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Abstract

We describe an improved version of the Able cognitive
model that exhibits a novice to expert transition in solving
physics problems.  The initial model was written by Larkin
and initially translated into Soar (ver. 4) by Levy.  In
revising it to run in the latest version of Soar (7.0.4), we
have updated it to be an exemplar of an understandable and
reusable cognitive model.  It includes graphic displays for
indicating how it works.  Able's learning mechanism has
been organized into a general learning utility for use in other
models where further principles can be specified (we demon-
strate this for a new problem).  Finally, it is publically
available.  We argue that this example standard of displays
and reusability must be realized more often if cognitive
modeling is to prosper.

Introduction
There are serious problems restricting the use of cognitive
models.  It is probably fair to say that most cognitive
models are not reused, even when they are created in a cogni-
tive architecture designed to facilitate their reuse.  It is also
probably fair to say that cognitive models can often be diffi-
cult to explain and understand.  There are, of course, numer-
ous exceptions1, but overall, cognitive modeling does not
have the system reuse that the AI community achieves.

We describe here a revision of a previously presented cog-
nitive model.  In this revision, we do not expand the model
to cover more data directly, but to be more useful.  We do
this by (a) making the model easier to understand; and (b)
making the model easier to apply to additional data, that is,
reuse it.  We demonstrate its reuse here on a small sample
task, but we had used before attempting to make it into a
utility.  We believe that including these two features will set
a new standard for models, and further fulfills the promise
this model initially offered, that of providing an account of

1The Symbolic Concept Acquisition version 2 model by
Pearson (based on Miller's work) and the Subtraction model
by Jones (based on Brown, VanLehn's, Young and O'Shea's
work) from the U. of Michigan are nice exceptions that also
inspired this work.  They include explanatory displays and
their code is available.  The models (or their authors) are
available through http://ai.eecs.umich.edu/soar/soar-
group.html.  The PDP toolkits that provide displays are
exceptions as well.

knowledge application and compilation in formalizable
domains.

We are using a model of physics problem solving called
Able (Larkin, 1981; Larkin, McDermott, Simon, & Simon,
1980b).  Able solves kinematics problems by applying
physics principles.  It initially uses a backward-chaining,
means-ends analysis to find which principles to apply, start-
ing with the target variable; after learning, it ends up with a
more expert-like behavior, solving problems without search.
While Able does not model the complete process, such as
learning the principles, setting up the problem, and perform-
ing the algebraic manipulations, it is does model fairly well
on a high level the novice to expert transition of principle
application in formalizable domains like physics problem
solving.

Able was initially written as two related models: ME to
simulate novice physics problem solvers (barely able); and
KD to simulate expert problem solvers (more able) in kine-
matics (Larkin, et al., 1980b) and fluid statics (Larkin &
Simon, 1981).  These models were compared with problem
solving protocols, which they matched very well.  The
models were later unified by a learning mechanism that
learned while solving problems, showing how the novice
model could become an expert model through practice
(Larkin, 1981).  This unified Able model was translated into
Soar 4 by Levy (1991), showing that the learning mecha-
nism used by Larkin was essentially the chunking mecha-
nism in Soar (Newell, 1990).  Levy's work remains an
interesting example of how quickly someone can learn and
model in Soar, for he wrote it in two weeks.  His model is
where we started.

What we want from a cognitive model
We have previously reused the principle application mecha-
nism in Able to include a simple reasoning component in a
model that solved a simple air traffic control-like task (Bass,
Baxter, & Ritter, 1995).  Because we found Able's mecha-
nism so useful and because we will be creating further
models that will have multiple places to apply this reason-
ing mechanism, we felt it was worthwhile to regularize Able
and create a utility for our own use.

There are several things that we want from such a model-
ing utility.  We want it to match or explain some data and
make predictions about additional behavior.  Able already
does this.  We also want to include learning, particularly
learning that could implement the transition from novice
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(backward-chaining) behavior, to expert (forward-chaining)
behavior (e.g., Klein, 1989).  Able already does this as well.

