Some Futures for Cognitive Modeling and Architectures: Approaches that You Can Too

PENNSTATE

Frank E. Ritter

The College of Information Sciences and Technology The Department of Psychology, The College of Liberal Arts The Pennsylvania State University

These include: (a) Interacting directly with the screen-as-world. It is now possible for models to interact with uninstrumented interfaces both on the machine that the model is running on as well as remote machines. Just one implication is that this will force models to have more knowledge about interaction, an area that has been little modeled, but essential for all tasks. (b) Providing a physiological substrate to implement behavioral moderators' effects on cognition. Cognitive architectures can now be more broad in the measurements they predict and correspond to. This approach provides a more complete and theoretically appropriate way to include stressor effects and emotions in models. (c) Fitting models to data using genetic algorithms. This can lead to model overfitting, but it can also be seen as a way to understand and predict how people are different in their underlying parameters using a multi-variable non-linear stochastic multiple-output regression (aka model fitting). It can also lead to a greater understanding of our models.

Supported by ONR, N00014-15-1-2275, N00014-03-1-0248 and N00014-06-1-0164 AFRL, DARPA, DERA, DMSO, DRA, DSTO, DTRA, NSF

Thanks to collaborators: ACS Lab, Robert St. Amant, Farnaz Tehranchi, Chris Dancy, AOS (Lucas, Evertsz, Pedrotti), Bittner, Drew Pruett, Robert Hester Sue Kase, Mike Schoelles, Jeanette Bennett, Laura Klein Charles River Analytics (Weyhrauch, Lynn), Carley

Overview of Talk

(0) Brief overview of architectures 2/2/

- (a) **Model eyes and hands,** interacting directly with the screen-as-world. It is now possible for models to interact with uninstrumented interfaces both on the machine that the model is running on as well as remote machines. Just one implication is that this will force models to have more knowledge about interaction, an area that has been little modeled, but essential for all tasks.
- (b) Providing a **physiological substrate** to implement behavioral moderators' effects on cognition. Cognitive architectures can now be more broad in the measurements they predict and correspond to. This approach provides a more complete and theoretically appropriate way to include stressor effects and emotions in models.
- (c) **Fitting models using GAs.** This can lead to model overfitting, but it can also be seen as a way to understand and predict how people are different in their underlying parameters using a multi-variable non-linear stochastic multiple-output regression (aka model fitting). It can also lead to a greater understanding of our models.

Intended to be helpful, slightly humorous, and I'll be as glad as you are when its over!

Or, how to be less happy because you take account of more behavior.

High level view with some low-level advice. 10Q for chance to reflect.

Cognitive Models and Architectures

- A program that models human behaviour by generating it using *fixed mechanisms*
- Includes interaction

PENNSTATI

- May include affect
- Mechanisms are fixed

Architecture + Task Knowledge = Behavior Projects on extending architecture

(Newell, 1990, *Unified Theories of Cognition*)
 (Newell, 1992, Desires and Diversions, YouTube)

PENNSTATE

You can instrument (a) the task, (b) the graphics library, (c) the operating system, or (d) build a whole new task

- We have worked with ACT-R in particular
- Need simulated eyes and simulated hands
 - Within interfaces, the world is restricted (St. Amant, 2000)

PENNSTATE

Previous examples Java driving game

PENNSTATE

(Ritter, Van Rooy, St. Amant, & Simpson, 2016)

On-board Robot driving

 (Ritter, Kukreja, & St. Amant, 2007)

PENNSTATE

Gambler's ruin on off-shore casino

PENNSTATE

(St. Amant, Reidel, Ritter, & Reifers, 2005)

