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Abstract 
The use of models of human cognitive to help in system design has been a targeted use-
case nearly since these models were created. These models can be represented as a 
combination of fixed mechanisms (the architecture) and task knowledge (the learned 
subtasks) that uses these mechanisms to generate behavior.  I first describe how these 
models might be used and their types of models and architectures and their uses, and then 
conclude with what appears to be necessary to use these models more routinely.   
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1. Introduction 
Models of human cognition can be represented as a combination of fixed mechanisms 
that constitute the architecture and a body of task knowledge that uses these mechanisms 
to generate behavior.  There are a wide range of models and mechanisms that can be 
partially ordered by how formal they are.  These models have been created to predict 
human behavior as a type of scientific theory.   

Marvin Minsky at one point noted that if you were going to think about thinking, you 
were going to have to think about thinking about something.  Given the roots of cognitive 
models in computer and organizational science, a natural thing for these models to think 
about would be how to use a computer interface, and thus to help in system design (e.g., 
Card, Moran, & Newell, 1982) .  In addition, the creators of these models, nearly since 
the models were first created, have envisioned their use in system design (e.g., Byrne & 
Gray, 2003; Kieras, 1985; Ritter, 1993).  In addition to the work cited here, Pew (2008) 
provides a review of some of these early models, and there has also been a series of 
government reports encouraging the use of cognitive models in system design (Elkind, 
Card, Hochberg, & Huey, 1989, 1990; Pew & Mavor, 1998, 2007).  

Summary and overview of this chapter 
In this brief chapter I first describe how these models might be used in system design, 
then categorize the types of models and their uses from the fields of human-computer 
interaction and cognitive science. I conclude by describing what appears to be necessary 
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to use these models more routinely.  I will use the term cognitive model both because it is 
shorter and because the literature I draw on prefers this term to modeling human 
cognitive behavior.   

Limitations 
This review is not comprehensive; it does not include all the models that have been used. 
There are further reviews that can provide a wider review of models and their types (Pew 
& Mavor, 1998, 2007; Ritter et al., 2003). There are ongoing communities of research in 
this area not covered in this review but that should be mentioned to guide the reader 
interested in knowing more. For example, the digital human bodies that are already used 
in design (cite to chapters in this book) are not reviewed here.  Other communities 
include social simulation examining things like how to improve organizational structure 
(e.g., Prietula, Carley, & Gasser, 1998), public policy research about how predictions of 
behavior can influence policy (e.g., Barrett, Eubank, & Marathe, 2006), how to improve 
building and planning exit approaches in industrial engineering (e.g., Galea, Blake, 
Gwynne, & Lawrence, 2003; Stewart, Elyan, Isaacs, McEwen, & Wilson, 2017), human-
in-the-loop simulations (e.g., Thiruvengada & Rothrock, 2007), and simulating computer 
generated forces in military simulation (e.g., Bolton, 2013; Morgan, Morgan, & Ritter, 
2010; Surdu & Parsons, 2006).  Neural network models are also not included because 
they tend to be used to model shorter time-span behavior than is useful for system design.   

2. Useful features for using models of cognition in system 
design 
So, how can cognitive models be used in system design?  There are several ways. A 
primary way, of course, is to help the designer understand and predict a major system 
component: the user.   

A way to organize how models of human cognition can be used in system design is to 
take a theory of system design and note where models can be used.  The risk-driven spiral 
system development approach (Pew & Mavor, 2007) is such an theory.  This approach 
emphasizes a spiral approach to design, that of checking with stakeholders every iteration 
through envisioning. With this in hand, then individual uses and tools for manipulating 
models are described.  

Risk-driven spiral system development approach 
The risk-driven spiral system development approach (Pew & Mavor, 2007) suggests 
developing a user model at each step of the design and concurrent development of the 
user model as the system is developed. This approach is shown in Figure 1. In this 
approach, the model is typically seen as a cognitive, rather than a physical, model 
because the important user aspects are seen as cognitive rather than physical; however, 
for some system design, a physical or integrated model may be more appropriate.  
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[figure should be inserted from accompanying PDF] 
Figure 1.  A representation of the risk-driven spiral system development approach. 
Reprinted with permission from Pew & Mavor, 2007, Figure 2-5, by the National 
Academy of Sciences, Courtesy of the National Academies Press, Washington, DC. 

