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Abstract

We have developed a process model that learns in multiple
ways using the Soar chunking mechanism while finding
faults in a simple control panel device.  The model accounts
very well for measures such as problem solving strategy,
the relative difficulty of faults, average fault-finding time,
and, because the model learns as well, the speed up due to
learning when examined across subjects, faults, and even
series of trials for individuals.  However, subjects tended to
take longer than predicted to find a fault the second time
they completed a task.  To examine this effect, we
compared the model's sequential predictions—the order and
relative speed that it examined interface objects—with a
subject's performance.  We found that (a) the model's
operators and subject's actions were applied in basically
the same order;  (b) during the initial learning phase there
was greater variation in the time taken to apply operators
than the model predicted;  (c) the subject appeared to spend
time checking their work after completing the task (which
the model did not).  The failure to match times on the
second time seeing a fault may be accounted for by the
subject spent checking their work whilst they learn to
solve the fault-finding problems.  The sequential analysis
reminds us that though aggregate measures can be well
matched by a model, the underlying processes that generate
these predictions can differ.

Introduction
There is a speedup effect in the time taken to solve problems
that is nearly universal across tasks and subjects
(Rosenbloom & Newell, 1987).  A major question has been
understanding how people this learning occurs.  Cognitive
models have used several mechanisms to account for
learning, such as knowledge compilation and strengthening
in the ACT family of models (Anderson, Matessa, &
Lebiere, 1998), connection strengthening in PDP models
(Rumelhart, McClelland, & group, 1986), rule creation from
impasses using analogical reasoning (VanLehn & Jones,
1993), and chunking mechanisms (Feigenbaum & Simon,
1984; Larkin, 1981; Rosenbloom & Newell, 1987).  In
order to study how multiple learning mechanisms can
influence learning, and show how procedural learning may
be composed of multiple mechanisms, we explored how to
model behavior in a task familiar to us.

There are a number of problems that arise in testing the
different approaches to modeling learning.  First, the actual
path of what is learned and when by an individual learning a

task, to a certain extent, remains predicted but untested.
Secondly, there is the problem of the grain size of the
measures of subject's performance that have been compared
with computational models.  Some modelers have focused at
the level of problem solving strategy, but detailed
comparisons remain rare.  Thirdly, some models have
automatic learning but few been compared with the time-
course of behavior.  Doing so would help understand when
learning occurs.

These problems make it difficult to compare models of the
learning process and have led to a proliferation of different,
though equally plausible, accounts of how the time taken to
solve problems reduces as cognitive skills develop.  This
paper will report the results of comparing a process model
against subjects' behavior and will address these problems
by:

(a) comparing subjects' behavior individually with the
model as they both complete 20 problem solving tasks.
Both of their answer times decrease by nearly an order of
magnitude across these tasks.
(b) comparing subject's behavior with the model using
several different kinds of measurements.
(c) using a computational architecture that has an
automatic learning mechanism.

We will first explain the task that both subjects and the
model completed, and then the model.  A comparison
between aggregate and individual measures of the model's
and subjects' performance follows, which provides support
for the model.  Because the quality of this match is so high
it provides few cues where to improve the model.  We then
turn to comparing the model's sequential predictions with an
individual subject.  We conclude by examining the
implications of this work on problem solving, multiple
learning mechanisms, post-event learning, and the role of
aggregate and individual data.

The Fault-Finding Task
The task that subjects and the model solved consisted of
trouble-shooting a control panel device using a memorized
schematic.  Previous research with a similar task (Kieras &
Bovair, 1984; Kieras, 1988) has shown that instructions
need to convey to subjects (a) knowledge of the structure of
the system, (b) knowledge about the underlying principles
that control the behavior of the system, and (c) knowledge
about how to perform tasks using the topological and
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principle information.  Previous work in this area has
resulted in summaries of behavior in a series of related tasks
such as the role of representations (Kieras & Bovair, 1984),
operation of non-faulted circuits (Bibby & Payne, 1993;
1996), and process models that perform multiple tasks but
do not learn (Bibby & Reichgelt, 1993).

Ten subjects, all university undergraduates aged 19 to 21
years, were given: (a) a general introduction to the task that
included information about power flow through the system
and that component indicators light up when the component
is receiving power;  (b) a picture of the interface that they
studied (see Figure 1); and (c) a schematic of the underlying
circuit (see Figure 1) showing how the components of the
system were connected together by a series of switches,
which they were asked to memorize.  Subjects were also told
that a fault existed when a component indicator light was
not lit when it was receiving power.  Taken together this
information was sufficient to identify faults in the system.

On the interface display and later in the text and figures of
this paper, straightforward abbreviations are used to refer to
components in the schematic, such as PS standing for power
supply and EB1 for energy booster 1.