F1: Latest Version, JSegMan

PENNSTATE

Revision of SegMan from C to Java, using Robot and Sikuli libraries

8	emacs@FARNAZ-PC	× 0		em	acs@FARNAZ-PC	- 0 -
File Options Buffers Tools dFile dEdit dG	io dComms dFormat dDoc dModel He	lo File	Edit Option	is Buffers Tools SLIME REPL PI	resentations Lisp Trace Help	
DOB + D 9 - D Q		D	BBAD	9 4 0 0 0		
A B 0 Command Name Frequency N 1 log 20.00 2 learn 6.00 3 excise-chunks 12.00 4 excise-task 5 5 go 23.00 6 help 19.04 7 excise-all 8 load 9 excise 10 time 11 12 Total 139.00 13 Your Total	C D ormalization Length Typed 13.70 5.00 6.50 10.10 17.30 100.00	E Fin end	2ATION11 41,752 41,752 41,802 41,802 41,802 41,802 41,802 41,802 41,802 41,802 41,802 41,802 41,802 41,807 42,276 42,276 42,276 42,276 42,326 42,37642,376 42,376	-0 OOAL PROCEDURAL PROCEDURAL PROCEDURAL PROCEDURAL PROCEDURAL PROCEDURAL PROCEDURAL OCAL PROCEDURAL PR	SET-BUFFER-CHUNK GOAL CONTLICT-RESOLUTION PRODUCTION-FIRED VISU CLEAR-BUFFER VISUAL-DI CLEAR-BUFFER VISUAL-DI CLEAR-BUFFER VISUAL CLEAR-BUFFER RETRIEVAL DET-BUFFER-CHUNK GOAL BTART-RETRIEVAL CONFLICT-RESOLUTION Enceding-complete VISU CONFLICT-RESOLUTION PEDDUCTION-FIRED SIBL CHAR-BUFFER RETRIEVAL CONFLICT-RESOLUTION PEDDUCTION-FIRED MOTOL CLEAR-BUFFER COAL SET-BUFFER-CHUNK GOAL SET-BUFFER-CHUNK GOAL CEAR-BUFFER ONLO CLEAR-BUFFER MANUAL CLEAR-BUFFER ONLO CLEAR-BUFFER ONLO CLEAR-BUFFER RETRIEVAL CLEAR-BUFFER RETRIEVAL CLEAR-BUFFER RETRIEVAL CLEAR-BUFFER COAL CLEAR-BUFFER RETRIEVAL CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION CONFLICT-RESOLUTION	CHUNK697 AL CHUNK698 UAL-LOCATIONII-0-0+ AL MM2E-LOCATIONII 43 LEVAL CHUNK47 ING_EXISTS_NO_CHIL+ CHUNK699 R_MOVE_CURSOR L 28-LOCATIONII-0 CHUNK700

🛄 Tehranchi & Ritter, 2018a, 2018b

🗧 emacs@FARNAZ-PC – 🔍		emacs@FARNAZ-PC = •	
File Options Buffers Tools dFile dEdit dGo dComms dFormat dDoc dModel Help	File Edit Options Buffers Tools SUME REP	L Presentations Lisp Trace Help	
DOUX D A LOD O	DOBARSENDO		
A B C D E F 0 Command Name Frequency Normalization Length Typed Characters 1 Log 20.00 2 Learn 6.00 3 exclise-chunks 12.00 4 exclise-chunks 5 5 90 23.00 6 help 19.04 13.70 7 exclise-sall 5.00 9 acd 6.50 9 exclise 10.10 1 139.00 100.00 13 Your Total 139.00	 *=LOCATION11-0 41.752 GOAL 41.752 PROCEDURAL 41.802 PROCEDURAL 41.807 VISION NIL 41.807 VISION 41.807 PROCEDURAL 42.216 DECLARATIVE 42.216 PROCEDURAL 42.326 PROCEDURAL 42.	SET-BUFFER-CHUNE GOAL CHUNE697 CONFLICT-RESOLUTION PRODUCTION-FIRED VISUAL CLEAR-BUFFER VISUAL CLEAR-BUFFER VISUAL CLEAR-BUFFER RETRIEVAL CLEAR-BUFFER RETRIEVAL DET-BOFFER-CHUNE GOAL CHUNE693 DTAFT-RETRIEVAL CONFLICT-RESOLUTION Encoding-complete VISUAL-LOCATIONII-0-0- SET-BUFFER-CHUNE VISUAL MM2E-LOCATIONII-0-0- SET-BUFFER-CHUNE VISUAL MM2E-LOCATIONII-0-0- SET-BUFFER-CHUNE VISUAL MM2E-LOCATIONII-0-0- SET-BUFFER-CHUNE VISUAL MM2E-LOCATIONII-0-0- SET-BUFFER-CHUNE RETRIEVAL CHUNEAT CONFLICT-RESOLUTION BEDUCTION-FIRED SIBLING EXISTS NO_CHIL CONFLICT-RESOLUTION BEDUCTION-FIRED MOTOR MOVE_CURSOR CLEAR-BUFFER GOAL CLEAR-BUFFER MANUAL CLEAR-BUFFER MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL	
jhp.dis #4 Autobit -: _rdiamal)All	*slime-repl shel* mon	6 1.14241 (BRPL addres)	
B6: (/ (* C6 B12) 100)			Ĩ

