? When composition and chunking of operators or productions
are possible, how is credit accumulated across trials and across learning episodes? It appears that
the safest course is to back up to comparing talk-aloud utterances about state information with
traces of the state of the model.

Increased model complexity also causes some problems when comparing the subject's behaviour
with the model's state information. As process models have developed, their data structures have
become more sophisticated. The possibility of an atomic matching of an utterance is becoming
less possible. Representations are developing sub-structures, and the comparison is sometimes no
longer atomic. There appears to be a trade off between the ability to compare the model and its
power to perform complicated tasks.

So far, there has been support in several studies for having mouse moves over an external display
show support for the structures in a model that use the information under the mouse. As we
move towards modelling mouse and eye movements themselves (Anderson, Matessa, & Douglass,
1995; Bass, et al., 1995; Baxter & Ritter, In press), how can we use the mouse-move-inferred
comparisons when perception is modelled? Modelling the comprehension in detail will actually
make the comparison process more difficult because the mouse movement should now be
compared with perception in the model, rather than simply support for cognition. Figure 12
shows how this has required splitting the use of the mouse and verbal data into a comparison with
perception and comprehension operators. This correspondence and that external information has
been acquired must be remembered by the analyst and used again to support the cognitive action
that uses the data later.

These problems make detailed comparison even less appealing because they drastically increases
the workload of the analyst and obscure the interpretation of operators, the process generators in
the model. Many possible solutions currently appear to be either wrong or intractable. Our hope
is that the architecture will clear up, offering a way back towards the basic equivalence of opera-
tors and states.

Knowing where to partition operators. As we created a model of a 'Switch-Changing' Task in
addition to the fault-finding task, it emerged that while there are guidelines about how to partition
behaviour into operators and states (Newell, Yost, Laird, Rosenbloom, & Altmann, 1991), there

Modelling learning while it happens 27 March 1997

are no guidelines on where to partition behaviour, particularly internal behaviour, into operators.
Numerous architectures support operators, but there are no guidelines on when and where to split
behaviour into operators. On one level, this may be the result of the increasing complexity of
models as well as (perhaps) the undecidability of models (e.g., as argued for by Anderson, 1990),
but some informal or sketching guidelines should be possible about how to partition knowledge
to solve tasks. People can be trained to create models that account well for transfer (Kieras &
Bovair, 1986; Nerb, et al., 1993; Singley & Anderson, 1989), but it is acknowledged they have to
be trained at certain labs (Kieras, 1985, p. 72).

Problems of alignment due to learning. Comparing the predictions of models that learn with data
raises some problems that Newell and Simon never had. Process models typically include hierar-
chical organisation, and in Soar this must be the case for the learning mechanism to work. That
is, there must be a problem space that has reached an impasse, and a lower problem space that
solves the problem thus creating a new rule.

This approach raised several questions about how to do the comparison.

(a) If a verbal protocol element originally matches to a structure in a subgoal,
how to aggregate match statistics when in a later trial multiple structures are
replaced by a single structure?

(b) Can we assume that the granularity of the verbal protocol reflects the
granularity of the subject's task decomposition? (We doubt it.)

(c) In an ideal situation, the protocol also becomes 'compiled' in the same
places as the problem solving becomes chunked. The utterances should
reflect increasingly high-level state information at the same rate at which
learned rules replace low-level goals. This appears to be supported by
results in knowledge acquisition in expert systems and in protocol analysis
(Ericsson & Simon, 1993, p. 126).

Learning increases the need for data as well. Initial behaviour may become masked by later
learning, so that some structures will only be used in the early stages of the model's behaviour or
in novel situations. This increases the amount of data needed to test the model. An equally seri-
ous problem is that the structures may be mutable, and support for an early version of the struc-
ture should not be carried through to a later version of the same structure.

Overall, however, learning should improve the decidability of models. With learning, the internal
structures used early in the task must lead to or be consistent with the later learned behaviour.
This increases the impact any episode can have on a model, for it suggests that a model should be
consistent with behaviour over practice.

