
1

From Proceedings of the Annual Conference of the Cognitive Science Society, 1991,
pp. 877-881, LEA: Hillsdale, NJ.

Towards Fair Comparisons of Connectionist Algorithms through

Automatically Optimized Parameter Sets

Frank E. Ritter

Department of Psychology
Carnegie Mellon University

Pittsburgh, PA 15213
Ritter@cs.cmu.edu

Draft of 22 May 91

Abstract
The learning rate and convergence of connectionist
learning algorithms are often dependent on their
parameters. Most algorithms, if their parameters have
been optimized at all, have been optimized by hand.
This leads to absolute and relative performance
problems. In absolute terms, researchers may not be
getting optimal performance from their networks. In
relative terms, comparisons of unoptimized or hand
optimized algorithms may not be fair. (Sometimes
even one is optimized and the other not.) This paper
reports data suggesting that comparisons done in this
manner are suspect. An example algorithm is
presented that finds better parameter sets more quickly
and fairly. Use of this algorithm (or similar
techniques) would improve performance in absolute
terms, provide fair comparisons between algorithms,
and encourage the inclusion of parameter set behavior
in algorithmic comparisons.

Keywords: Connectionist learning algorithm
parameters, Genetic algorithms, Comparative
cognitive modeling, Learning algorithm optimization.

Connectionist networks have been used as a cognitive
modeling and machine learning algorithm in numerous
ways (for a plethora of examples see Rumelhart,
McClelland and the PDP Research Group (1986) or any of
the Proceedings of Cognitive Science, AAAI or IJCNN).
Work with connectionist learning algorithms such as back-
prop (Rumelhart, Hinton, & Williams 1986), Boltzmann
learning (Ackley, Hinton, & Sejnowski 1985), the mean
field theorem (Peterson & Hartman 1989), and even
genetic algorithms (Montana & Davis 1987) have restricted
themselves to optimizing connection weights (or
additionally, the number of hidden nodes) within a given
network, leaving certain crucial parameters of these
algorithms, such as learning rate, to be set by the user.
These parameters, unlike the weights, are not optimized
automatically, yet optimal performance depends on them

(Kolen & Pollack 1990, McClelland & Rumelhart 1988).
Finding fast yet safe values for these parameters represents
an important but often neglected research area. The
parameters are also theoretically important because
conclusions about the algorithms and the models using
them are often based on how quickly the models learn and
if they converge (e.g., Hinton & Shallice 1989, Small
1990).

Researchers currently attempt to understand and
improve their networks by tuning these parameters by
hand. Sometimes this work is reported in the literature
(e.g., Fahlman 1988), and attempts are made to teach it
(McClelland & Rumelhart 1988). While a certain
understanding comes from observing networks as they
work, using researchers to do this exclusively will pay an
inherently large cost and suffer from the known pitfalls of
human thinking, such as functional fixedness, limited
memory, and slips.

Comparisons of different algorithms may optimize the
parameter set by hand for each algorithm (Fahlman 1988)
or may optimize one by hand and use the default values for
the other (Montana & Davis 1989). At best, these
comparisons are comparing how well each reporting
researcher can optimize each algorithm. This is useful
information about the algorithms' ease of use, but does not
necessarily indicate which algorithm learns faster or better.
There is little reason to believe that most algorithm
researchers or users are finding or using the best
parameters; the brief evidence reported below suggests that
this is not the case in practice. (For an excellent counter-
example, see Belew, McInerney & Schraudolph 1990.
While they don't argue the same theoretical position, their
results are consonant with the work reported here.)

Alternatively, researchers may just report the results for
a variety of parameter settings and let the reader judge for
themselves parameter sensitivity and optimality. Kruschke
& Movellan (1991) do this, and the results are compelling
because the algorithms are variants of each other and
technically speaking, one dominates the other. In general

ritter
Text Box
Ritter, F. E. (1991). Towards fair comparisons of connectionist algorithms through automatically generated parameter sets. In Proceedings of the 13th Annual Conference of the Cognitive Science Society, 877-881. Erlbaum: Hillsdale, NJ.

ritter
Text Box

Towards Fair Comparisons of Connectionist Algorithms -- Ritter

2

however, this approach breaks down from the
combinatorial explosion of possible parameter sets when
additional parameters and values are considered.