F1: JSegMan Applied to a Large Model

- Does the task, like, it *actually* does it
- Large, like 20 min. non-iterated, 500x10 rules (Paik et al., 2015)
- Found mistakes in model b/c we could see

Closer fit:

PENNSTATE

Day	Human	JSegMan Hands+Eyes			
1	1366 (60.8)	1326 (12.1)	1339 (11.7)		
2	894 (26.6)	891 (6.1)	894 (6.5)		
3	727 (25.5)	693 (4.5)	704 (5.0)		
4	659 (22.7)	594 (5.8)	614 (4.4)		
R2		.997	.9984		
MSE		1745	820		

F1: Conclusions: Interaction

- You can just not do it: "It only takes 25% of every project" -- anonymous colleague
- If recreated each time, not fixed, not architectural
 You can instrument (a) the task, (b) the
 graphics library, (c) the operating system
- > We are instrumenting the operating system \blacksquare
- We (Farnaz) will have to/get to:
- Better fit, better applications
- Model interaction, errors, error correction,
- Vision, visual search, visual recognition, finding the mouse,
- A whole new world for models

Future 2: Modeling Moderators

- How to include moderators into an architecture?
- Ritter (1993) for Sloman's workshop
 - Knowledge about 'emotions', Reasoning about emotions
 - Thoughts that affect physiology
 - Physiology that affects cognition

F2: Modeling Moderators with Overlays

- First pass: overlays to architecture
- Caffeine influences cognition: faster central processing
- Stress influences cognition: slower decl. memory
- To add: load sequentially
- But, can clash

EPENNSTATE F2. Modeling Moderator Control Panel	TS with Overlavs Model Behavior
Appraisal Setting Run Model Run Time Threatened 30 Challenged Reset Model ACT-R Default Step Model Worry Count Model Worry Demo Mode	Current Number Num of Attempts 6006 0 Number in Memory Num of Errors 0 1 2 3 4 5 6 7 8 9 Task Time 10 11 12 13 14 0 15 16 17 18 19
Caffeine Dosage 0 0 50 100 150 200 250 300 350 400	Worry Indicator
COO Listener 1	 Model Trace Declarative Memory Trace Partial Matching Trace Activation Trace Iterations Run in Real Time Multiple Iterations

F2: Modeling Moderators with Overlays: CoJACK

Cognitive Java Agent Construction Kit Caffeine influences cognition, faster

Created fear

PENNSTATI

Fig. 2 CoJACK's components and their relationship to JACK.

Evertsz, Ritter, Russell, & Shephardson (2007). Best Paper award, at the 16th BRIMS