Once subjects had learned the schematic they were
introduced to a computer based version of the system and
asked to complete a series of fault finding tasks. Subjects
were told that one component in the circuit was faulty and
were asked to indicate which component by clicking on it
with the mouse.  Their reaction times and choices were
recorded and analyzed for latency, correct number of choices,
and so on.

The Diag Model
Diag is implemented in the Soar cognitive architecture.  The

model’s behavior is organized around search in problem

spaces, and it learns while doing the task.  We take these up

in turn.

Soar represents problem solving as search through and in
problem spaces using operators.  When there is a lack of
knowledge about how to proceed, an impasse is declared.
Soar models will typically end up with a stack of problem
spaces, as problem solving on one impasse may lead to
further impasses.  The stack will change as the impasses get
resolved through problem solving.  When knowledge about
how to resolve an impasse becomes available from problem
solving in an impasse, a chunk (a new production rule) is
created.  This chunk will contain as its condition the
knowledge in the higher context that has been used in
problem solving in the impasse to recognize the same
situation, and it will contain the changes from the problem
solving as its action.  This simple chunking mechanism, by
varying the type of impasse and type of knowledge, has been
used to create over 20 complex mechanisms including search
control, EBL, and declarative learning, in addition to the
mechanisms presented here.  Further information on Soar is
available at ritter.ist.psu.edu/soar-faq/ , including online
references, pointers to online tutorials, and an extensive
bibliography.

Diag has to interact with the task, and there appear to be
at least two control mechanisms for interaction that can be
used in Soar that support learning.  One way is to notice the
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Figure 1.  Schematic of the laser-bank device (top), and the
laser-bank interface (bottom).  Boxes (the lights) below the
abbreviations and above the switches (arrows) are grayed out

to indicate components are working.  This diagram
illustrates a faculty component (SA2).

multiple actions as they are proposed and learn to sequence
them (Chong & Laird, 1997).  Another way is to collapse
the goal stack on output to enforce seriality whilst learning
what component to attend to, and then to rebuild the stack.
This is what Diag does.

Rebuilding the goal stack as an approach to learning
interaction makes a testable prediction, that there will be a
loss of problem-solving context when initiating an
interaction with the environment.  This is consistent with
the results and review of Irwin and Carlon-Radvansky
(1996), who showed that eye movements (which is
analogous to the model's interactions) suppress mental
rotation and other types of processing, including mental
arithmetic and working memory search.

How the Model Finds Faults
The model begins at the level of minimum competence—the
point at which subjects have just memorized the schematic.
The model therefore assumes an understanding of power flow
through the device, how to recognize a faulty component,
and a basic strategy for diagnosing a fault.  The combination
of schematic and interface knowledge implements a common
strategy in this task (strategy #1 in Bibby & Payne, 1996).
The present version of the model consists of 186 initial
production rules organized in 20 operators in 7 hierarchical
problem spaces.

The model does not have immediate access to the entire
world state.  Rather than view the entire world at once, Diag
continually decides where to look (as CHOOSE-
COMPONENT), looking there (ATTEND), checking the
part it saw (COMPREHEND), and then deciding where to
look next (if necessary, again with ATTEND).  The
organization of components on the (memorized) interface
schematic and the use of these operators moving across the



189

interface representation causes the components to be checked
in a basically left to right sequence.

If a subgoal requires an external action to be performed,
this external action is passed up as an augmentation to the
top state.  Knowledge in the top problem space proposes a
high priority operator to execute the action.  The selection
of this high priority operator removes the goal stack, which
was in service of some other problem, typically trying to
find the fault based on the current information.  After the
external information is obtained and comprehended, the goal
stack is then re-built.  The same goal stack may not be
rebuilt if the input from the outside world gives rise to a
different situation requiring a different response.

Figure 2 shows illustrates the model's performance,
showing the operators and their order in solving a fault for
the first time.  The path illustrates the behavior of the
model, particularly the cyclical behavior of choosing a
component to check and then checking it.  The horizontal
lines represent levels in the hierarchical problem spaces.

No attempt to model subject's mistakes was made—
incorrect responses were removed from the data used for
comparisons with the model.  Subjects who scored less than
80% correct were also excluded—this group would be very
difficult to model as the assumptions concerning subjects'
initial knowledge are harder to justify.

How and What the Model Learns
Diag learns how to perform actions more directly without
internal search and learns which objects to attend to in the
interface without internal deliberation.  The number of rules
learned varies according to the order and number of tasks.
On average, the model learns around 200 new rules (chunks)
over 20 problems (maximum 222).  What Diag learns on
each trial depends on the problem and what was learned from
previous problems.