It should not be initially surprising that connectionist
networks are still optimized by hand. The algorithms that
connectionist networks exploit and that their designers are
most familiar with do not lend themselves to self
optimization. These algorithms depend on the fitness
function being local and inexpensive to compute.
Evaluating parameter sets are neither. When the optimized
function becomes expensive to compute, these algorithms
do not optimize efficiently, and the user community
rightfully drops them for other methods such as human
implemented heuristic search. Such is the current place of
the Boltzmann machine: it requires too much time to
compute to be currently considered a viable architecture.

Automatic Computation of Parameter Sets

Let us consider a possible algorithm to optimize parameter
sets, without comment on whether it is the best possible,
just that it will serve as an example (for semi-automatic
methods see Nowlan (1991)). Optimizing functions that
are expensive to compute, such as the evaluation of
network parameters, are the natural domain of genetic
algorithms (Goldberg 1989, Holland 1975), a family of
algorithms loosely based on Darwinian evolution. They
optimize functions without assuming that the search space
will be linear. They start with a population of templates for
possible solutions (analogous to sets of chromosomes), and
evaluate them to determine how well they perform
(fitness). After the fitness values are computed, a new
population is created. A variety of methods have been used
to create the next generation, but in each case the
underlying principle has been to including copies of the
chromosomes proportional to their fitness, and at each
generation to create new combinations by combining two
parents' chromosomes. And then repeating the cycle of
evaluation and creation.

In the genetic algorithm presented here, Mendel-DP, the
chromosomes are sets of parameter values that initialize a
network, setting learning rate, learning grain size, and so
on. The fitness measure optimized will be how quickly the
network learns. In general, this could be any measure of
performance or fitness, including how safely the network
performs (e.g., misclassification measures favored by
Nowlan (1991)) or how many hidden nodes were used.
These need not be combined into a single measure, but
could be optimized as a vector (Schaffer 1985).

In order to find out how well people can tune parameter
sets, several subjects optimized the parameter sets for two
networks. Their parameter sets, along with the default set
supplied with the algorithm and the parameter sets
produced by Mendel-DP, were evaluated by averaging over
multiple runs of the networks with each of them. In
addition to the ubiquitous XOR, to balance its simplicity
we also compared how well an artificial grammar learning

network learned with its default parameters, those found
and used by an active researcher, and those found by
Mendel-DP.

The Networks and Subjects

The problems. There were two networks used. The first
was the classic two hidden node XOR network provided as
a training problem (McClelland & Rumelhart 1988), the
second was an artificial grammar learning network with 9
input nodes, 6 hidden nodes, and 3 output nodes. Both
networks learned through the back-propagation (BP)
algorithm (Rumelhart, Hinton & Williams 1986) provided
as part of McClelland & Rumelhart's (1988) book of
examples.

The subjects and the parameters they modified. The
subjects optimizing the XOR network (students in a
graduate level PDP modeling course at CMU) were
allowed to vary any parameter to any value. While they
did not modify all parameters, they did modify both
interval (e.g., learning rate) and categorical (e.g., training
regime) parameters. The active researcher quite naturally
manipulated a superset of these parameters. The complete
lists are displayed as the column headings in Table 1.

In order to create a stronger comparison, Mendel-DP
only manipulated the parameters that the corresponding
subject(s) did.

The parameters varied. Intentionally broad limits were
imposed on the automatic search performed by Mendel-DP
for the parameters used by the subjects. Learning rate,
which determines how much each training session
influences the node weights, was allowed to vary between
0.05 and 12. Learning grain size represents how many
patterns are presented in each BP training cycle of
presentation of patterns, error accumulation, and then
weight adjustment. This parameter specifies that either
weight updates occur after every single pattern
presentation or after every epoch (presentation of all input
patterns). The training regime parameter specified the
order of pattern presentation. Patterns could be presented
in the same sequential order each epoch (strain) or in a
permuted order (ptrain). As indicated in Table 1, a slightly
different set of parameters were varied for the grammar
learning network. The remainder of the parameters were
set to the defaults provided with the BP program
(McClelland & Rumelhart 1988).

The optimizing algorithm.

The genetic algorithm, Mendel-DP, optimized networks
through selective breeding of parameter sets. The detailed
description provided below is for application and
explanation purposes; genetic algorithms are not
particularly sensitive to their own parameters (De Jong

Towards Fair Comparisons of Connectionist Algorithms -- Ritter

3

1985), so this level of description should not be necessary
for the replication of these results or to support any of the
theoretical arguments.