Image: Section of the section of th	eni 301 SSSIHSmitheli	17		M.C.	-										×
Plot 1 X Plot 2 X Plot 3 X Plot 4		-		-	_ 4		near tea	Dat	talog 2		Datalog 3		Datalo	og 4	
0 0 0 10 20 2,293 12,348 0 0 0 10 20 2,293 12,212 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,345 0 0 0 10 20 2,293 13,445 0 0 0 0 10 20 2,293 13,445 0 0 0 10 20 2,293			-					res a	ccu	accu	curre e	/ent	curre	curre	
0 0 0 10 20 2,293 11,252 0 0 0 10 20 2,293 12,152 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,3637 0 0 0 10 20 2,293 12,345 0 0 0 10 20 2,293 13,482 0 0 0 0 10 20 2,293 10,482 0 0 0 0 0 10 20 2,293 10,482 0 0 0 0 0 10 20 2,293 10,482 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 Andre	State .	In the	1 1 1 1 1 1				0	0	0	10	20	2,293	12,348	-
0 0 0 0 10 20 2,233 11,252 0 0 0 10 20 2,233 12,502 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 12,002 0 0 0 10 20 2,233 13,842 0 0 0 10 20 2,233 12,704 0 0 0 10 20 2,233 12,46 0 0 0 10	1. 1. 1.							0	0	0	10	20	2,293	12,757	
0 0 0 0 10 20 2,293 12,212 0 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,002 0 0 0 10 20 2,293 12,302 0 0 0 10 20 2,293 12,363 0 0 0 10 20 2,293 12,363 0 0 0 10 20 2,293 12,363 0 0 0 10 20 2,293 12,363 0 0 0 10 20 2,293 13,482 0 0 0 10 20 2,293 13,243 0 0 0 10 20 2,293 13,243 0 0 0 10 20 2,293 12,346 10.0 0 10	Contraction of the	The second		and the second		and the second sec	ann Ann Maria	0	0	0	10	20	2,293	11,252	
Plot 1 Plot 2 Plot 3 Plot 4			2			-	and the second	0	0	0	10	20	2,293	12,212	
Plot 1 Plot 2 Plot 3 Plot 4 [kamikaze% %4 PlanHistory Detonate] Plot 1 Plot 2 Plot 3 Plot 4 Plot 4 Plot 2 Plot 4 Plot 4 Plot 4 4 Plot 4 Plot 4 Plot 4			149	-		ALL DESCRIPTION	A	0	0	0	10	20	2,293	14,508	
0 0 0 10 20 2,293 12,637 0 0 0 10 20 2,293 12,367 0 0 0 10 20 2,293 12,367 0 0 0 10 20 2,293 10,835 0 0 0 10 20 2,293 13,842 0 0 0 10 20 2,293 13,842 0 0 0 10 20 2,293 13,842 0 0 0 10 20 2,293 13,242 0 0 0 10 20 2,293 13,242 0 0 0 10 20 2,293 13,242 0 0 0 10 20 2,293 13,242 0 0 0 10 20 2,293 10,66 15.0				I	1 in	and the second of the	- Marine	0	0	0	10	20	2,293	12,002	
Plot 1 Plot 2 Plot 3 Plot 4 [kamikaze%%4 PlanHistory Detonate]		-		-	1		and the	0	0	0	10	20	2,293	12,037	
Plot 1 X Plot 2 X Plot 3 X Plot 4 (kamikaze%%4 PlanHistory Detonate]				-	-			0	0	0	10	20	2,283	12,300	
Plot 1 × Plot 2 × Plot 3 × Plot 4 [kamikaze%%4 PlanHistory Detonate]				SA				0	0	0	10	20	2,283	10.835	
Plot 1 Plot 2 Plot 3 Plot 4						1 112	3788 T	0	0	0	10	20	2,200	13,482	
Plot 1 Plot 2 Plot 3 Plot 4 [kamikaze%%4 PlanHistory Detonate]			and the second				The set	0	Ő	0	10	20	2.293	9.906	
Plot 1 × Plot 2 × Plot 3 × Plot 4 [kamikaze%%4 PlanHistory Detonate]				EN .				0	0	0	10	20	2,293	9,898	
Plot 1 × Plot 2 × Plot 3 × Plot 4 [kamikaze%%4 PlanHistory Detonate] 16.0 12.5 10.0 10			and the second	THE .		Contraction of the second		0	0	0	10	20	2,293	12,704	
Plot 1 Plot 2 Plot 3 Plot 4 [kamikaze%%4 PlanHistory Detonate] 15.0 12.5 10.0 7.5 5.0 2.5 0.0 10 20 2,293 12,34 0 0 0 10 20 2,293 10,66			Charles Sta	1			1000 CO.	0	0	0	10	20	2,293	13,24	
O O								0	0	0	10	20	2,293	12,34	
Plot 1 X Plot 2 X Plot 3 X Plot 4 [kamikaze%%4 PlanHistory Detonate] 15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0				Sun and				0	0	0	10	20	2,293	10,66	-
[kamikaze%%4 PlanHistory Detonate]	Plot 1	X Plot 2	X Plot 3	X Plot 4											
12.5 10.0 7.5 5.0 2.5				[]	kamikaze%%	64 PlanHisto	ory Detonati	9]							
	10,0 -											e h e d	Mr. M	in the	1
	12,6											WY	L.M.	M. W	14
	10,0 1											- ' '			
5,0 2,5 0,0 31,000 30,000 30,000 10,000 5,000 0,000 10,000	7.6														
	5,0														
	2.5														-
Agent timer (ms)	0,0	-35.000	-30.000	-25.000	-20.000	-15.000 Agent time	-10.000 er (ms)		-5.000		o	5.0	000	10.00	0
50000 0													50000	1	