What is learned, when it is learned, and how it is learned
arises from the architecture, the knowledge and its
organization, and the model's problem solving experience.
In Diag, these create three types of learning.  (a) Operator
implementation, where specific knowledge about how to
apply an operator is learned through search in a sub problem
space.  This represents a type of procedural learning.

(b) Operator creation, where an operator is created in one
problem space for use in another.  The ATTEND operator is
elaborated in this way.  With practice, the model learns
which objects to attend to.  These new rules serve as a kind
of episodic memory noting the results of problem solving.
It is their transfer and application across faults that give the
largest improvements.

(c) State augmentation rules, which augment the state
with derivable knowledge that act as a type of declarative
learning.  For example, the model can learn that if EB1 has
been checked (and was working) and the current light you are
looking at (the main accumulator) is not lit, then the
component MA is broken.  Each of these types of learning
can be seen individually in other architectures and models.

During the course of solving fault-finding tasks newly
learned rules can transfer across trials.  There is no transfer
of newly learned rules within a trial because Diag does not
backtrack in its problem solving.
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Figure 2.  The order of Diag's operator applications the first
time it solves the Energy Booster 1 fault.

When the Model Learns:
Comparison with Aggregate Data

Diag accounts for numerous regularities in the data in both
the fault-finding task (which we examine here) and the
switching task.  By matching the transfer between tasks over
trials and tasks, we will show that the model matches when
subjects learn.

A hierarchical linear regression was used to examine what
best predicted problem solving time.  The number of
components examined predicts 11% of the variability in
solution times.  Model cycles (with learning off) predicts a
further 4%.  Diag's decision cycles with learning switched
on accounts for an additional 60% of the variability.  If the
entry of terms is reversed, model cycles of the learning
model accounts for all the variance accounted for (75%).
The regression and figures to follow suggest that Diag
accounts for the subject's behavior because it matches their
problem solving and their learning.

There is a strong relationship between the time the model
and the subjects took to solve the problems (R2 = 0.98, p <
0.0001) over task order (Figure 3).  As this model suggests,
variation in problem solving time is not just due to noise,
but much of it can be accounted for by variable amounts of
transfer dependent on the current and previous faults. A
learning curve is usually a monotonically decreasing curve
(Newell & Rosenbloom, 1981) unless task difficulty
substantially differs between tasks (Nerb, Ritter, & Krems,
1999); this data is not monotonically decreasing.  A post-
experiment analysis of the series of faults indicated that our
software did not randomly assign faults.  Fault 3 was, on
average, later in the circuit than the first two faults.  To
obtain a smooth curve, the average difficulty of faults must
r e m a i n  u n i f o r m  a c r o s s  t h e  s e r i e s .
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The average variability in problem solving time per
subject accounted for by model cycles is 79%.  However, the
regression was not significant for two of the subjects.
When these subjects are removed from the analysis the
average variability accounted for increased to 95%.  The B
coefficient represents the number of seconds per model cycle.
S5 has a rate of 10 ms and S7 has a rate of 50 ms.  Both
these values are significantly lower than the average B
coefficient.  These subjects do not show the variation in
time across tasks like other subjects, and that their
performance does not correlate with practice or task type.

Finally, we also examined how the fit varied across trials
for the eight subjects for whom Diag's model cycles
provided a good fit to their total problem solving times.  A
typical (but not the best) match between subject and model
is shown in Figure 4.

Where Soar problem solving models have been compared
with subjects, the model cycle rate is generally longer than
100 ms (Nerb, Ritter, & Krems, 1999; Peck & John, 1992
analyzed in Ritter, 1992), indicating that models are too
intelligent, performing the task more efficiently than
subjects (taking less cycles because of a more efficient
strategy) or not performing as much of the task as the
subjects (e.g., not modeling moving the mouse).  This is
arguably better than being too short, which indicates the
model is doing too much (Kieras, Wood, & Meyer, 1997).
Models of simple tasks often come quite close to matching
data with a 100 ms cycle without adjustments such as
reading rate and disambiguating regions of text (Lewis,
1993, p. 201), simple reaction times (Newell, 1990), and
covert visual attention (Wiesmeyer, 1991).

0

0

0

0

00

20

40

60

80

00

20

40

0
2
4
6
8
0
2
4
6
8
0
2
4
6

0 1 2 3 4 5 6 7 8 9 0

rial Number

ecision Cycles

roblem Solving Time (s)

Figure 3.  Problem solving time and model decision cycles
across trials averaged over all subjects.

Comparison with Sequential Data

Subjects tended to take longer than predicted to find a fault
the second time they completed a task, 32 times out of 47
opportunities. To examine this on a more detailed level, we
compared the model's sequential predictions—the order and
relative speed that Diag examined interface objects—with an
additional subject's verbal and non-verbal protocol while
solving five problems.  The outcome of this comparison
highlighted several places to improve the model and allowed
us to identify a new way that the subject learned.
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Figure 4.  Problem solving time and model decision cycles
for individual trials for the fifth best matched subject.