We also want the model to be easier to understand and to
explain.  In order to do this, we created some graphic
displays in the scripting language associated with Soar.
Some of these displays are specific to Able, and some of the
displays can be used with other models.  When we first
reused Able (Bass, et al., 1995), doing so was not difficult,
but it was not as straightforward as we might have liked.
The bulk of our effort reported here went into regularizing
Able's structure so that it could provide a general mechanism
that could be routinely reused.  We demonstrate below how
we were able to use it very quickly to model a simple task
in a similar domain.

Lastly, one thing you might want from a cognitive model
is the model itself.  If a unified theory of cognition is going
to provide an approach that supports integrating models
(Newell, 1990), the models must be available.  The clearest
way to support this is to put the documented model in a
public place.  Our version of Able, Able III, with its
associated displays, principle application utility, and a small
additional example model is available from
ftp://www.ccc.nottingham.ac.uk/pub/soar/nottingham/.  It is
useful as an example Soar model, and as a utility for creat-
ing additional models by adding principles.  The general
graphic displays will be useful to anyone creating, examin-
ing, or teaching Soar models.  It currently runs with the
latest Soar 7.0.4 release under Unix and MacOS.

How Able works
Able provides a process model account of how problem
solvers apply and learn how to better apply principles to
solve physics problems.  It does not provide as detailed a
model of physics problem solving as more recent models
(Elio & Scharf, 1990; Ploetzner, 1995), but emphasizes
how the order of principle application in formalizable
domains can change with practice, and provides a mechanism
for predicting the order of principle application that has been
matched to extensive amounts of protocol data.  It does not
model in detail how the principles are used.  Novices may
use a principle to solve for mass while experts may carry
mass forward through the application of a principle knowing
that mass will be canceled out later.

At the start of a problem, Able has all the known and
unknown variables in its working memory (its top problem
solving state).  Its problem solving is finished when the
target variable or variables are known.  Also on the top state
are the physics principles.  Able has eight principles, such
as F = m a, F =  µ N, and x = v0 t + 0.5 a t2.  These
equations are represented in a simple way as sets of variables
(e.g., F m and a) because Able does not model the lowest
level of problem solving—algebraic manipulations—but
only models the result that if F and m are known, then a
would be known as well.

Figure 1 shows the operators and their relationships.
After a problem has been retrieved with FETCH-PROBLEM,
problem solving proceeds with a top-level operator propos-
ing to solve the problem.  DEVELOP-KNOWLEDGE will later
implement single inference steps that directly solve the
problem, but initially, nothing can be done, and an impasse

is noted by the architecture.  In this impasse, the target vari-
able is selected as the variable to solve.  APPLY-PRINCIPLE
operators are proposed to apply each of the principles on the
state.  There is some fairly powerful heuristic knowledge
included about how to chose an operator that not all problem
solvers have (but all Larkin's subjects appear to have had).
Those operators that are applying principles that do not have
many unknown variables are preferred, but more impor-
tantly, operators that propose principles including the target
variable are preferred.  Principles with the same number of
unknowns and relationship to the target are made equivalent.
If additional domain knowledge about which principles to
select was available, it could apply here as well.

FETCH- PROBLEM

APPLY- PRINCIPLE

CHECK- VARIABLE( S)

(recurse as necessary)

•••

••• APPLY- PRINCIPLE

DEVELOP- KNOWLEDGE  ( target1 )

DEVELOP- KNOWLEDGE  ( target2 )

Figure 1:  The structure of the operators in Able.  Arrows
indicate order of application and relationships in the

hierarchy.  Ellipses (...) indicate that multiple applications
of the previous operator may occur.

The implementation of APPLY-PRINCIPLE is not initially
available, for it, too, is learned.  Another impasse occurs,
and lower level CHECK-VARIABLE operators check each of
the variables in the principle.  If all but the target are
known, then the target can be derived, and this is passed up
to the higher operator.  If variables other than the target are
not known, DEVELOP-KNOWLEDGE is applied recursively,
with the unknown variable as a target.  This leads to back-
ward-chaining behavior that is typical of novices in this
domain (Larkin, McDermott, Simon, & Simon, 1980a;
Larkin, et al., 1980b).

