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Summary

This paper reviews three hybrid cognitive architectures (Soar, ACT-R, and CoJACK) and how they can support
including models of emotions. There remain problems creating models in these architectures, which is a research
and engineering problem. Thus, the term cognitive science engineering is introduced as an area that would support

making models easier to create, understand, and re-use.

1. Introduction

This paper reviews how to include emotions in hybrid
cognitive architectures. Hybrid architectures combine the
advantages of symbolic architectures and lower level, sub-
symbolic architectures. The symbolic processing based on
what is essentially an Al or agent architecture allows the
models to perform relatively large and complicated tasks.
The sub-symbolic components support modifying the per-
formance in subtle but important ways. These architec-
tures are increasingly available and usable.

There remain problems creating, reusing, and under-
standing these (and other models). This review is intended
to inspire further research and to introduce the area of cog-
nitive science engineering,

The problems noted here are large enough that others
can pursue them as well. Indeed, they will require multiple
researchers, there are plenty of applications, and we would
appreciate the help.

This review represents my thinking, and draws too much
on projects that [ am working on. Longer and more com-
plete reviews [Pew 98, Pew 07, Ritter 03b] include further
work from a wider geographical and intellectual area.

2. Hybrid architectures

Cognitive architectures are an approach to describing
the mechanisms of cognition that are fixed across users
and across tasks [Anderson 07, Newell 90]. Cognitive ar-
chitectures use cognitive psychology concepts like work-
ing memory and implement them in a computer program
that takes in knowledge representations (typically rules,
but it could include other types of task knowledge such
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as plans) to produce behavior. They are typically imple-
mented as a computer program that applies task knowl-
edge to produce behavior. Thus, the language has a repre-
sentation for knowledge and a way to apply it. The appli-
cation of knowledge in a cognitive architecture is unlike
an Al system in that it is intended to take time, suffers
from simulated limitations of human knowledge applica-
tion, and often includes ways for errors to arise from not
applying the correct knowledge or not applying the knowl-
edge correctly.

Hybrid architectures can be defined as cognitive archi-
tectures with two types of knowledge representations that
are at different levels or are of fundamentally different
types. These architectures can be created in three ways.
One way is by adding symbols to a connectionist repre-
sentation (e.g., [Sun 94, Touretzky 86]). Work in this area
provides a way to either create symbols or structures or to
find them amongst the connectionist representation.

Another way is by adding sub-symbolic representations
to a symbolic architecture, for example, declarative mem-
ory strength in ACT-R and reinforcement learning in Soar
9 [Laird 08]. Here, the weighting given to the rules and
declarative memory elements is essentially a way to cre-
ate a symbolic architecture that has changes that are small
and gradual.

Most hybrid architectures are realized in these two ways,
but there are also examples where one of the levels is a ge-
netic algorithm, fuzzy logic, or other representation. Re-
views of hybrid architectures (e.g., [Kandel 92]) and fur-
ther examples of hybrid architectures are available at con-
ferences. '

I review three high-level hybrid architectures briefly to
support readers not familiar with cognitive architectures

frontiers: Emotions and usability.
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or with these in particular.

2-1 Soar and ACT-R

Soar and ACT-R are two of the most commonly used
cognitive architectures. They both provide a conceptual
framework for creating models of how people perform
tasks. This review draws upon and updates a previous de-
scription of Soar and ACT-R [Ritter 03b].

Both Soar and ACT-R are supported by computer pro-
grams that realize these theories of cognition. There are
debates as to whether and how the theory is different from
the computer program, but it is fair to say that they are
highly related. It is generally acknowledged that the pro-
gram implements the theory and that there are commit-
ments in the program that must be made to create a run-
ning system that are not in the theory—places where the
current theory does not say one thing or another.

As cognitive architectures, their designers intend for
them to model the full breadth and width of human behav-
jor. Cognitive architectures, including the ones discussed
here, do so to a greater or lesser extent, usually with the
areas covered increasing monotonically over time.

