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ABSTRACT: The success of simulation environments will depend partly on how realistically the models mimic human 
behavior.  While human behavior is affected by various moderators (see Pew and Mavor [28], for an initial list), 
cognitive models typically do not take into account the effects of many of these moderators.  We propose that cognitive 
models can be augmented to account for such effects by modifying either their knowledge or the parameters of the 
architecture that they are built with.  To provide an example of the two ways in which cognitive models can be modified 
to capture the effects of behavior moderators, we present an ACT-R model that performs a cognitive task while being 
affected by the moderators of as anxiety and pre-task appraisal.  These changes are validated in a preliminary way by 
comparison with human data, which shows us where these models can be improved and provides lessons for further 
work.  Most importantly, we argue that more realistic models of human behavior reflecting these moderators and 
individual differences can be achieved by implementing similar modifications within other cognitive models and by 
reusing these modifications for an existing architecture as an overlay. 
 

1. Introduction 

In the 1950’s Alan Turing suggested that intelligent 
machines could be buil t by modeling the human brain. 
Years later, a fair number of computational models have 
been built to either answer psychological questions or 
replace humans in various tasks. Despite their successes 
at predicting human behavior in a variety of tasks, 
cognitive models have almost totally ignored the fact that 
cognitive activit y is often moderated by factors that are 
not directly related to the ongoing task. As a result, 
cognitive models have rarely included the effects of 
behavior-moderating factors such as noise, temperature, 
stress, excitement and so on. Even more rarely have these 
models been validated or tested. 

How to include behavior moderators into models of 
cognition is a crucial issue if the goal is to build high-
fidelity cognitive models. Building such models might not 
be very important for some types of psychological 
research. After all , it i s a common practice for empirical 
researchers, who are not interested in behavior moderators 
per se, to average data across subjects to avoid the 
contaminating effects of such extraneous variables. 
Indeed, for most cognitive psychologists, behavior 
moderators are nothing but confounds that need to be 
controlled.  Similarly, cognitive models aimed to be used 
as surrogate users in some situations need not include the 
effects of behavior moderators. In some cases it even 
seems more desirable to avoid the effects of moderators. 
A model-tutor [1], for example, does not need to get 
impatient or angry just like a human tutor might get. 
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However, models that account for the effects of behavior 
moderators are essential when the situation requires that 
the models be so realistic that they, optimally, cannot be 
distinguished from humans performing the same task.  
Such situations include mil i tary simulations. While in the 
past, a mil itary exercise would require an extensive 
amount of human resources, nowadays training can take 
place with synthetic environments. Cognitive models can 
populate these environments representing some or all of 
the entities involved in real combats. Using cognitive 
models as intell igent agents enables the use of realistic 
environments for training purposes [28, 34]. 

Using synthetic environments to train mil itary personnel 
requires that the cognitive models driving the friendly and 
enemy entities engage in actions that are expected by 
human pilots in comparable combat situations. However, 
until now, the behavior of such agents is not affected by 
many factors that are very li kely to affect the behavior of 
humans. Factors such as stress, time of day, level of 
training and so on, influence human behavior in the 
battlefield [28] and should be built-in any cognitive model 
that is aimed to be realistic enough to provide high-
quality training. 

2. Cognitive Architectures and CGF’s 

Newell [26] defined cognitive architectures as those 
aspects of cognition that are task-independent and 
relatively constant. That is, cognitive architectures 
represent the set of fixed mechanisms that mediate human 
cognition. 

In response to Newell ’s [26, 27] call for unified theories 
of cognition, a number of cognitive architectures have 
emerged. Soar [19], ACT-R [2], and EPIC [18] are the 
ones used more often to guide the construction of 
cognitive models.  JACK is also being increasingly used 
[6]. 

In some cases, models based on cognitive architectures 
were built for use for training purposes in mili tary 
simulations. The TacAir-Soar system [35] is a notable 
example. In TacAir-Soar, cognitive models developed 
with the Soar cognitive architecture [22, 17] simulate the 
behavior of mil itary personnel in fixed-wing aircraft 
missions.  TacAir-Soar was successfully used in Stow 
’97, a large-scale simulation exercise in which up to 3,700 
computer-generated forces were involved as both friendly 
and enemy entities [14].  A next step for all of these 
models is to include more aspects of human behavior. 