During problem solving, chunks (new, learned produc-
tions) are created that encapsulate the essential aspects of the
impasse and the result that was used to resolve the impasse.
These chunks allow APPLY-PRINCIPLE to be applied atomi-
cally when similar circumstances occur.  With additional
problem solving, because the bottom-most operators must
be learned first, the derivation of unknown variables from
known variables eventually occurs with the DEVELOP-
KNOWLEDGE operator as well.

Learning changes how Able solves problems.  With
enough practice, fully learned behavior occurs with
DEVELOP-KNOWLEDGE solving problems directly through
application of the learned rules, in a forward-chaining way,
using the known variables to derive additional known vari-
ables.  The model changes from being driven in a goal-
directed way to apply principles to derive the target variable,
to being data-driven, where the known variables are used to
directly derive additional known variables.

Practice also drastically speeds up how long Able takes to
solve a problem.  Able III initially takes 27 model (decision)
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cycles to solve a typical problem (number 5) on the first
attempt.  This time includes time to find the principles to
apply, to check each of the variables, and recursively solve
for variables when this is necessary.  After practice over 7
trials with the same problem, Able takes just 2 model cycles
and no longer improves.  The learning curve that is
generated does not fit a power law, but it is difficult to
comment further, because there are multiple aspects of the
task not yet included in the model.

Able's novice/expert performance characterization is simi-
lar in several ways to Klein's (1989) broadly applied theory
of recognition-primed decision making (which might more
correctly be called "recognition-led problem solving in
dynamic tasks").  Like Klein's theory, Able after learning
works forward from known information; its behavior is
based on previous problem solving; and Able does not
consider alternative actions.  Able is different in that it is
spelled out in enough detail to implement some of the struc-
tural details of behavior but in a limited area, whereas
Klein's theory remains descriptive.

Able has been applied only to formal domains so far,
those "involving a considerable amount of rich semantic
knowledge but characterized by a set of principles logically
sufficient to solve problems in the domain" (Larkin, 1981,
p. 311).  Mathematics, physics and sophisticated games
(e.g., chess) are formalizable; biology and English literature
are much less so.  Whether Klein's domains (e.g., of fire
fighting) are formal or can be formalized is unclear.  The
field of cognitive science would assume that they could be,
and attempts to build expert systems in these areas are
consistent with that belief.  Able suggests that it may be
possible to create a broad range of cognitive models that
start to explain the novice/expert differences that Klein
reports by the way they improve through performing tasks.

Able III
Able III is a substantially revised version of Levy's Able-
Soar, Jr. (Levy, 1991).  In some ways it is a simple revi-
sion of an existing model.  This view, while true, misses
what has been added.  In addition to being substantially
revised, documented, and extended to cover a few more prob-
lems, we have created graphic displays of its generic and
specific behaviors, and modified Able's principle application
mechanism so that it may directly serve as a building block
for other models.

Annotated, shortened and commented
In Able III we have updated Levy's version of Able,
originally written in Soar 4, to Soar 7 (Congdon & Laird,
1995).  There have been several changes to the Soar
architecture in that time, including allowing the reuse of the
state structure and removing the explicit problem space
structure.  Some of the rule syntax, firing and support
mechanisms have changed slightly as well.

The relative ease with which Able was translated shows
that the basic Soar architecture has not changed much since
1989 in the aspects that Able relies upon.  While the func-
tionality has basically stayed the same (Able-Soar, Jr. solved
13 unique dynamics problems, Able III, solves 16), the
number of rules has slightly decreased from 52 basic rules

(excluding monitoring and problem generating rules) to 47
rules.  It is not the case that the rules have become more
complicated, for the number of clauses has decreased even
more dramatically from 400 to 218.  The differences in these
rule sets suggest that the syntax for specifying models in
Soar has become simpler without substantially changing the
architecture, which is indeed what its architects have endeav-
ored to do (Laird, Huffman, & Portelli, 1990).