In the exploration and valuation stages, the model may not even be formalixed by being 
written down.  As the system is developed, the model of the user is developed alongside 
it.  At the architecting and development phases the model might become written down 
and used to keep track of the design requirements and be used in design.  As the system is 
developed further, it may be desirable to have a running model that can test the interface 
by performing tasks with the interface.   

The model used for testing has to be more formal and might even interact with the 
interface (this has rarely been achieved in practice, however).  The results of the model’s 
interaction in both qualitative and quantitative terms can be used to further drive design.  
Section 3 provides a summary of existing models, organized in essentially this order—
from informal to formal and computational.  

Tools for model use  
So, with this approach as a baseline for design, what would a system designer need from 
a cognitive model?  A preliminary list is provided in Table 1.  These aspects are next 
described in detail.  
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Table 1.  Aspects of a modeling tool for use in design.   
A model builder 

Model (task) libraries 
A way to connect models to tasks: simulated eyes and hands 

A way to run the model numerous times 
Graphical and textual summary of the results 

 

Model builder 
The first thing a designer would need to use a model in system design would be a tool to 
create the model.  This tool might be text-based or graphically-based. Simple informal 
models can use word processors. Most of the task analysis models can use word 
processors or spreadsheets (e.g., Estes, 2005), although there are some tools to support 
the generation of these models. For descriptive models this tool might also include what 
the model knows and what the interests and capabilities of the model are.  Complex 
models of task analysis more often come with more support (e.g., IMPRINT, ProCREW, 
Cogulator, noted below).  

Generative models need further tools because they are essentially low level programming 
languages about how to use the minds low-level components.  Yet these computational 
information processing models rarely have tools to support creating high-level behavior. 
There have been attempts to create high-level behavior representation languages for 
generative models (Paik, Kim, Ritter, & Reitter, 2015; Ritter et al., 2006; Ritter & 
Norling, 2006; St. Amant, Freed, & Ritter, 2005), but they remain preliminary and 
relatively little used.   

Model (task) libraries 
It would be useful to have libraries of models or basic skill sets to combine and build 
upon, for example, how to do arithmetic, how to use a graphical interface, and how to 
reason about navigation.  While these libraries are available for Java and other languages, 
they are not generally available for user models, although there was a library of default 
knowledge for Soar.   

It appears that combing tasks, particularly in the production rule format that most 
architectures use, is more complex than code combination in imperative languages (e.g., 
Java or Lisp). Combining task knowledge sets may introduce or highlight that there are 
assumptions that were represented implicitly in the task knowldge that are worthwhile to 
consider but require modeling expertise to address. This could be because the production 
rules combine interactively an the procedures run serially in imperative languages.  This 
area will be an area for future work.  

Eyes and hands 
Simple models are not expected to interact with a system, but the model approach or 
modeler needs to note that the environment looks like and what an interaction occurs.  
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More complex computational behavior generating models need a way to receive input 
from the system and pass actions to the system.  To do this, they will need simulated eyes 
and hands (Ritter, Baxter, Jones, & Young, 2000).  This has been done several ways, 
including by passing information about what would have been seen to a model, but the 
most satisfying method is probably to allow the model to interact directly with the 
interfaces being tested (St. Amant, Horton, & Ritter, 2007).  Doing this routinely remains 
an area for research and development (Tehranchi, 2018).  In more complex environments 
interaction could include hearing and movement through the environment as well.  

A way to run the model numerous times 
When a model has a stochastic component (e.g., built in variability (noise) in its memory 
retrieval or task performance time), interacts with a system that has varied tasks or other 
stochastic components (e.g., other agents or a variable system response), or is used to test 
multiple interface variants, the model will need to be run numerous times to understand 
its behavior (Ritter, Schoelles, Quigley, & Klein, 2011).  It would be useful to have the 
ability to run the model several times and summarize the output.  I only know of one 
reusable tool in this area (Moore Jr., 2011).   