4.4 Practical, usability problems of trace-based protocol analysis

Trace-based protocol analysis (TBPA) is still performed much by hand. The speed and accept-
ability of TBPA will depend not just on how to perform it, but how to perform it in a timely
manner. Therefore, we report several practical problems we found that influenced the analyses.
We note them here for use in developing the methodology.

SPA requires familiarity with tools. We used the alignment tool in SPA (Ritter & Larkin, 1994)
which is based on the GNU Emacs editor. While we had previously found that existing Emacs
users could pick up and use SPA rather directly (Ritter, 1992), users not familiar with Emacs
found the combination of SPA and learning Emacs quite daunting. We have created a manual
for the underlying spreadsheet that will ameliorate this problem to a certain extent, and in the
future we will have to budget time to teach Emacs as well. The alignment tool may become part
of the GNU-Emacs general release, so it has the potential to be installed at most sites automatical-
ly. The automatic alignment algorithm has been incorporated into a more menu-driven tool, but
this too requires practice (Sanderson, et al., 1994).

Modelling learning while it happens 28 March 1997

Automatic alignment is most useful for unambiguous actions. The automatic alignment process,
which worked well and to great advantage in previous work (Ritter & Larkin, 1994), was less use-
ful here. The automatic alignment algorithm works much better with unambiguous data and
where there is a high proportion of unambiguous data (e.g. mouse clicks) to constrain the match
of more ambiguous data (e.g. verbal utterances). The ratio of verbal utterances to mouse actions
was higher in this data set, so the automatic alignment was less useful here. We should explore
how to provide better verbal matches, perhaps automatically generating possible correspondences
from the model's trace, rather than simply allowing the analyst to enter possible correspondences
to look for (T. Simon, personal communication, July 1994, generated a set of regular expressions
for aligning verbal utterances with a model trace for solving the Tower of Hanoi). This approach,
while certainly not theoretically complete, would in many situations be useful none-the-less.

Interpretation requires the model designer at hand. We found that we often had to have the
model's designer available to interpret the trace to data correspondences. A solution appears to
be to have the designer document all of the model's operators, structures, and the learning mech-
anisms clearly so that others can do the alignment. This is generally a good thing.

A clean state change trace. Operator or rule applications and the states they create have often
been seen as equivalent descriptions of a model. This has been used successfully in the past (e.g.,
Peck & John, 1992; Ritter & Larkin, 1994; VanLehn, 1991) and supported in the general theory
(Newell & Simon, 1972, p. 157). This appears to be a useful and often tenable simplification.
The work here suggests that this is not tenable when learning occurs or where operators are
complex. State traces are the backup and more fundamental approach (Ericsson & Simon,
1993). They are more detailed and verbose than operator traces. They must be made simple and
easy to use when using a complex model that learns.

4.5 Implications for future models and modellers

Given that we have used an iterative technique (Ritter & Larkin, 1994), based on Grant's (1962)
approach for developing models by noting where they can be improved rather than proving
them, a natural question is where to improve the model. A secondary question is to where the
technique can be improved. We can note several places that this work has suggested improve-
ments and the direction we are heading.

The current model is incomplete in numerous ways. The model accounts for less than 10% of
the variability in trial reactions times for some subjects (two out of ten). Examining additional
subjects will provide additional strategies for performing and learning in this domain. We do not
yet, for example, model the interaction in detail; improvements in motor skills with practice are
omitted, and input from vision is not fully modelled. There is no account of how the task is
acquired in the first place.

In addition to including new capabilities and comparison with aggregate data, models that learn
must continue to be compared with single subject sequential data. Our protocol study demon-
strated the dangers of averaging over even a single reaction time. This level of comparison allows
us another way to examine the validity of the learning mechanism in addition to learning rate,
percent correct, and time to perform the task.

Applying the SPA software and techniques developed elsewhere (Ritter & Larkin, 1994) to a new
data set and new model made several suggestions for improvements. A problem that we have
been able to solve is making the automatic alignment spreadsheet easier to use. New users have
had some problems learning how to use the Dismal spreadsheet, perhaps just because it is a new
piece of software. We have created a manual for it, and it has received some use with favourable
comments. The same algorithm has been incorporated now into MacShapa as well, which offers
an alternative, more menu-driven interface.