Able was not fundamentally affected by the changes in the
architecture in the last five years.  One of the valid criti-
cisms suggested by Cooper and Shallice (1995) was that as
the Soar architecture was modified, older models must be
carried forward for their results to remain valid.  This has not
typically happened each time the architecture has been
released as new software.  The Soar community has not been
convinced of the need because they understood the changes,
and theoretically the changes have nearly always been small
with limited impact on existing models.  Able is a relatively
straightforward model, but the absence of problems suggests
that the approach Cooper and Shallice put forward did not
correctly classify changes, and the changes they have typi-
cally noted are implementation choices rather then changes
in the theory.  More complicated models, however, have a
greater chance of suffering from architectural changes.

Visual interface makes behavior visible
Graphic displays are often useful aids when problem solving
(Larkin & Simon, 1987).  For a brief period, when Soar was
implemented in Lisp, a set of general graphic displays were
available (Ritter & Larkin, 1994).  These led to some new
understandings about Soar models, for example, that few
extant models did extensive search in problem spaces, but
instead generally used relatively few operators in each space.
When Soar was reimplemented in C, these graphic displays
were left behind.  By including Tcl/Tk (Ousterhout, 1994) in
Soar, these types of displays can be recreated.

We have created two types of displays for working with
Able III.  Some of these will be useful for developing and
explaining nearly any Soar model, and some specifically
when working with Able III.  They provide examples of
displays that would be useful for any cognitive architecture.

General Architecture Displays  We have built with
Randy Jones a set of general displays for working with any
Soar model called the Tcl/Tk Soar Interface (TSI) and include
them with the Able model release.  There is an interaction
window (not shown here), which allows the user to interact
with Soar on a basic level using menus.  It is similar to,
but much simpler than, the Soar Development Environment
(Hucka, 1994) within GNU-Emacs.  There are also three
displays that can be updated every model cycle to display the
current goal stack, the rules that will fire next when the
model is run, and the details on how the next operator will
be selected.  In each of these displays the user can bring up a
help menu and directly run the simulation.  The ten most
commonly used Soar commands (Nichols & Ritter, 1995)
are supported with the displays, or bound to keystrokes or
menus.  These displays currently work with Soar on the
Mac and under Unix, and offer a full set or a restricted set of
commands (for teaching novices).
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Figure 2:  The general TSI display windows included with Able III, showing the current goal stack (top window), and the
rules that will fire next (bottom window).

Figure 3:  The problem display in Able, showing the problem (as text in the top pane) and the current status
(known/unknown) of the variables.  The target variables, Time spent (t) and Distance (x), are in raised text on the screen,

which appear here as underlined text.
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The continuous goal stack display, shown at the top of
Figure 2, indicates the order of operator applications and the
current goal stack.  Users can examine the substructure of
objects in the stack  in a separate window (not shown).
Users can also select how much detail is displayed, choosing
to print several layers of substructure by default, or continue
to examine substructures level by level.

The continuous match set display, shown at the bottom of
Figure 2, provides a display of the rules that have matched
the current working memory, and will fire in the next model
cycle.  Users can print them in a separate window for inspec-
tion.

Only anecdotal evidence about the usefulness of these
displays is available so far.  When an early version was
introduced to a psychology class on programming cognitive
models, all of the students chose to use the displays
(whereas they could not all use Emacs).  We will be using
the latest version of the displays this spring in the same
class.

Application Specific Displays   There are two
displays included with Able to help explain how it works
and display its behavior.  The first display, shown in Figure
3, describes the problem Able is working on.  It includes
some text explaining the story problem associated with the
physics problem, and the current status of the variables, that
is, known or unknown.  It also indicates which variables are
targets.  This display currently only works with the physics
variables in Able.

The second display, shown in Figure 4, indicates the order
of principle application.  It shows that the Able model when
it is a novice (really, an apprentice, since it knows some-
thing) works backward from the target variable.  The more
expert Able, after it has solved problems and has nearly
doubled the number of rules it has, does not appear to apply
principles at all, but works forward immediately deriving
what is known.  This display is based on the application of
principles, so it will work with any set of principles repre-
sented within this framework.

Using principles as higher level language
The previous work with Able did not treat its principles and
their application mechanism as a high level programming
language for cognitive models, but they can be seen that
way.  This mechanism is useful enough that it should be
available as a general utility, and based on our work it is
now a straightforward task to add new principles for another
domain.