The basic algorithm. Each genotype, or evaluated object,
was a set of values for the parameters described above.
After randomly creating an initial generation of 30
members, Mendel-DP computed their fitness as the number
of epochs needed to learn the XOR logic function or the
artificial grammar to a stopping criterion (ecrit) of 0.1 TSS.
The maximum number of epochs allowed was 400.
Network runs that hadn't learned by 400 epochs were
assigned 400 as a fitness measure. In this algorithm, lower
numbers represented better fitness. After the best genotype
was reported, the next generation was created from the
members of the current generation. This cycle of creation
and evaluation was carried out for 15 generations. The
proposed best solutions from each of the subjects and from
each run of Mendel-DP were then averaged over 150 trials
for comparison.

The genetic operators used. The best 20% of the
genotypes were directly copied (survived) into the next
generation. The remaining 80% were created by breeding
with 4 operators. Of the four operators used to create new
genotypes, two of these, cross-over and mutation, can be
considered traditional (Holland 1975), and two, creep-value
and average, are relatively novel (Davis & Ritter 1987).
Cross-over selected two parents (as described below) and
for each parameter in the child, a value was randomly
chosen from the two parents. Mutation randomly changed
a parameter value in a genotype (choosing linearly in its
range) and put the modified version into the next
generation. Creep-value modified an interval parameter in
a copy of the parent, creeping up or down 5%. Average
averaged the interval parameter values from two parents to
create a child, and copied the categorical values from one
of them.

The probability of applying each operator was adjusted
by a set amount each generation. The initial and final
values (and thus also the change each generation) for each
operator were copied with slight modification, from a
similar genetic algorithm (Davis & Ritter 1987). The total
probability of an operator applying was normalized to one
by appropriately setting the probability of a pass-through
operator that merely copied a selected parent into the next
generation. Cross-over started at .3 and was adjusted to .1;
mutate started as .1 and was adjusted down to .01; creep-
value started at .01 and was increased to .1; average started
at .3, and was adjusted down to .1; pass-through, which
normalized the probability, increased from .29 to a final
value of .69.

Parent selection. After an uniform random selection from
the 30 member genotype pool, each potential parent was
probabilistically selected as a parent based on their fitness
compared to the best in their generation according to the
following formula:

P(genotypex)=min-fitnessGeni
/Fitness(genotypex)

For example, if selected, the best genotype in a generation
would be automatically used if selected (P(best) = min/min
= 1); poor genotypes with fitness of 400 might have a
80/400 or 1/5 chance of becoming a parent once selected.

Extensions to genetic algorithms to handle noise. Each
time BP runs, it initializes the network with a different set
of random weights. This causes the learning rate to vary
wildly. Mendel-DP used two approaches to decrease the
effect of this noise on its fitness evaluation: 1) Fitness was
computed as the average across ten network runs. 2)
Fitness was saved and averaged across generations for
genotypes that survived, further smoothing the effect of an
individual evaluation.

Comparison of the Results

Table 1 shows the mean fitness values for the various
parameter sets. The top half of the table shows the
parameter sets for XOR and the bottom half, the grammar
learning network. The results for the default values comes
first, then the subjects' results, and then the results from
Mendel-DP, our example automatic parameter set
optimizer. Interestingly, the results particularly surprised
the grammar learning researcher in several ways: he
believed that his parameters were optimal and that they
gave him learning in approximately 300 epochs.

The XOR network did not converge with the default
values. For this problem they are inappropriate, and this is
even well known (McClelland & Rumelhart 1988). On the
grammar learning network they did better than the
researcher (but not reliably better, t(149)=1.69, p> .05).

The parameter sets found by Mendel-DP lead to faster
learning than the default set or those produced by hand.
For both problems, this improvement was reliable (in all
cases t(149) >= 3.3, p<.005), and these differences were
also large enough to be important, between 30% and an
order of magnitude faster learning. The lower standard
deviation for the grammar learning task also indicates that
the learning was vastly more reliable.

Not only did Mendel-DP produce a better parameter set,
it took less time. Even on the grammar learning network,
Mendel-DP running overnight took less total time than the
researcher did. The incremental cost of modifying Mendel-
DP to optimize another parameter or to optimize another
network is quite small: less than an hour was needed to
extend it from XOR to the grammar task.