Building the model and gathering the data still remains expensive, and reducing the effort requir-
ed remains important. The use of MacSHAPA (Sanderson, et al., 1994) or other tools for directly

Modelling learning while it happens 29 March 1997

transcribing and coding from video offer to reduce the effort for gathering and analysing this
data.

The aspects of the SPA environment developed to support Soar modelling in trace-based protocol
analysis became defunct with the Soar6 release in 1993. The environment for developing Soar
models continues with the SDE (Hucka, 1994), a structured, integrated editor similar but more
extensive than its predecessor, and the TSI (Ritter & Baxter, 1996) a graphic interface for Soar.
While these systems no doubt help create models, they will not solve the main problem because it
is the lack of mechanisms and understanding of how learning and knowledge representations
influence current and later behaviour.

There are only starting to emerge 'good programming' guidelines for process models. These
guides have existed in simpler languages for quite a while, and note how to perform common
actions in a way that is easy for an analyst to understand, that is efficient to perform, and that does
not interfere with other behaviours. This is an area that urgently needs attention. The creation of
a tutorial (Ritter & Young, 1994) is a very small step in the right direction. Extensive work will
be required from each architecture's community in this area.

Inspired by this result, we have started to implement a model of reflection in Soar in another
domain (briefly reported in Bass, et al., 1995). We have started to sketch out a general statement
of the types of knowledge required and operationalised them in a limited way. Most knowledge
in Soar and other process models is used in the same goal structure as it as learned. Hierarchical
rules like those generated in learning how to press buttons in the Seibel task are a classic example
(Rosenbloom & Newell, 1987). New rules are learned while performing the task, and then apply
when next solving the same type of task. A reflection-based mechanism proposes to create a new
type of learning mechanism in Soar, one that gives rise to rules that are created after performing
the task, and are not used in the same goal stack as when they are learned. This will be an excit-
ing general learning mechanism, providing another implementation of reflective learning (Chi,
Bassok, Lewis, Reimann, & Glaser, 1989; Ram, et al., 1995).

Modelling learning while it happens 30 March 1997

5. References

Altmann, E. M., Larkin, J. H., & John, B. E. (1995). Display navigation by an expert programmer: A
preliminary model of memory. In I. R. Katz, R. Mack, & L. Marks (Eds.), Proceedings of the CHI ‘95
Conference on Human Factors in Computer Systems, (pp. 3-10). New York, NY: ACM SIGCHI.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Anderson, J. R., Matessa, M., & Douglass, S. (1995). The ACT-R theory and visual attention. In Proceedings

of the Seventeenth Annual Conference of the Cognitive Science Society, (pp. 61-65). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86, 124-140.
Bass, E. J., Baxter, G. D., & Ritter, F. E. (1995). Using cognitive models to control simulations of complex

systems. AISB Quarterly, 93, 18-25.
Bauer, M. I., & John, B. E. (1995). Modeling time-constrained learning in a highly interactive task. In I. R.

Katz, R. Mack, & L. Marks (Eds.), Proceedings of the CHI ‘95 Conference on Human Factors in Computer
Systems, (pp. 19-26). New York, NY: ACM SIGCHI.

Baxter, G. D., & Ritter, F. E. (In press). Model-computer interaction: Implementing the action-perception
loop for cognitive models. In The 1st International Conference on Engineering Psychology and Cognitive
Ergonomics, (pp. 8 pages). October 1996, Stratford-upon-Avon:

Bibby, P. A., & Payne, S. J. (1993). Internalisation and the use specificity of device knowledge. Human-
Computer Interaction, 8, 25-56.

Bibby, P. A., & Payne, S. J. (1996). Instruction and practice in learning to use a device. Cognitive Science,
20(4), 539-578.

Bibby, P. A., & Reichgelt, H. (1993). Modelling multiple uses of the same representation in Soar. In A.
Sloman & et-al. (Eds.), Prospects for Artificial Intelligence, (pp. 271-280). Amsterdam: IOS Press.