F2: Modeling Moderators with Overlays: CoJACK

Overlays of caffeine and fear

Created fear, caffeine

PENNSTATE

F2: Modeling Moderators with Overlays: Grossman

- Implemented Grossman's (1996) formula for participation (BRIMS, Morgan et al., 2009; 2010)
- Participation \propto (demands of authority) x (group absolution) x (target attractiveness) x (tendencies) x distance to target

$$p_{a} = \frac{1}{1 + \left(\frac{1}{t_{d}} * e^{\frac{g_{\text{composition}} * \left(\left(d_{\text{friend}} * \sqrt{g_{\text{size}}}\right) + \frac{d_{\text{leader}}}{t_{a} + k}\right)}{g_{\text{size}} * d_{\text{observer}} * (c + k)}}\right)}$$

Definitely influenced behavior:

F2: Effect of Grossman's Formula

21

PENNSTATE

<u>S</u>

F2: Modeling Moderators with Physiology

But, overlays can clash

PENNSTATI

- Simple formulas are not architectural
 - Was stuck for a while
 - Worked with CaffeineZone, iPhone app
 - **Took up physiology model** (BRIMS best student paper: Dancy et al. 2012; Dancy et al. 2015)

(Middleton et al., submitted)

F2: HumMod

- Model of human physiology based on Guyton and Hall (2012) textbook, arising from cardio model Hester et al. (2011), manual in prep.
- Realised as >1.5k equations, runs faster than real time, adjustable, extendable (e.g., Salt model)

HumMod system	Number of variables	Example variables
Body Fluids	214	Blood plasma volume
Circulation	426	Sinoatrial (SA) node rate
Electrolytes	140	Sodium Ion (NA+) pool mass
Hormones	534	Adrenocorticotropic hormone secretion
Metabolism	321	Energy stored (calories)
Nervous system	187	Norepinephrine (NE) pool mass
Organs	2,349	Bladder volume
Respiration	326	Breathing tidal volume
Other systems (lifestyle, heat, etc.)	2,026	Skin temperature

Table 2Some of HumMod's major systems

PENNSTATE

(24)

F2: ACT-R/ Φ

ACT-R + HumMod physiology simulator For serial subtraction

F2: ACT-R/ Φ

25

PENNSTATE

F2: Conclusions: Modeling Moderators

- Several ways to simulate and explore moderators
- Simple formulas
- Overlays
- We will be using a physiology and appraisal substrate
- Will need lots of data, and new types
- Will need to expand HumMod and ACT-R/ Φ

Future 3: Using GAs to Optimize Model Fit

Model fitting is a multivariable non-linear multi-value optimization

PENNSTATI

- We had a complex task of a complex model with complex data: the Trier Social Stressor Task, with caffeine (Klein et al., 2008)
 - Genetic algorithms provide a way to optimize nearly anything

Kase, S. E., Ritter, F. E., Bennett, J. M., Klein, L. C., & Schoelles, M. (2017). Fitting a model to behavior reveals what changes cognitively when under stress and with caffeine. *Biologically Inspired Cognitive Architectures, 22*(October), 1-9.

F3: Optimized the Fit of a Serial Subtraction Model

28

Trier Social Stressor task 4 blocks of subtraction, 3 levels of caffeine

PENNSTATE

F3: Optimized the Fit of a Serial Subtraction Model

Shown earlier as threatened model

PENNSTAT

000	Control Panel		n 🔿 🔿 🔿 Model Behavio	or
Appraisal Setting Threatened 	Run Model	Run Time 30	Current Number	Num of Attempts
 Challenged ACT-R Default 	Reset Model	Step Model	Number in Memory 0 1 2 3 4	Num of Errors
Worry	 Count Model Recall Model 	🗌 Demo Mode	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Task Time 0
Caffeine Dosage 0			Worry Indicator)
0 50 100	150 200 250	300 350 400	OOO Trace/Script Con	trol Panel
?	Listener 1		 Model Trace Declarative Memory Trace Partial Matching Trace Activation Trace Run in Real Time Multiple Iterations 	Save Data File As Data.lisp Iterations 5
CL-USER Killed region sa	ved			

29

F3: Optimized the Fit of a Serial Subtraction Model

200 genotypes x 100 gen.