Further comparisons of Soar and ACT-R are available
{Johnson 98, Kennedy 06, Ritter 03a], and online from
the Soar and ACT-R home pages and FAQs, and the Soar
Wiki.

§1 Background of Soar and ACT-R

Soar and ACT-R are based on sets of theoretical as-
sumptions, reflecting, largely, their different conceptual
origins. Soar was developed by combining three main el-
ements: (a) the heuristic search approach of knowledge-
lean and difficult tasks; (b) the procedural view of routine
problem solving; and (c) a symbolic theory of bottom-up
{earning designed to produce the power law of learning.
However, many of the constraints on Soar’s theoretical as-
sumptions consist of general characteristics of intelligent
agents, rather than detailed human behavioral phenomena.
Soar’s outlook is more biased towards performance be-
cause it arose out of a more Al-based tradition.

In contrast, ACT-R grew out of detailed phenomena from
memory, learning, and problem solving [Anderson 83, An-
derson 07, Anderson 73]. ACT-R is thus suited more for
slightly lower-level phenomena, and is more suited for
predicting reaction times, particularly for tasks under 10
s. ACT-R’s outlook is more biased towards predicting re-
action time means and distributions because it arose out of
a more experimental psychology tradition.

These differences are relative; both architectures have
been used for both high and low level models, with atten-
tion paid to both performance and time predictions. Plenty
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of examples are provided on their home pages.
§2 Similarities between Soar and ACT-R

Soar and ACT-R can be seen as similar in numerous
ways. They both have two kinds of memory, declara-
tive (facts) and procedural (rules), although they represent
these items differently. Typical instantiations of them now
have input provided through a model of perception and
output buffered through a model of motor behavior [Byrne
01, Chong 01, Ritter 00].

Both Soar and ACT-R model behavior by reducing much
of human behavior to problem solving. Soar does this
rather explicitly, being based upon Newell’s theory of prob-
lem solving, the Problem Space Computational Model (PS
CM), whereas ACT-R merely implies it by being goal di-
rected.

In both architectures memories are conceptually infi-
nite, with no provision being made for the full removal of
any memory item in ACT-R, although elements become
less active with time and lack of use. Both ACT-R and
Soar remove declarative memory associated with goals,
which therefore can be seen as a type of short-term mem-
ory. For procedural memory, rules may only be added to
both architectures but not removed.

The course of processing involves moving from an ini-
tial state to a specified goal state. ACT-R keeps only one
goal active (as a memory structure, there may be multi-
ple internal and external situations where the goal is satis-
fied), whereas Soar may have several of them arranged in
a stack.

Both ACT-R and Soar maintain a goal hierarchy where
each subsequent sub-goal becomes the focus of the sys-
tem. In ACT-R, these must be satisfied in a serial man-
ner, and in the reverse of the order they appear in the hi-
erarchy. Soar generally proceeds in a serial way as well,
but is capable of removing (or solving) intermediate sub-
goals should the current problem solving resolve a sub-
goal that is much higher in the goal hierarchy. This dif-
ference makes ACT-R potentially less reactive, although
work is in progress to make ACT-R more reactive [Lebiere
01, Salvucci 06].

§3 Differences between Soar and ACT-R

There are also fundamental differences between Soar
and ACT-R. Soar only moves between states through chang-
ing the state as part of a decision procedure, which rules
can vote on but cannot directly cause. In Soar, when no
more productions can fire, an operator is selected or a state
is modified. This whole process is called a decision cy-
cle. Where an operator cannot be selected (e.g., none are
proposed), a sub-goal is created with a goal to choose the
next operator. Movement between states is done in ACT-R
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by firing productions, which may directly change the state
and goal stack. Where there is no matching rule, many
versions of ACT-R just stop.

Learning in earlier versions of Soar only occurred for
production memory. New rules are created by the archi-
tecture whenever a sub-goal is resolved, so that when next
encountering the same situation, the new production fires
without the need to enter the sub-goal. This type of in-
formation can include which operator to select or how to
implement an operator. These rules tend to be atomic, and
in nearly all cases until recently can be seen as immedi-
ately fully learned. This learning mechanism (procedural
chunking) can implement a wide range of learning effects,
including long-term declarative memory learning. Soar 9,
the latest version, includes reinforcement learning, a sub-
symbolic learning mechanism.