Graphic and textual output displays 
With the model output from multiple runs in hand, the designer and other members of the 
design team will need to understand what the model did and the implications for design.  
This task may include directly understanding what the model did, and it may also include 
what-if analyses of how well the model performed on two different interfaces to 
treatments.  So, this will include explainablity of the model and summaries of its 
behavior.  Some of these measures will be straightforward, such as mean time per task 
and error rate, but there are also measures that are more complex or are derived from 
other measures, such as learning rate (Ohlsson, 2008) and learning based on task 
distribution (Ohlsson, 1992).   

How models can be used in design 
The resulting models can be used several ways in design.  Early in the spiral of 
development, they can be used to discuss the types of users and the types of tasks in the 
system.  At this stage, the designers might wish to make changes in the design based on 
the assumed capabilities, and the size of the team might be modified based on the number 
or complexity of the tasks.  

Later in the spiral, with a more complete model, designers might make sure that all tasks 
are supported and that all types of users (and their knowledge, skills, abilities, and 
personal differences) are supported.   
Even later in the spiral, designers might run or apply a model to an interface to see if the 
model can perform the task, learn to perform the task, or not make errors.  The model 
might be applied by hand like in a cognitive walkthrough (Blackmon, Polson, Kitajima, 
& Lewis, 2002; Polson, Lewis, Rieman, & Wharton, 1992), or it might be applied like an 
engineering tool as a simulation (e.g., Byrne & Kirlik, 2005; Gray, John, & Atwood, 
1993, and several other papers cited here).  The model might be used to judge how many 
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users are required on a multi-person task (Booher & Minninger, 2003; Vicente, 1999), or 
serve as colleagues within a larger team within a simulation (e.g., Ball et al., 2010).  

After the model has been applied yet another opportunity arises.  The designer might 
learn from having applied the model and might make different design decisions in the 
future.  So, while the cost of applying a model might be high, it might lead not only to 
changes in the current system, but in future systems, and be less than re-designing a 
system that is too hard to use.   

Summary 
There are several tasks that designers will ask of models.  These needs vary by type of 
model and also by the use of the model.  Informal models used early in the design process 
ask for less support; generative models interacting with nearly complete systems require 
the most support and would typically be used later in the design process.   

3. Types of cognitive models used in design 
There are several types of cognitive models that have been used in design.  These are 
presented here roughly in the order of formality.  This is based on the taxonomy in Ritter, 
Baxter, and Chuchill {, 2014 #1638}The least formal are models that are not articulated 
by designers but used by them or implied by the artifact.  These are called implicit 
models.  There are also informal models, such as would appear on a napkin or be simply 
be written down. Task analysis is a type of model that focuses on what tasks the user will 
perform.  There are some automatic tools that use a combination of these models that 
deserve their own category.  Finally, computational cognitive models that can perform 
the task.  

Implicit models 
Most designed systems have been designed with a user in the mind of the designer.  In 
extreme cases, the user model and the use-cases for a given device will be only in the 
designer’s head (or in previous designers’ heads when the designer is copying from a 
previous design).  The user model can be inferred by observers or users. Thus, the models 
are implicit and not explicit. 
For example, chairs include implicit models of how they are used. Every chair designer 
might not measure the shin length of users and might simply copy a design or reason 
about how a user sits implicitly. But a handle on the back implies that the designer 
envisioned a use-case that enabled the chair to be picked up or dragged.  

Informal models 
Models of users can also be informal, but perhaps represented with written descriptions. 
These models start to be useful when, for example, the range of users is large (or larger 
than expected) or when the tasks that users perform are larger or more complex than 
designers might imagine in a single setting or might be able to keep in mind.  The use of 
personas, prototypical users, might also be considered.  
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For example, we have found that the range of users of university department websites and 
the information users are seeking are larger than we initially thought, and larger than the 
designers were considering.  We found about a dozen user types and over 100 types of 
information that may be sought out by different types of users (Ritter, Freed, & Haskett, 
2005).  Just writing down this type of model can provide guidance for building and 
managing web sites because they are often too large to keep in mind.   