PENNSTATI

			Human performance	Avg. model prediction	Avg. fitness value	ACT-R parameters ANS, BLC, SYL (N)
NCSA Linux Cluster	НРС	PLAC (no caffeine)				
		ALL	47.3/81.5%	48.1/81.4%	0.83	0.70, 2.49, 0.44 (3)
		CH	50.7/83.3%	50.4/83.0%	0.47	0.68, 2.48, 0.41 (6)
	Parallel	ТН	40.4/77.9%	40.3/77.4%	0.36	0.71, 2.53, 0.55 (5)
Génétic	Processing	LoCAF (200 mg caffeine)				
Algorithm		ALL	59.1/86.5%	59.1/86.7%	0.12	0.72, 2.64, 0.33 (4)
		CH	62.4/88.3%	62.7/88.4%	0.42	0.69, 2.65, 0.31 (3)
Lisp ACT-R		TH	37.5/74.8%	37.2/74.9%	0.58	0.71, 2.48, 0.61 (6)
Cognitive	Lisp Image	HiCAF (400 mg caffeine)				
Model	-	ALL	45.7/79.2%	44.7/80.4%	0.50	0.78, 2.65, 0.47 (4)
		CH	51.6/82.8%	46.1/87.7%	0.53	0.75, 2.69, 0.40 (3)
		TH	38.9/75.1%	50.4/92.3	0.58	0.67, 2.35, 0.57 (4)

Fits very close Caffeine -> fluency, more decl. memory noise when threatened

F3: Run Your Model until You Have Stable Predictions

How many times to run a model to get stable performance? (Ritter et al., 2013) and to report results?

GAs don't really care, but multiple runs can help

F3: Conclusions: Using GAs

Use machine learning (GAs) to optimize architecture's algorithms and fit model
 Caffeine seems to affect speaking speed and decl. memory noise
 Run your models enough to understand them

Conclusions

Plenty of places to learn more

Pew and Mavor (Elkind et al., 1989; 1999, 2007) -

Ritter et al. (2003)

Anderson (2014; 2000)

- ► Ritter et al. (2014)
- ► Guyton and Hall (2015) -

Conclusions

Document your systems, code, graphs, movies

Helpful to reuse data, models, tools, b/c so darn hard to create them

Don't build for others, build for yourself and use

These design patterns of interaction, physiology underlying cognition, and optimized fits were recreated, you can too!

References

acs.ist.psu.edu/papers

- Anderson, J. R. (2000). Learning and memory: An integrated approach. New York, NY: John Wiley and Sons.
- Anderson, J. R. (2004). Cognitive psychology and its implications (5th ed.). New York, NY: Worth Publishers.
- Dancy, C. L., Ritter, F. E., & Berry, K. (2012). Towards adding a physiological substrate to ACT-R. In Proceedings of the 21st Conference on Behavior Representation in Modeling and Simulation, 12-BRIMS-014, 078-085. Amelia Island, FL: BRIMS Society.
- Dancy, C. L., Ritter, F. E., Berry, K., & Klein, L. C. (2015). Using a cognitive architecture with a physiological substrate to represent effects of psychological stress on cognition. Computational and Mathematical Organization Theory. 21(1), 90-114.
- Elkind, J. I., Card, S. K., Hochberg, J., & Huey, B. M. (Eds.). (1989). Human performance models for computer-aided engineering. Washington, DC: National Academy Press.
- Evertsz, R., Ritter, F. E., Russell, S., & Shepherdson, D. (2007). Modeling rules of engagement in computer generated forces. In Proceedings of the 16th Conference on Behavior Representation in Modeling and Simulation, 123-134. 107-BRIMS-021. Norfolk, VA: U. of Central Florida.
- Hall, J. E. (2012). Textbook of medical physiology: Elsevier.
- Kase, S. E., Ritter, F. E., Bennett, J. M., Klein, L. C., & Schoelles, M. (2017). Fitting a model to behavior reveals what changes cognitively when under stress and with caffeine. Biologically Inspired Cognitive Architectures, 22(October), 1-9.
- Klein, L. C., Bennett, J. M., Whetzel, C. A., & Ritter, F. E. (2008). Daily caffeine use impacts neuroendocrine and cardiovascular responses to laboratory stress in healthy men. Presented at the annual meeting of the American Psychosomatic Society, Baltimore, MD. Psychosomatic Medicine, 70(3), A-58.
- Middleton, V., Lynn, S., Weyhrauch, P., & Ritter, F. E. (submitted). Dynamic representation for evaluating the effect of moderators and stress on performance (DREEMS). Fall SIW workshop.
- Morgan, G. P., Ritter, F. E., Stevenson, W. E., Schenck, I. N., & Cohen, M. A. (2005). dTank: An environment for architectural comparisons of competitive agents. In Proceedings of the 14th Conference on Behavior Representation in Modeling and Simulation, 05-BRIMS-043. 133-140. Orlando, FL: U. of Central Florida.
- Morgan, J. H., Morgan, G., & Ritter, F. E. (2010). A preliminary model of participation for small groups. Computational and Mathematical Organization Science, 16, 246-270.
- Morgan, J. H., Morgan, G. P., Ritter, F. E., & Poncelin de Raucourt, V. (2009). A preliminary model of participation. In Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation, 129-136. 109-BRIMS-127.
- Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press.
- Newell, A. (1991). Desires and diversions: Carnegie-Mellon University School of Computer Science Distinguished Lecture [64 min. video, online at doi.library.cmu.edu/10.1184/LOCAL/4205. The slides are available through
 - diva.library.cmu.edu/Newell/]. Palo Alto, CA: University Communications.