ACT-R learning involves both declarative and procedu-
ral memory. When rules fire they can become stronger,
and as declarative memories are used more they are
strengthened. Each potential production also has an ex-
pected gain based on its probability of success, its cost,
and the current goal’s value. The production with the high-
est expected gain is selected when several productions are
matched. The more often the production meets with later
success, the higher this probability for the rule will be-
come.

A rule learning mechanism is less often used in ACT-R
models, and when it has been used, the resulting rules are
typically created in a nascent state such that they have to
be created several times before they are fully learned (e.g.,
[Jones 00, Taatgen 03]).

2.2 CoJACK

CoJACK combines BDI agents’ high-level knowledge
representation and usability with several aspects of low
level cognitive architectures, including traceability, pro-
cessing time predictions, and errors [Evertsz 07]. CoJACK
attempts to include lessons from ACT-R and from Soar
[Norling 04]. CoJACK also includes important aspects of
macrocognition, including variability in its performance
of a long-term task. Its behavior and the effects of moder-
ators on performance have been demonstrated in a simple
adversarial environment. CoJACK provides lessons for
other architectures, including how to define, measure, and
control variability that arises from individual and temporal
aspects of cognition; the importance of situation aware-
ness (SA) and knowledge representations necessary for
complex SA; and some of the complexities that will arise
when we try to add SA to other cognitive architectures.
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§1 JACK

CoJACK is based on JACK, the Java Agent Construc-
tion Kit [Busetta 99]. JACK uses the so-called Belief-
Desires-Intentions (BDI) model, a paradigm that expli-
cates rational decision-making about actions. The BDI
paradigm was developed in response to a perceived prob-
lem with existing Al approaches to planning. Agents are
typically situated in a dynamic environment and must con-
stantly review their goals and activities.

The key programming constructs of JACK are:
Event—the central motivating factor in agents that are
generated in response to external stimuli or as a result
of internal computation.

Plan—a procedure that defines how to respond to an
event. When an event is generated, JACK computes
plans that are applicable to the event. The agent se-
lects the plan that will form its next intention. Plans
have a body that defines the steps to be executed.
Non-deterministic choice allows the agent to try al-
ternative plans.

Beliefset—the agent’s declarative beliefs in a first or-
der, tuple-based relational form. Beliefsets are analo-
gous to working memory.

Intention—the currently active plan instantiations, i.e.,
the plan instances that the agent is committed to. A
plan becomes an intention when the agent instantiates
it with symbolic references.

JACK represents and executes plans in a way that maps
well to SMEs’ (Subject Matter Experts) introspections about
their own reasoning processes. Figure 1 shows that mod-
ellers can specify behavior graphically, which is useful for
visualizing the logical structure of tactics and discussing
them with SMEs. Therefore, a key design goal for Co-
JACK was to retain JACK’s high-level representation and
ease-of-use.

§2 CoJACK Extends JACK with Timing, Errors, and
Moderators

CoJACK augments JACK with a set of constraints and
parameters, as well as a moderator layer. The major activ-
ities in the JACK architecture, such as adding a belief or
instantiating a plan have a (simulated) time cost associated
with them that is parameterised.

CoJACK adds noise to the decision processes, which
then affects the beliefs retrieved; this implements effects
such as failure to retrieve a matching belief and retrieval
of a belief that only partially matches. A similar mecha-
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Fig. 1 A simple JACK/CoJACK plan.

nism affects the selection of the next intention to execute.
Thus, the agent can choose the wrong intention or even
fail to retrieve no intention. The adjustments mean that
CoJACK also learns, which is somewhat unusual for an
agent architecture.

The cognitive parameters can be moderated at runtime,
leading to systematic variations in behaviour. For exam-
ple, the caffeine moderator decreases the time taken to per-
form reasoning steps, leading to shorter response times.