The subject performed the task correctly four times, with
performance times comparable with other subjects.  While
this data may not seem extensive, it represents about 1% of
the entire set of verbal protocol data compared with
sequential model predictions through 1994 (Ritter & Larkin,
1994).

The model could be aligned with 32 of the 36 codable
verbal utterances, and 21 of the 30 codable mouse moves and
mouse clicks.  The correspondence between subject and
model was 91 ms/cycle on average.

Figure 5 shows the time course of how the model's
sequential predictions matched the subject's behavior.  Overt
mouse behaviors are those that can be matched to overt task
actions.  Implicit mouse behaviors are those movements
that can only be compared to internal actions of the model.
For example, shifting attention in the model to a component
can be aligned to a mouse movement over the same
component.

If the model and the subject were solving the task at the
same rate, a straight line with unary slope would appear.
Deviations from this line indicate that the model and the
subject are performing parts of the task at different relative
rates, with some typical differences having diagnostic
patterns (Ritter & Larkin, 1994).  For example, when the
slope is greater than 1, the model is performing relatively
more work than the subject is.

In Trial 1, top, the subject and the model do not match so
well.  The relatively horizontal line indicates that interface
objects in the subject's early verbal utterances could be
matched to objects the model used late in the process, and
that the subject spent a considerable time with the solution
in mind.  The negatively sloped segment around 6 s on the
subject's axis indicates that the model and the subject
performed two actions in different orders.  Trial 2 (2nd from
top), shows a slightly better correspondence, and this match
improves through Trial 3 (third from top), until in Trial 4
(bottom) the subject and model now perform the task in
roughly the same way, at a relatively constant rate.

While the correspondence is good enough to provide
additional support for the model, the mismatches are now
large enough and systematic enough to suggest that this
subject was speeding up in additional ways, through step
dropping perhaps.
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Figure 5.   The relative processing rate plots for Trial
1, 2, 3, and 5 (top to bottom), for the protocol subject.

A tentative explanation can also be put forward for the
effect where the subject takes a relatively longer time than
the model on the second repetition of a task.  While the
protocol subject did not see a task three times, it appears
that the model is learning in a more linear way than
subjects, who may be taking time at the end of the second
trial to learn in a different way, perhaps reflecting on the
problem solving steps.

Discussion and Conclusions
Diag includes several types of learning.  The procedural,
declarative and episodic learning all contribute to the speed
up on this task and appear to be necessary to predict transfer
of learning between tasks.  Thus, even though this task
takes on average less than twelve seconds to complete, the
model predicts that procedural, declarative and episodic
learning all play an important part in the speed up in
performance of this task.  No single kind of learning is
responsible for the high level of fit between the model and
the subjects’ performance.  Rather, it is the combination of
the different kinds of learning that leads to such a high
degree of fit between the model and the data.

Given the high degree of fit between the model and the
subjects' behavior failing to implement any of these types of
learning would have detrimental effects on the modeling.
Diag also interacts with its task, and this too seems
essential.  These two effects allow Diag to match the
strategies that subjects use, the order and components that
are examined, the problem solving time, the learning rate,
and transfer effects.  Overall, while Diag is not perfect, it
would be difficult to argue that this model was not a good
representation of what subjects do, learn, and transfer in this
task.

The close fit of Diag to the learning data also sheds light
on the power law of learning.  Diag makes a stronger
prediction than the power law about learning.  Performance
does not speed up according to a power law, but according to
how much of previous learning transfers to the new task.  If
the tasks become harder in the course of a series of trials, as
shown in Figure 4, then the power law is not obtained.  If
the amount of transfer truly varies, then the variation in
performance, as shown repeatedly in Figure 4, is not noise,
but is differential transfer.  The power law appears when
these details are averaged together, however.

It is quite possible that models in other architectures may
be able to duplicate these results.  In order to do so, they
would have to include the ability to interact with a model of
the task.  This requires a variety of knowledge, including
where to look, how to choose what to believe (internal or
external representations), and how to learn through
interaction.  They must also include learning that leads to
the power law in general and support a theory of transfer
based on the individual tasks performed.

It looks like Diag leaves out at least two important
learning mechanisms (which we can only see by having a
learning mechanism in place already), that of decreasing
amounts of retracing at the end of a trial, and faster motor
output, and perhaps that of faster perceptual recognition
(which is likely to exist in this as well as other tasks).
These effects are either negligible or are mimicked by and
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highly correlated with the existing learning mechanisms.
The sequential analysis reminds us that though aggregate
measures can be well matched by a model, the underlying
processes that generate these predictions can differ.
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