Task analysis approaches 
Task analysis methods attempt to note what tasks users are trying to do.  These methods 
sometimes focus on the user and sometimes can focus on the interface. Both cases will 
describe the actions taken to complete tasks, but the first case will emphasize cognitive 
tasks whereas the second case will emphasize interaction with specific interface features 
like buttons or clicks. These two methods are not mutually exclusive, and parallel or 
merged analyses are not uncommon.  
Perhaps the first task analysis method used in computer design was the Keystroke Level 
Model of Card, Moran, and Newell (1980; 1983).  This approach assigns time costs to 
various keystroke and mouse moves.  The time to use an interface is thus the simple sum 
of the actions required to perform a task.   
Card et al. (1983) also introduced a more complex approach, GOMS. GOMS assumes 
that there may be multiple strategies and allows for some (though minimal) problem 
solving.  Both of these approaches are for experts doing routine, error-free tasks.  GOMS 
assumes a simple cognitive architecture, the Model Human Processor (MHP).  It has also 
been extended to predict working memory load (Estes, 2005).   

There are tools to help apply and compute GOMS analyses.  GLEAN is one such tool, 
which ends up like programming GOMS (Kieras, Wood, Abotel, & Hornof, 1995).  
CogTool (John, Prevas, Salvucci, & Koedinger, 2004) ends up with a more graphic 
representation of how the interface looks at each step (using screen shots) to document 
how the GOMS analysis arises.  Cogulator (http://cogulator.io/resources.html, Savage-
Knepshield, 2014) is a current version. Antetype (http://www.antetype.com/) appears to 
use ACT-R and its learning equations to work in a similar way.  
These models have been often productively used in system design.  For example, in a 
symposium paper, Chipman and Kieras (2004) note an example GOMS analysis that 
should have led to a redesign.  Not fixing the usability problem found with GOMS led to 
a procurement program being canceled. Project Ernestine is also often referenced (Gray 
et al., 1993).  In this case, a version of GOMS that allowed multiple-tasking showed that 
a new design with less keystrokes would be slower than the older system because the 
keystrokes in the new system were more serial with cognition rather than concurrent. The 
prediction was upheld with user data but at some cost to the company developing the new 
system. 

There are related models that work at a larger grain size, such as IMPRINT and 
PROCRU (although PROCRU includes a model of dynamic control), reviewed in Pew 
(2007).  Many similar stories of the use of models to help design and millions of dollars 
for the US Army are reported by Booher and Minniger (2003) for the IMPRINT system.   
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Light automatic models 
I use light automatic models to indicate tools that will test an interface automatically 
using a lightweight user model. These tools would apply a set of rules to a website to test 
such things as links being active, pictures having alt tags, and fonts to be a minimum size.  
Ivory as part of her thesis (Ivory & Hearst, 2001) created a very useful review of what 
was available for automatic website evaluation tools at that time.  The tools in her review 
showed that making such tools automatic would help design and be attractive to 
designers based on their ease of use.  

Bobby and later website testers in Ivory’s review are examples.  These systems test 
websites and directly make suggestions about how to improve the websites.  These 
models show much promise because they are so easy to use, but the user models being 
tested are extremely simple.   

Computational predictive and generative models 
The way to describe the most advanced cognitive models has been often difficult.  There 
are two types of computational models, predictive and generative. The predictive models 
simply predict the time taken to complete the task. Generative models will generate the 
behavior to complete the task, a process, which typically predicts the time as well. A 
predictive model might predict the time to do a task, but the task would not include the 
information processing implied.  For example, a predictive model would predict the time 
to do a large multiplication problem but not the answer or common errors; the generative 
model would generate the answer, and the time to compute the answer, and perhaps 
common errors.  Both communities may call the models cognitive models, although only 
the generative models can live or work with a system to perform a task.  Tools in the 
previous section on task analyses often are grouped with predictive cognitive models, a 
type of non-generative cognitive model.  
These models tend to be built as part of cognitive architectures. A cognitive architecture, 
broadly speaking, is a fixed set of information processing mechanisms used across all 
tasks (Newell, 1990).  Examples include Soar (Laird, 2012), ACT-R (Anderson, 2007; 
Ritter, Tehranchi, & Oury, in press), CoJACK (Ritter et al., 2012), and EPIC (Kieras, 
Wood, & Meyer, 1997).   