3. Behavior Moderators 

We are using the term behavior moderators to refer to 
those variables that affect human performance in a given 

task. Furthermore, we adopt Pew and Mavor’s ([28] 
chapter 9) taxonomy for distinguishing types of 
moderators into external and internal. External 
moderators are inputs from the environment that influence 
how the person performs the task. These moderators 
originate outside the person and include physiological 
stressors (i.e., environmental factors such as temperature, 
noise, etc), physical and cognitive workload, and fatigue. 
Internal moderators are those originating inside the 
person. Examples of internal moderators are the 
intel ligence, expertise levels, expectancies, etc.  

It should be noted, however, that dividing moderators into 
external and internal is not always easy. While, for 
example, noise and altitude can be easily identified as 
environmental stressors and therefore placed in the 
external moderator category, deciding where to place 
dehydration is not as obvious. Although dehydration is an 
internal state of a person, it is also the result of external 
factors such heat and water shortage. 

Behavior moderators that affect human behavior in the 
battlefield are discussed in detail by Pew and Mavor ([28] 
chapter 9).  Therefore, we only present a few examples of 
moderators that have been studied empirically 
(Appendix). 

4. Modeling Behavior Moderators in 
Cognitive Architectures 

The effects of behavior moderators can be included in 
cognitive models in two ways.  One way is by modifying 
the content of the model itself and the other by 
augmenting the cognitive architecture that was used to 
build the model. The two options exist because models 
rely on both the specific knowledge that are provided with 
and the fixed mechanisms contained in the cognitive 
architecture that are built with [11, 34]. 

We wil l briefly discuss the two options and then we wil l 
present work that i llustrates both approaches.  

4.1 Modifying the cognitive model 

A number of individual-difference factors can be 
simulated by varying the amount of knowledge that is put 
into the model. This represents varying the level of 
expertise, typically representing the level of education or 
training.  This change can be done either directly (i .e., by 
providing the model with fewer or different rules) or 
indirectly by training the model with li fe-time simulations 
of different length and type. This approach is mostly 
applicable for factors that are based on content.  

Jones, Ritter, and Wood [15] provide an i llustrative 
example of modifying the model.  They were attempting 



 

to classify the differences between adult and children’s 
performance on a task.  One of the approaches considered 
was simply to reduce the knowledge available to the 
model by removing production rules.  Another way was to 
reduce the number of memory elements that could be 
processed simultaneously by deleting and splitting the 
production rules that contained a great number of memory 
elements. 

The first change is direct, and models directly differences 
in knowledge.  The second change relates to how 
information is represented across and within rules.  Both 
of these types of changes can reflect the effects of 
moderators as well as individual differences. 

4.2 Modifying the Cognitive Architecture 

Other moderators can be implemented by producing 
overlays to the architecture. That is, the effect of the 
factors can be modeled by adjusting the architecture itself.  
For example, moderators that affect the processing speed 
of working memory can be simulated by simply adjusting 
the value of the architectural parameter that corresponds 
to working memory processing speed.  

Jones et al. [15] tried out two such architectural changes 
to simulate the performance of children on the Tower of 
Nottingham task. One such change was to limit the 
number of elements that were active in working memory 
by increasing the retrieval threshold parameter of the 
ACT-R architecture. Alternatively, they increased the 
value of the expected gain noise parameter to influence 
the strategy choice procedure and therefore increase the 
stochasticity of the model. The latter manipulation 
produced the best match to empirically collected data 
from children. 

There are numerous, interesting behavior moderators that 
can be implemented this way that are of interest to those 
modeling synthetic forces (see the Appendix for a few 
examples). 

5. An Example Implementation of these Two 
Approaches 

We now turn into an example of how the two ways of 
including behavior moderators into models of cognition 
can be applied and tested.  We present a cognitive model 
of serial subtraction that performs the task under the 
effects of task-appraisal and worry1.   

                                                        
1 In fact, the model also includes the effects of caffeine on 
performance. However, caffeine will not be discussed 
here.  The interested reader is directed to [33] 

The serial subtraction task is to start with a large 4-digit 
number and to repeatedly subtract from it a specified 1- or 
2-digit number. For example, the number 1,396 can be the 
starting number from which the number 7 should be 
subtracted repeatedly.   