CoJACK cognitive models have been created for three
tasks: serial subtraction, how Rules of Engagement will
influence and be influenced by behavioural moderators [Ev-
ertsz 07], and to play a very simple tank game [Evertsz
08].

3. Models of emotions

Cognitive science and cognitive modeling are increas-
ingly interested in creating models that have emotions in
them as a way to define and understand emotions. These
models provide useful definitions of emotions and provide
a way to explore what emotions are, how they may be re-
lated, and how they influence cognition and performance.

I would like to note two ways emotions have been cre-
ated in cognitive architectures (out of several possible ways
[Ritter 93]). They have been created by modifying archi-
tectural parameters (overlays) and by incorporating emo-
tions directly into the architecture (drives).
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3-1 Overlays

Representing emotion and other moderators of behav-
ior as parameter changes is a very direct way to include
their effects in a cognitive architecture. Architectures that
include multiple parameters, making the changes easy to
represent.

§1 Soar

There have been several attempts to include emotions in
Soar (e.g., [Chong 98, Marinier 07]). The largest attempt
is to include appraisal theory [Gratch 04], which is a nice
example of how an emotional theory can be added to an
architecture.

Gratch and Marsella found that additional types of in-
formation were required to create their models with emo-
tions. They found that emotional content could be useful
when generating interactions (e.g., answering the question
‘what happened?’ can be informed by the situation’s emo-
tional aspects). They found that the appraisal process, be-
havior, and the physiology of the agent interact. This in-
teraction has been noted before, but their work shows that
having a running model will make the work more interest-
ing. Modeling this interaction remains a very important
problem.

§2 ACT-R

ACT-R has been used numerous times to create overlays
of emotions and behavioral moderators related to emo-
tions. These include overlays representing the effects of
development on cognition [Jones 00], fatigue [Jongman
98], stress [Belavkin 00], arousal [Cochran 06], sleep loss
[Gunzelmann}, and stress [Ritter 07].

Typically, they modify a few parameters within the ex-
isting architecture. In a few cases they modify the equa-
tions that the architecture uses to select a rule to fire or
how declarative memories are retrieved.

This approach is incremental, but it provides a way for
theories of emotions and behavioral moderators to be for-
mally represented. The resulting theories will work with
other models, for example, a driving model, to provide
predictions of how driving is influenced by fatigue.

§3 CoJACK

CoJACK uses nearly all of the equations in ACT-R to
modify the use of BDI constructs. Figure 2 shows how
overlays interact with JACK and CoJACK. The overlays
modify parameters to represent changes such as working
memory capacity and access speed, processing speed, and
noise in the decision process. These overlays include stress,
the effects of caffeine (submitted), and fear [Evertsz 07].
§4 Summary

Overlays have been created in each of these architec-
tures. These overlays have been used to implement a wide
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range of theories and suggest that most emotions and mod-
erators can be explored in this way.

These overlays can be broken into types similar to the
way that architectural components [Gray 07] can be repre-
sented: Changes can be made to (local) parameters, changes
can be made to architectural components, and changes can
be made to strategies or knowledge representations.

These overlays have raised some interesting questions.
For example, the work on modeling sleep deprivation in
ACT-R [Gunzelmann] has raised questions about how (o
generalize results across tasks and across populations. Mod-
eling caffeine has left us slightly stumped without addi-
tional data-yes, people with caffeine get faster, but how to
apportion the speed-up across mechanisms?

Initial work has started with relatively simple and in
most cases static overlays. In time, the overlays will have
to represent a more dynamic system that is being mod-
eled — emotions interaction with cognition, and behavior
moderators influence strategy choices, which in turn influ-
ence further changes to cognition.

Similar work is possible in other architectures. It would
be straight forward to implement similar overlays to EPIC
[Kieras 97], Clarion [Sun 06b], R-CAST [Fan 07], and
even GOMS [Kieras 98]!