- Paik, J., Kim, J. W., Ritter, F. E., & Reitter, D. (2015). Predicting user performance and learning in human-computer interaction with the Herbal compiler ACM Transactions on Computer-Human Interaction, 22(5), Article No.: 25.
- Pew, R. W., & Mavor, A. S. (Eds.). (1998). Modeling human and organizational behavior: Application to military simulations. Washington, DC: National Academy Press. books.nap.edu/catalog/6173.html.
- Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system integration in the system development process: A new look. Washington, DC: National Academy Press. http://books.nap.edu/catalog.php?record_id=11893, checked March 2012.
- Ritter, F. E. (1993). Three types of emotional effects that will occur in cognitive architectures. Workshop on architectures underlying motivation and emotion, The University of Birmingham 11-12 August. Also presented as a colloquium at the MRC-APU in Cambridge, October, 1993.
- Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered systems: What system designers need to know about people. London, UK: Springer.
- Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Supporting cognitive models as users. ACM Transactions on Computer-Human Interaction, 7(2), 141-173.
- Ritter, F. E., Bittner, J. L., Kase, S. E., Evertsz, R., Pedrotti, M., & Busetta, P. (2012). CoJACK: A high-level cognitive architecture with demonstrations of moderators, variability, and implications for situation awareness. Biologically Inspired Cognitive Architectures, 1(1), 2-13.
- Ritter, F. E., Kukreja, U., & St. Amant, R. (2007). Including a model of visual processing with a cognitive architecture to model a simple teleoperation task. Journal of Cognitive Engineering and Decision Making, 1(2), 121-147.
- Ritter, F. E., Schoelles, M. J., Quigley, K. S., Klein, L. C. (2011). Determining the number of simulation runs: Treating simulations as theories by not sampling their behavior. In S. Narayanan & L. Rothrock (eds.) Human-in-the-loop simulations: Methods and practice. London: Springer.
- Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R. M., Gobet, F., & Baxter, G. D. (2003). Techniques for modeling human performance in synthetic environments: A supplementary review. Wright-Patterson Air Force Base, OH: Human Systems Information Analysis Center (HSIAC).
- Ritter, F. E., Van Rooy, D., St. Amant, R., & Simpson, K. (2006). Providing user models direct access to interfaces: An exploratory study of a simple interface with implications for HRI and HCI. IEEE Transactions on System, Man, and Cybernetics, Part A: Systems and Humans, 36(3), 592-601.
- St. Amant, R. (2000). Interface agents as surrogate users. intelligence, 11(2), 28-38.
- St. Amant, R., Riedel, M. O., Ritter, F. E., & Reifers, A. (2005). Image processing in cognitive models with SegMan. In Proceedings of HCI International '05, Volume 4 - Theories Models and Processes in HCI. Paper # 1869. Mahwah, NJ: Erlbaum.
- Tehranchi, F., Ritter, F. E. (2018a). Using Java to provide cognitive models with a more universal way to interact with graphical user interfaces. The Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation.
- Tehranchi, F., Ritter, F. E. (2018b). Modeling visual search in interactive graphic interfaces: Adding visual pattern matching algorithms to ACT-R. To appear in the Proceedings of ICCM 2018.