Serial subtraction was chosen because it is a task that is 
often used to measure the effects of stressors on cognitive 
performance (e.g., [36]).  It was not chosen because of 
surface validity for synthetic forces tasks, although it and 
related tasks will have to be included in models of air 
traffic controllers and other operators that do navigation 
tasks and mental arithmetic as part of their problem 
solving.  As we shall see, we have data on how serial 
subtraction is affected by various moderators. These 
moderators can give rise to large individual differences on 
task performance.   

The cognitive model was built using the ACT-R 4.0 
cognitive architecture [2].  ACT-R is a production 
system-based cognitive architecture that combines a 
symbolic with a sub-symbolic level.  The symbolic level 
represents knowledge as rules (i.e., productions) and as an 
associative network of interconnected nodes, also called 
chunks. The distinction between productions and network 
nodes maps into a distinction between procedural and 
declarative knowledge. The sub-symbolic level describes 
the processes that support knowledge, with activation 
being a central concept at this level.  

In ACT-R, production rules are considered the atomic 
components of thought, that is, they are the most basic 
unit by which thought processes. Therefore, a production 
must be selected at each step of performing a task.  When 
more than one production matches the current goal, the 
systems selects one of them via a process called conflict 
resolution. In general, the conflict resolution mechanism 
selects a production by weighing the cost and benefits for 
each of the matching productions and then selecting the 
best candidate. When, however, there is a lot of noise in 
the process, the mechanism can sometimes select less 
optimal productions.  More information on ACT-R is 
available at act.psy.cmu.edu. 

Our ACT-R model performs a serial subtraction task in 
the same format that is used to study performance under 
stress.  The model’s declarative knowledge consists solely 
of arithmetic facts and goal-related information, and its 
procedural knowledge by rules to retrieve subtraction 
results from memory.  The task can be performed using 
two strategies.  One strategy is to perform subtractions by 
counting back from the starting number as may times as 
indicated by the second number (e.g., 7 times). The other 
strategy is to retrieve subtraction results directly from 
memory. 



 

Figure 1 presents the graphical interface of the model. 
The two main windows are the Control Panel and the 
Model Behavior windows. The Control Panel window 
contains several options for selecting the model’s 
conditions, run control, and some advanced output 
options.  This window allows the model' s moderators to 
be set.   

The Model Behavior window displays aspects of the 
model’s behavior, such as the current result and whether it 
is a correct or erroneous result, as well as the declarative 
memory chunks that are being used to solve the problem. 
Summary statistics (number of attempts, number of 
errors, and task latency) are also displayed in this 
window. 
 
 

 
Figure 1:  The graphical interface of the serial subtraction 

model. 

5.1 Modifying the architecture 

The behavior moderator we chose to include in the serial-
subtraction model is task-appraisal [23, 24].  Task-
appraisal is considered an internal moderator as it 
represents an individual’s subjective evaluation of a 
stressful event.  Based on the evaluation, appraisal can be 
of a challenging or a threatening form.  A challenging 
appraisal is made when the individual deems her abil i ties 
high enough to cope with the stressful event, while a 
threatening appraisal arises when the stressfulness of the 
task is judged to surpass the coping abilit ies of the 
individual.  Task-appraisals can be distinguished further 
into pre-task appraisals and post-task appraisals based on 
whether they are formed before or after the execution of 
the task.  

Empirical evidence suggests a link between the form of 
task-appraisal (i .e., threatening vs. challenging) and 
performance on arithmetic tasks such as the serial-
subtraction task we use in our model.  While threatening 

appraisals have been associated with fewer solution 
attempts and poorer performance, challenging appraisals 
have been related with better performance and more 
solution attempts than neutral situations [17, 31, 36]. 

We have attempted to model these results by varying the 
level of the Expected Gain Noise (EGN) parameter of 
ACT-R.  EGN represents the level of randomness present 
in the confli ct resolution process; that is, the process by 
which ACT-R decides which rule will fire when more 
than one rule matches the goal of the system.  

This noise parameter has been previously varied to 
capture the irrationality present in the thought process of 
children [15]. We have simply set this parameter to a 
small value (0.1) to model a “ clear-head” in the case of 
challenging appraisal and to a greater value (1.0) in order 
to provide greater stochasticity in the strategy selection 
process under a threatening appraisal state. 