Blessing, S. B., & Anderson, J. R. (1995). How people learn to skip steps. Submitted.
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How

students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145-182.
Delaney, P. F., Reder, L. M., Staszewski, J. J., & Ritter, F. E. (in press). The strategy specific nature of

improvement: The power law applies by strategy within task. Psychological Science.
Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: The MIT

Press.
Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning. Cognitive

Science, 8, 305-336.
Feldman, J. (1962). Computer simulation of cognitive processes. In H. Borko (Ed.), Computer applications in

the behavioral sciences (pp. 336-359). Englewood Cliffs, NJ: Prentice-Hall.
Grant, D. A. (1962). Testing the null hypothesis and the strategy and tactics of investigating theoretical

models. Psychological Review, 69, 54-61.
Hucka, M. (1994). The Soar Development Environment. Ann Arbor, MI: Artificial Intelligence Laboratory, U.

of Michigan. Also available through http://www.cs.cmu.edu/afs/cs/project/soar/www/soar-archive-
software.html.

Huffman, S. B., & Laird, J. E. (1995). Flexibly instructable agents. J. of AI Research, 3, 271-324.
Irwin, D. E., & Carlson-Radvansky, L. A. (1996). Cognitive suppression during saccadic eye movements.

Psychological Science, 7(2), 83-87.
John, B. E., & Vera, A. H. (1992). A GOMS analysis of a graphic, interactive task. In CHI’92 Proceedings of

the Conference on Human Factors and Computing Systems (SIGCHI), (pp. 251-258). New York, NY:
ACM Press.

Jones, G., & Ritter, F. E. (In press). Modelling transitions in childrens’ development by starting with adults.
In European Conference on Cognitive Science, . Manchester, UK.

Kennedy, A., & Baccino, T. (1995). The effects of screen refresh rate on editing operations using a computer
mouse pointing device. The Quarterly Journal of Experimental Psychology, 48A(1), 55-71.

Kieras, D. (1985). The role of cognitive simulation models in the development of advanced training and testing
systems. In N. Frederiksen, R. Glaser, A. Lesgold, & M. G. Shafto (Eds.), Diagnostic monitoring of skill
and knowledge acquisition (pp. 365-394). Hillsdale, NJ: LEA.

Kieras, D., & Bovair, S. (1984). The role of a mental model in learning how to operator a device. Cognitive
Science, 8, 255-273.

Kieras, D., & Bovair, S. (1986). The acquisition of procedures from text: A production system model. Journal

Modelling learning while it happens 31 March 1997

of Memory and Language, 25, 507-524.
Kitajima, M., & Polson, P. G. (1996). A comprehension-based model of exploration. In M. J. Tauber, V.

Bellotti, R. Jeffries, J. D. MacKinlay, & J. Nielsen (Eds.), Proceedings of the CHI ‘95 Conference on
Human Factors in Computer Systems, (pp. 324-331). New York, NY: ACM SIGCHI.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial
Intelligence, 33(1), 1-64.

Laird, J. E., & Rosenbloom, P. S. (1995). Evaluation of the Soar cognitive architecture. In D. M. Steier & T.
M. Mitchell (Eds.), Mind matters (pp. 1-50). Hillsdale, NJ: LEA.

Larkin, J. H. (1981). Enriching formal knowledge: A model for learning to solve textbook physics problems.
In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 311-334). Hillsdale, NJ: LEA.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive
Science, 11(1), 65-99.

Lewis, C. H. (1987). Composition of productions. In D. Klahr, P. Langley, & R. Neches (Eds.), Production
system models of learning and development (pp. 329-358). Cambridge, MA: MIT Press.

Lewis, R. L. (1993). An architecturally-based theory of human sentence comprehension. Ph.D. thesis,
Carnegie-Mellon University.

Nerb, J., Krems, J., & Ritter, F. E. (1993). Rule learning and the power law: A computational model and
empirical results. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society,
(pp. 765-770). Hillsdale, NJ: Lawrence Erlbaum Associates.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall, Inc.
Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., & Altmann, E. (1991). Formulating the problem

space computational model. In R. F. Rashid (Ed.), Carnegie Mellon Computer Science: A 25-Year
commemorative (pp. 255-293). Reading, MA: ACM-Press (Addison-Wesley).