3.2 PSI and other systems with drives
Dietrich Dorner proposed the PSI architecture (e.g.,
[Dorner 031). This architecture includes drives that inter-
act with most of its cognitive mechanisms. The drives help
clarify how emotions could arise and change the way the
architecture works on ‘a fundamental level, providing an
architecture more suited for behaving autonomously in a
simulated world, which it does.
PSI includes three types of drives, physiological (e.g.,
hunger), social (i.e., affiliation needs), and cognitive (e.g.,
reduction of uncertainty). These drives influence all goal
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formation and knowledge selection and application. The
resulting architecture generates new kinds of behaviors,
including context dependent memories, socially motivated
behavior, and internally motivated task switching. Joscha
Bach has recently implemented this theory as the MicroPSI
architecture [Bach].

While there have been tests of the architecture’s predic-
tions to human data, the resulting PSI models are generally
not presented as validated cognitive models, but as theo-
retical explorations in the space of architectures for gener-
ating behavior. The sweep of the architecture can thus be
larger—it presents a new cognitive architecture attempting
to provide a unified theory of cognition.

§1 Summary and open problems

PSI and similar systems that include emotions directly,
including PMServe [Silverman 04], Clarion [Sun 06a], and
MAMID [Hudlicka 02], have several lessons for other ar-
chitectures and models. They suggest that the mechanisms
related to drives are important aspects of human behavior.
For simple systems, not including them is not a problem.:
As models attempt to cover a wider range of behavior and
over longer time periods, drives will become more impor-
tant, and simple overlays will eventually not be able to
cope with the breadth of effects.

In time, models will come to include the effects on cog-
nition of emotions and behavioral moderators like lack of
sleep that most experimental methods have attempted to
remove. Architectures will need to include through over-
lays simple changes to information processing that arise
from these factors. They will also have to include drives
to represent long term goals and needs.

Including behavioral moderators are important for ap-
plications because we would like to predict actual not just
ideal behavior. While many users are fresh and alert, not
all are. It will also be important for simulations to have
models that do not do the right thing, as these represent
opponents to take advantage of and colleagues to support.

Including these effects are important for theoretical rea-
sons. They will help codify theories and can help generate
more accurate predictions.

In the end, this approach will require creating a sim-
ulated body to hold the physiology of the mechanisms,
including fatigue, neurotransmitters, and other systems.
As embodying cognition progresses it will offer a way to
unify the life sciences. Before that happens, we will need
summaries of how specific moderators influence cognition
on multiple tasks. These summaries will take time, but be
invaluable for creating overlays to architectures.
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4. Usable models

Models of emotional effects need larger models to rep-
resent strategies to choose between and larger knowledge
sets to implement long term behavior. It has been noted
a few times that cognitive models are not always easy to
create and use [Pew 98, Pew 07, Ritter 03b]. It is the case
that they are not as easy to use as we would like them to
be. Whenever theory cannot be applied because it is too
difficult, it might be viewable as an engineering problem.

I would like to introduce the term cognitive science en-
gineering. This is a new area for studying how to make and
apply cognitive science. (This area cannot be called cog-
nitive engineering, because that name is already taken.)
Cognitive science tends to reject the engineering of mod-
els as cognitive science in the same way that psychology
tends to reject software for psychology as psychology (al-
though tools for physics and chemistry are physics and
chemistry).

The usability of models and the ability to create and un-
derstand large models appear to be the first and perhaps
the most important type of cognitive science engineering.
Other examples of cognitive science engineering are now
clearly visible in a previous review [Ritter 03b], such as
optimizing the fit of models to data [Kase 08] and connect-
ing models to simulations, where both engineering and
science interact to create plausible, accurate connections
between a model and a simulated or real world [Byrne
01, Ohno 99, Ritter 00]. These are not problems directly
in the science of cognitive science, but they are problems
that stop cognitive science from progressing in a particular
direction.

The usability of models has been addressed by the three
architectures differently, and provide lessons for each other
and for other architectures.