By varying the default values of the EGN parameter of 
the ACT-R architecture we have been able to model the 
effects of the pre-task appraisal moderator.  The model 
also takes into account post-task appraisal. Post-appraisal 
simply inherits the parameters of pre-task appraisal at the 
end of each running cycle.   

Data suggest that it is not this simple; there is almost a 
resetting that occurs such that the appraisals are not 
exactly the same (Task 1 post is not identical to Task 1 
pre).  This simplification is a working assumption that can 
be refined later. 

As can be seen in the top two sections of Table 1, the 
model produces a pattern of results that is similar with 
that reported at the group level in an empirical study using 
the same serial-subtraction task [36].  

As can been see in the upper section of Table 1, the model 
performs more attempts and it is also more accurate under 
neutral than under challenging appraisal. This raises 
questions about ACT-R’s default value of the EGN 
parameter (default value is “Nil”). 

The model performance provides a very close fi t to the 
empirical data for threatening appraisals. For challenging 
appraisals it does not attempt as many subtractions as 
subjects did.  As the number of model runs (N) can be 
increased, the difference is rel iable but not a terrible flaw.  
However, the model produces very precisely the 
percentage of correct responses out of the total number of 
attempts for both conditions. 

5.2 Modifying the knowledge of the model 

The previous subsection described how we modified the 
EGN parameter of the cognitive architecture to capture 



 

the effects of task-appraisal in our serial-subtraction 
model. However, we believe that some behavior 
moderators might be built into cognitive models without 
varying the values of architectural parameters. Instead, 
the knowledge provided to the model can be modified to 
incorporate the effects of behavior moderators.  As an 
example, we have used the same serial-subtraction model 
and we have modified its knowledge in order to simulate 
the effects of worry on performance.   

For the purposes of our current work, we defined worry as 
the anxiety that is specific to the task to be performed but 
that is processed in a non-task specific and non-
productive way.  Because our task is of an arithmetic 
nature, worry may be equivalent to the term math anxiety 
that is used by Ashcraft and Kirk [4]. This type of effect 
is likely to be found in other stressful, anxiety-producing 
tasks that might be found is synthetic environments or 
their real-world analogue. 

Previous research has associated math anxiety with 
performance decrements on somewhat complex 
arithmetic tasks.  Particularly, lower accuracy and longer 
latencies have been observed in solving arithmetic 
problems that involve a carry operation, such as 
multicolumn addition [3, 9].  Ashcraft and Kirk [4] 
suggest that the effect of math anxiety on arithmetic 
performance is caused by an on-line reduction of working 
memory resources. In line with Eysenck and Calvo’s [8] 
processing efficiency theory, they propose that math 
anxiety produces intrusive thoughts that compete with the 
main task for cognitive resources.  Because of this, the 
amount of cognitive resources that remains available for 
the arithmetic task is diminished under high math anxiety. 
Indeed, participants with high levels of math anxiety 
report the presence of such intrusive thoughts when 
solving arithmetic tasks (Faust, 1992, cited in [4]).  

We have simulated the experience of intrusive thoughts 
by modifying the knowledge of the serial-subtraction 
model to enable the model to “worry”.  Specifically, we 
added into the model’s procedural knowledge a simple 
rule that can fire any time while the model is performing 
the serial-subtraction task.  In essence, math anxiety here 
is modeled as a secondary task that is performed 
concurrently with serial subtraction. It directly 
implements distracting thoughts.  These thoughts thus 
lead to a decrease in working memory -- due to the serial 
nature of rule-firing in ACT-R, whenever the worry rule 
fires, it results into a slowing down of the execution of the 
subtraction task. In addition to producing an increase in 
total solution time, the occasional firing of the worry 
production affects the content of working memory. 
Because the processing of the main task is halted when 
the worry rule fires, there is more time for task-relevant 
declarative information to decay from working memory. 

The decay of memory information produces more 
frequent retrievals of inappropriate arithmetic facts.  This 
results in performance that is not only slower, but more 
errorful as well when the task is performed under high 
anxiety conditions. 

As shown in Table 1, when the model performs the serial-
subtraction task with math-anxiety “turned -on”, it makes 
more errors and takes more time. 