Robustness of results. Although Mendel-DP is itself a
stochastic algorithms, the results reported here should be
robust. Genetic algorithms are not sensitive to their own
parameters (De Jong 1985) in the same way connectionist
algorithms are. The selection of parameters for Mendel-DP
should have little influence on its practical (finding good
parameter sets) or theoretical results (finding fair parameter
sets). On the other hand, a more complete analysis of this

Towards Fair Comparisons of Connectionist Algorithms -- Ritter

4

Table 1 Average epochs to learn (fitness) for generated parameter sets (N=150)

All other parameters left at default values.

A) XOR Task

Source Epochs SD Learning Learning Training
 to learn Rate Grain Regime
BP Defaults 400 0 0.05 Pattern Strain
Subject A 222 175 8.0 Epoch Strain
Subject B 179 125 1.0 Pattern Ptrain
Mendel-DP 130 131 4.6 Epoch Strain

B) Grammar Learning Task

Source Epochs SD Learning Learning Training Wrange Momentum
 to learn Rate Grain Regime
BP Defaults 147 19 0.05 Pattern Strain 1.0 .90
Researcher 170 165 0.15 Pattern Strain 2.0 .65
Mendel-DP 12 4 6.33 Pattern Strain 1.0 .67

new technique on a practical level would require the ability
to characterize how long Mendel-DP must be run to
optimize a particular network. These differences may be
small because finding network parameters may be less
difficult than solving the network itself. This may remain
an empirical rather than theoretical question because we are
examining expected rather than worst case behavior. These
results will also depend on the choice of how to penalize
networks that get stuck in local minimums.

Non-normal distribution of learning times. There is one
other regularity in the data worth noting. It is the large
standard deviations in the learning rates, which are as large
as their mean values and significantly skewed. For
example, the distribution of learning times for the first
entry in the table had a skewness measure of 1.75
(value/SE=8.75, p<.001), indicating a highly non-normal
distribution. Highly skewed distributions decrease the
sensitivity of significance tests (Mosteller & Tukey 1977)
and presumably of genetic algorithms. Future work
comparing parameters or network performance should use
transformed data, which will improve the ability to discern
reliable differences. The evaluation of Mendel-DP's results
should be interpreted with this fact in mind. There may
exist significant differences between parameter sets that
standard statistical tests on untransformed data will not
find, and the seemingly large sample sizes may not be large
enough to find optimum values for minor parameters.

Conclusions

Having a computer do our work faster and better, isn't this
what we all have dreamed of? We saw above that
parameter sets derived by hand were sometimes better than
the defaults provided by the algorithm's authors and

sometimes worse. But in all cases they were inferior to
those derived with the new method presented here.
Researchers could use systems like Mendel-DP to find
better parameter sets than they could on their own, in a
fraction of the time. If Mendel-DP only encourages further
explorations in automated algorithm evaluation, it should
be considered a success. However, it goes beyond this.

In addition to promising to provide better parameter sets
than those found by hand, Mendel-DP and the data it
provides make several suggestions for connectionist
research. The problem of evaluating learning algorithms
because of different comparison criteria has been noted
before (Fahlman 1988, Kruschke & Movellan 1991), but
the problem of comparing best discovered performances
should also be emphasized. Current comparisons often
depend on the optimization abilities of the algorithms'
designers instead of just the algorithms themselves. The
use of Mendel-DP or similar techniques would put
algorithms on a level playing field, and provide fair
comparisons between algorithms (as one reviewer noted,
there may even be biases inherent in this method of
comparison, but none are known or theoretically expected,
and this approach would still retain the advantage of
making the comparison explicit). The large standard
deviations and non-normal distributions reported here
suggest that hand optimization is particularly difficult and
that additional caution has to be taken in making such
comparisons. Standard statistics are not valid, and sample
sizes need to be large -- two problems that particularly
affect human reasoning for the worse.

This approach allows, indeed encourages, new concepts
in the evaluation of networks. With automatic processing
available, work can go into evaluating the network
parameters not only on learning rate, but also for safety and

Towards Fair Comparisons of Connectionist Algorithms -- Ritter

5

reliability. As noted above, because of the large variance
in the data and our limited memory span, these concepts
are not necessarily even computable without it. The ability
to routinely find optimal or near optimal parameters should
encourage these parameters to become part of theories
rather than hearsay, and encourage comparisons of the
optimum parameters between networks and what
influences them. Important regularities of connectionist
learning algorithms may not be apparent until finding sets
of optimum parameters is routine.