Nielsen, T. E., & Kirsner, K. (1994). A challenge for Soar: Modeling proactive expertise in a complex
dynamic environment. In Singapore International Conference on Intelligent Systems (SPICIS-94), (pp.
B79-B84).

Peck, V. A., & John, B. E. (1992). Browser-Soar: A computational model of a highly interactive task. In
Proceedings of the CHI ‘92 Conference on Human Factors in Computer Systems, (pp. 165-172). New
York, NY: ACM.

Ram, A., Narayanan, S., & Cox, M. T. (1995). Learning to troubleshoot: Multistrategy learning of diagnostic
knowledge for a real-world problem-solving task. Cognitive Science, 19(3), 289-340.

Ritter, F. E. (1992). TBPA: A methodology and software environment for testing process models’ sequential
predictions with protocols. PhD thesis, Carnegie-Mellon University.

Ritter, F. E. (1995). Review of “Soar: An architecture in perspective”. Philosophical Psychology, 8(3), 301-
305.

Ritter, F. E., & Baxter, G. D. (1996). Able, III: Learning in a more visibly principled way. In U. Schmid, J.
Krems, & F. Wysotzki (Eds.), Proceedings of the First European Workshop on Cognitive Modeling, (pp.
22-30). Berlin: Forschungsberichte des Fachbereichs Informatik, Technische Universität Berlin.

Ritter, F. E., & Larkin, J. H. (1994). Using process models to summarize sequences of human actions.
Human-Computer Interaction, 9(3&4), 345-383.

Ritter, F. E., & Young, R. M. (1994). Practical introduction to the Soar cognitive architecture: Tutorial
report. AISB Quarterly, 88, 62.

Rosenbloom, P. S., & Newell, A. (1987). Learning by chunking, a production system model of practice. In D.
Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development (pp. 221-
286). Cambridge, MA: MIT Press.

Ruiz, D., & Newell, A. (1989). Tower-noticing triggers strategy-change in the Tower of Hanoi: A Soar model.
In Proceedings of the Eleventh Annual Conference of the Cognitive Science Society, (pp. 522-529).

Rumelhart, D. E., McClelland, J. L., & group, t. P. r. (1986). Parallel distributed processing: Explorations in
the microstructure of cognition. Volume 1: Foundations. Cambridge, MA: The MIT Press.

Sanderson, P. M., Scott, J., Johnston, T., Mainzer, J., Watanabe, L., & James, J. (1994). MacSHAPA and
the enterprise of exploratory sequential data analysis (ESDA). International Journal of Human-Computer
Studies, 41, 633-681.

Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition.
Journal of Experimental Psychology, 115, 250-264.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard
University Press.

VanLehn, K. (1989). Learning events in the acquisition of three skills. In Proceedings of the 11th Annual

Modelling learning while it happens 32 March 1997

Conference of the Cognitive Science Society, (pp. 434-441). Hillsdale, NJ: Lawrence Erlbaum Associates.
VanLehn, K. (1991). Rule acquisition events in the discovery of problem-solving strategies. Cognitive

Science, 15(1), 1-47.
VanLehn, K., & Ball, W. (1991). Goal reconstruction: How Teton blends situated action and planned action. In

K. VanLehn (Ed.), Architectures for intelligence Hillsdale, NJ: Lawrence Erlbaum Associates.
VanLehn, K., & Jones, R. M. (1993). Learning by explaining examples to oneself: A computational model. In

S. Chipman & A. L. Meyrowitz (Eds.), Foundations of knowledge acquisition: Cognitive models of
complex learning (pp. 25-82). Boston, MA: Kluwer.

vanSomeren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The Think Aloud Method: A practical
guide to modelling cognitive processes. London/San Diego: Academic Press.

Walker, N., & Catrambone, R. (1993). Aggregation bias and the use of regression in evaluating models of
human performance. Human Factors, 35(3), 397-411.

Wiesmeyer, M. D. (1991). An operator-based attentional model of rapid visual counting. In Proceedings of the
Thirteenth Annual Conference Cognitive Science Society, (pp. 552-557). Hillsdale, NJ: Lawrence Erlbaum
Associates.