New problems can be included by representing their
features on the top state.  New principles are represented one
per production rule.  The principle application mechanism in
Able can then solve the problem.  Additional knowledge can
be added, but the weak methods of search in Soar and Able
will otherwise solve the problem if it is solvable.

This mechanism could be used to model novice-expert
transitions in other domains, and provide a way to include
routine learning in models.  With any set of principles, ini-
tial behavior of the model to choose and apply the principles
will be effortful and susceptible to dead-ends.  With practice,
the model's performance will become situation driven and

faster.  This approach may make it easier to create models in
Soar by providing a mechanism that more closely approxi-
mates the highest conceptual level, the knowledge level
(Newell, 1982).

To test how easy it would be to create a new model, we
created and tested in 30 minutes a model that solved a gas
physics problem noted as one that should show
expert/novice differences (vanSomeren, Barnard, & Sandberg,
1994, p. 14-15) .  The model consists of three production
rules to be added to the existing Able mechanism; a simple
model for a simple problem, but it demonstrates that models
can be created quickly.

Figure 4:  The Application of principles display in Able
shows the order  that principles are applied.  With practice
on this problem, explicit reference to principles disappears.

Problems remain with using Able as a utility, however.
It was developed to model behavior in formal domains.  Not
all domains are formal.  It models the novice-expert transi-
tion in well under 100 trials, which normally takes years of
practice.  The transition that is modeled, the order in which
to apply principles, may be learned this quickly, but then
the model is not modeling the gamut of knowledge that
makes up an expert.  The principle application mechanism
is also unrealistic in the way it uses working memory.  It
keeps the problem and all the principles on the top state,
which is not appropriate.  These flaws should not be taken
as reasons to reject it, but rather clear indications about
where it can be improved.

Summary
Able III as an exemplar suggests two useful additions to
cognitive modeling and notes an open problem.  The first
addition that Able suggests should be routinely included is
to provide graphic displays that make models' behavior
easier to understand.  Several of these displays will be useful
when developing any Soar model because they make the
internal behavior visibly explicit.  The utility of the Able
specific displays also suggest that similar displays should be
provided for other models in other environments as well.

The other addition to cognitive modeling that Able III
proposes is the explicit need to abstract and export the
fundamental mechanism for inclusion in other models, even
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when working within a cognitive architecture.  Here, the
principle application mechanism becomes a utility as a new
programming language.  This is an important exemplar, for
cognitive models as sets of knowledge should be reusable,
including their knowledge based mechanisms.

These displays have told us something about Soar as well.
Soar proposes that there are three interesting levels of theo-
retical interest: the knowledge level, the problem space
level, and the symbolic or implementation level (Newell,
1990).  Implementing these displays have emphasized that
the problem space level does not explicitly exist in the code
that makes up Soar models—it is an emergent behavior
arising from production firings.  There are commands to
manipulate productions, for example, to delete them.  There
are far fewer existing user commands to manipulate objects
on the problem space level.  Creating a visual interface
helps compare these levels and encourages us to ask new
questions about the models.  While we now see on the
general display menus the ability to list productions and
their firing counts, we will have to extend the system in
order to list the operators and how often they have been
used.  We have already extended the system to allow users to
insert operators, and this seems quite useful.
How best to document and explain the model's code remains
an open problem.  We have taken some care to document
and explain the model as a program.  Good practice in this
area has not fundamentally changed in the last five years.
That is, there are no established standards and no well
accepted best way to explain the model as productions.
With Richard Young, we have tried creating "illuminated
code", which includes embedded HTML commands to illus-
trate code and provide additional information (an example is
available in http://www.psyc.nott.ac.uk/users/ritter/pst/
analogy/answers/anal-ans4.html).  Having illuminated code
was, in the end, quite useful for teaching, but in our limited
experience it is not good for writing and extending live code.

We believe that for cognitive modeling to succeed, not
just survive, more models will have to be prepared in this
style.  Models must become easy to understood, easy to
extend, and easy to reuse. Packaging programs as utilities
with displays provides one way of facilitating this.
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