Acknowledgements

This research was partially funded by a training grant from
the Air Force Office of Scientific Research, Bolling AFB,
DC. Partial computing support was provided by a grant
(N00014-86-K-0678) from ONR. I thank Javier Movellan
and two anonymous reviewers for their constructive
comments, and an anonymous member of my department
for his network and comments.

References

Ackley, D., Hinton, G. E., & Sejnowski, T. J. 1985. A
Learning Algorithm for Boltzmann Machines. Cognitive
Science 9(1): 147-169.

Belew, R. K., McInerney, J., & Schraudolph, N. N.
Evolving networks: Using the genetic algorithm with
connectionist learning (CSE Technical Report #CS90-174),
Computer Science and Engineering Department, University
of California at San Diego.

Davis, L. W., & Ritter, F. E. 1987. Schedule
Optimization with Probabilistic Search. In Proceedings of
the Third Conference on Artificial Intelligence
Applications, 231-236. Hackensack, NJ: IEEE Computer
Society.

De Jong, K. 1985. Genetic Algorithms: A 10 Year
Perspective. In Proceedings of an International
Conference on Genetic Algorithms and their Applications,
169-177. Grefenstette, J.J. ed. Pittsburgh: Texas
Instruments & U.S. Navy Center for Applied Research.

Fahlman, S. E. 1988. An Empirical Study of Learning
Speed in Back-propagation Networks (Tech. Rep. CMU-
CS-88-162), Computer Science Department, Carnegie
Mellon University.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Hinton, G. E., & Shallice, T. 1989. Lesioning a
Connectionist Network: Investigations of Acquired
Dyslexia (Tech.Rep. CRG-TR-89-3), Department of
Computer Science, University of Toronto.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, Michigan: University of Michigan
Press.

Kolen, J. F., & Pollack, J. B. 1990. Scenes from
Exclusive-Or: Back Propagation is Sensitive to Initial
Conditions. In Proceedings of the Annual Conference of
the Cognitive Science Society, 868-875. Hillsdale, NJ:
Lawrence Earlbaum Associates.

Kruschke, J. K., & Movellan, J. R. 1991. Benefits of
Gain: Speeded Learning and Minimal Hidden Layers in
Back-propagation Networks. IEEE Transactions on
Systems, Man and Cybernetics. 21(1): 273-280.

McClelland, J. L., & Rumelhart, D. E. 1988. Explorations
in Parallel Distributed Processing: A Handbook of Models,
Programs, and Exercises. Cambridge, Massachusetts:
Massachusetts Institute of Technology.

Montana, D. J., & Davis, L. 1989. Training Feedforward
Neural Networks Using Genetic Algorithms. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, 762-767. San
Mateo, California: IJCAI.

Mosteller, F., & Tukey, J. W. 1977 Data Analysis and
Regression. Reading, MA: Addison-Wesley.

Nowlan, S. J. 1991. Soft Competitive Adaptation: Neural
Network Learning Algorithms Based on Fitting Statistical
Mixtures. Ph.D. diss., School of Computer Science,
Carnegie Mellon University.

Peterson, C., & Hartman, E. 1989. Explorations of the
Mean Field Theory Learning Algorithm. Neural Networks
2:475-494.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986.
Learning Internal Representations by Error Propagation. In
Rumelhart, McClelland, and the PDP Research Group.

Rumelhart, D. E., McClelland, J. L. & the PDP Research
Group. 1986. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition Volume 1:
Foundations. McClelland, J. L., & Rumelhart, D. E. eds.
Cambridge, Massachusetts: The MIT Press.

Schaffer, J. D. 1985. Learning Multiclass Pattern
Discrimination, 74-79. In Proceedings of an International
Conference on Genetic Algorithms and their Applications,
169-177. Grefenstette, J.J. ed. Pittsburgh: Texas
Instruments & U.S. Navy Center for Applied Research.

Small, S. 1990. Learning Lexical Knowledge in Context:
Experiments with Recurrent Feed Forward Networks, 479-
486. In Proceedings of the Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Lawrence
Earlbaum Associates.