To the best of our knowledge, there are no available data 
that examine the effects of math anxiety on performance 
in a serial subtraction task. Therefore, we have not yet 
been able to compare directly the performance of our 
model with human data.  Nevertheless, the model seems 
to capture the effects reported by studies that use 
multicolumn addition (e.g., [4]). The middle section of 
Table 1 shows the average performance of our model with 
math-anxiety turned on and off under different levels of 
task-appraisal. 
 

Table 1.  Comparison of model with human data. 
 

Pre-task  

appraisal  

Number  

of 

CH  TH  NE 

Model  Attempts 57.6 > 46.2 < 70.7 

 

 

(N=100) 

Correct 53.2 > 42.1 < 70.7 

% correct  92%  91%  100% 

Model  with 

Worry  

Attempts 43.2 > 37.2 < 59.3. 

(N=100) Correct 37.9 > 32.6 < 59.3 

% correct  88%  88%   

Tomaka et al. 

(1993) 

Attempts 61 > 46  n.a. 

  Correct 56 > 42  n.a. 

% correct  92%  91%   
 

Note Human data taken from Tomaka et al. [36]; 
< and > denote significant differences at the p<.01 level,  N= 

number of simulation runs, CH=challenging appraisal, 
TH=threatening appraisal, NE=neutral  

 



 

6. Conclusions 

The cognitive model that we have presented implements 
the two approaches we suggested for including the effects 
of behavior moderators.  First, we have varied a 
parameter that is provided by the ACT-R architecture to 
model performance under different task-appraisals.  
Second, we have modified the knowledge of the model to 
simulate the influence of anxiety in general as knowledge 
that has secondary effects and applied it to a math task.  

In both cases we were able to produce the pattern of 
results that are documented by empirical research. We did 
this by using very simple techniques that could be easily 
adopted and used in cognitive models of other tasks by 
reusing our overlay in ACT-R. This approach of adding a 
reusable overlay could be applied to other architectures, 
moderators, and models. We believe that a greater number 
of moderators should be explored and their effects should 
be modeled by using reusable techniques that can be 
shared among modelers.  

These changes do not appear to be model specific.  As 
they were created within a cognitive architecture, they 
should be reusable by other models.  We can now create 
nearly immediate predictions of the effects of task 
appraisal and worry on all the tasks that have models 
provided in the ACT-R model l ibrary, including driving, 
phone dialing, and interface use.  All the source files for 
the ACT-R model of serial subtraction and the two types 
of overlays we discussed here are available at 
acs.ist.psu.edu/papers/serial-sub/ 

Including the effects of behavior moderators into 
computational models of cognition wil l give power to 
cognitive modelers as it wil l provide them with the 
capabilit y of designing models that can capture more 
realistically human behavior.  The design of high-fideli ty 
models is particularly important for models that can be 
used for training purposes. In particular, cognitive models 
that populate synthetic environments in mili tary 
simulations should incorporate the effects of behavior 
moderators in order to achieve training environments that 
closely match the characteristics of real combat. Ideally, 
entities in synthetic environments should perform their 
missions should very similarly when they are operated by 
human users and when they are driven cognitive models.  
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Appendix 
 
Behavior Moderator Effect on cognition/behavior 

Background Noise Reduces vigilance and deteriorates attention [37] 

Intermittent Noise Increases sensitivity in vigilance tasks ( [21]; see [20] for an evaluative review). 

Dehydration Impairs perceptive discrimination, psycho-motor skills, and short-term memory 

[7] 

Expertise Level Correlates with ability to perform mental what-if simulations, ease of adopting 

multiple perspectives, ability to extract relevant information ([10]; Deckert et al., 

1994, cited in [28]; Badre, 1978, cited in [28]; see [12] for an elaborate 

discussion on expertise-level differences). 

Anxiety Narrows the focus of attention, biases interpretation of ambiguous stimuli as 

threatening [40]. Reduces working memory span and harms performance on 

math-related tasks [4]. 

Sleep deprivation Reduces performance on the Civil Aeromedical Institute’s Multiple Task 

Performance Battery (MTPB), which includes tracking, monitoring of warning 

stimuli, mental arithmetic, target identification and problem-solving [30]. 

Altitude Interacts with sleep deprivation to harm performance on the MTPB. The effects 

of sleep deprivation are exaggerated in higher altitudes [30]. 

Age Interacts with sleep deprivation to affect performance on psychological tasks. 

Sleep deprivation effects are exaggerated in older populations [38, 39] 

 