There are several useful examples of computational generative models being used in 
design.  Pew and Mavor (2007) call for their use throughout the design process.  Pew and 
Mavor (1998) show their use in understanding military tactics.  The ACT-R community 
has used them in the design of airport runway systems (Byrne & Kirlik, 2005) and in 
other ways (Ritter et al., in press, also see act.psy.cmu.edu).   
Apex is a slightly different modeling system with a useful, unique perspective (Freed & 
Remington, 1998).  Its approach is not to model the time course of processing, but to 
illustrate possible errors that could arise.  It attempts to find all the significant error 
pathways; all are assumed to be catastrophic (i.e., in space travel), where the frequency of 
error is not needed, just that this path could lead to an error. Thus, design should remove 
any chance of these pathways.   
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Summary 
There have been several types of models of cognition used in system design.  One might 
like to say that one type is better than the other, or to order them in quality.  In truth, they 
have different features, different benefits, and different costs.  Some are light weight and 
easy to use, but do not provide many details about user behavior.  Others provide many 
more details but require more effort to create and use.  As Simon Goss said to me once, 
these cognitive models are models for a brass and mahogany world. Safety critical 
systems such as flight, power plants, the military are such worlds; high stakes 
commercial applications probably are as well.  Designers will have to choose an 
appropriate model type based on the system they are designing, resources available to 
them, and the risks to success that the system is facing.   

4. Conclusion 
Models of human cognition appear to be important for many design problems. They 
provide a description of the user’s cognition and closely related perception and motor 
control.  There is a wide range of models of cognition used by designers.  Designers 
should use models of users, perhaps created for and based on previous designs, to reduce 
system risk.  They should pay attention to which models to use at which point in the 
design process.   
There remain some open problems for model use in design, which I note next.   

Greater usability of models 
In nearly every case the models themselves are not seen as easy to use by designers, and 
thus many designers think that the use of cognitive models in design is poor value.  This 
appears to have several causes.  The first is that users are more complex than other 
components; they can solve problems, learn, and forget, all of which make predicting 
their behavior more complex.  The knowledge that users need to perform tasks is nearly 
always more complex than it appears to be if you think about it informally.  Thus, 
designers think that the user model will be small and easy and find out in creating it that 
the model is larger and more complex.  This also implies that the knowledge to use the 
interface is larger and more complex than the designers might anticipate!  

It is also the case that the types of information in the models are probably some of the 
more complex knowledge that we can manipulate and that the usability of modeling tools 
have not seen as much attention as more widely used tools such as Java.   Thus, the 
usability of models broadly defined is an important area of future work.  This view is 
supported by Pew and Mavor’s (2007) National Research Council report, which calls for 
work in this area.   

General usability problems remain, indeed, all the tasks in Table 1, including how to 
explain the models to lay people, remain problems.  It would be useful to have libraries of 
knowledge to use.  These could reduce the cost of creating complex models and help 
amortize the costs of building a model.   Finally, effectively hooking models up to the 
world remains a problem (that I take up next).  
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General connection of models to the world 
Cognitive models have not been often connected to the world, and should be more often, 
and this remains true. Early work with cognitive models was about cognition per se, and 
not about interaction (Gray, 2008).  As cognitive models have evolved, they have not 
been as connected to the world as we might like.   
There are several ways for models to interact with interfaces (Ritter et al., 2000).  The 
simplest way so far is to pass the inputs that an interface would provide a human user as 
reading from a file.  This approach is costly in time and quality. It does not allow the 
world to change based on the model’s response, which can limit when this approach can 
be used. Those models that do interact have, for the most part, interacted in a way that 
works around vision and motor output rather than fully modeling vision and motor 
output. A more sophisticated and satisfying approach is to interact with the same 
interface that the user interacts with using the a bitmap representation of the screen and 
injecting keyboard events to the operating system. 

This book represents a useful progression for cognitive models to be used. The problem 
tying models to tasks and task simulations may be because connecting cognitive models 
to worlds requires different programming skills than model building (models and 
interfaces are implemented in different languages and with different programming 
paradigms).  It also requires knowledge of different areas of psychology (motor control 
and vision vs. cognition).  The use of cognitive models to drive models of human bodies 
offers a new and welcome use that may help realize the potential of both.   
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