4-1 Soar

There have been several attempts to provide program-
ming interfaces for Soar. The Developmental Soar Inter-
face (DSI) was one of the first [Ritter 94]. Since then,
there have been several console based interfaces (e.g., [Rit-
ter 98]). The current version of Soar (9) has a pretty nice
interface on this level.

More recently, structured rule editors have been pro-
vided. These, such as Visual-Soar, are becoming more
sophisticated and complex, and start to organize the rules
as parts of operators, and provide a datamap of the struc-
tures used across operators. These tools help with rel-
atively low-level programming, and are becoming more
high-level as time progresses.
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There are two more promising approaches that propose
higher level languages that compile into Soar. The first
high-level language for Soar was TAQL [Yost 93]. A small
study suggested that it allowed users to write Soar models
about three times faster. HL.SR is a more recent attempt
to create a high level language for Soar and ACT-R [Jones
06].

Herbal is another attempt [Haynes 09]. It implements
a version of the Problem Space Computational Model
[Newell 907 as a language that compiles into Soar and
Jess. It has been used by over 100 people. Our current best
estimate is that it allows undergraduate psychology majors
to create (small) cognitive models more than 3 times faster
than computer science graduate students.

4.2 ACT-R

ACT-R currently has a nice rule-level interface, but it
does not have a general high-level language. However,
there are several projects on how to make simplified ACT-
R models more quickly [Ritter 06]. These include special
purpose languages like ACT-Simple, which creates simple
models; G2A, which creates ACT-R models from GOMS
models; CogTool, a system to build simple models au-
tomatically from visual descriptions, and a language for
menu interaction.

ACT-R has an increasing range of theories that can and
are being reused across models. These do not provide a
general language, but they help build models, and may
provide lessons on how to get model reuse or may provide
a type of module-based high-level language.

4.3 CoJACK

CoJACK was partially created based on a review that
argued that it would be easier to create an interface and
extension to JACK to make it cognitive than it would be to
use Soar [Shakir 02]. This report had flaws, for example, a
limited sample size of researchers were contacted. It was,
however, encouraging that usability was considered in this
decision. In the several years that I have worked with Co-
JACK, users who knew Java did not complain about Co-
JACK’s usability.

There are probably several reasons that CoJACK ap-
pears or is usable (which might be the same thing). The
high-level BDI constructs that it inherits are easy to use
because they use folk psychology terms that programmers
and experts themselves use. There are questions we are
still exploring of whether these are the constructions that
people use internally to generate behavior, but the transla-
tion from BDI constructs to cognitive science constructs,
if they are different, might be supported later. Also, a
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comprehensive interface, broadly defined, was carefully
designed and created. Finally, it could be argued that Java
and the constructions are complex enough that only elite
programmers have used it.

The next step for CoJACK is to use the interface to cre-
ate larger, more complex models, and then, to validate
them. That will be real proof that the architecture is us-
able.

4-4 Open problems

There is a need to create larger models, that is, with
more knowledge in them, and this need will occur in ev-
ery architecture. This is particularly true when modeling
how emotions lead to strategy choices and changes in per-
formance. All of these architectures are headed towards
providing high-level languages. A recent review [Ritter
06] found that there were multiple groups working in this
area. This work will be important for some time to come.

5. Conclusions

This brief review has described several hybrid cognitive
architectures. Their extension with a sub-symbolic repre-
sentation provides them with more accurate timing predic-
tions (particularly including variability in performance),
errors (because the symbolic processes become less accu-
rate at applying the knowledge that they have), and the
ability to include moderators where basic processes be-
come less accurate.

This paper also introduced cognitive science engineer-
ing, the engineering of cognitive science systems. Cre-
ating the various aspects of the cognitive theories as soft-
ware takes time and effort. Creating this label may provide
a way to describe this type of work, help practitioners find
each other, and provide a way to label commonly occur-
ring problems and solutions.

It is worth pointing out that this work noted here does
not require much technology for progress. Much of the
work can be accomplished with a stopwatch, a way to
make audio and perhaps video recordings, and any com-
mon computer. However, this work will use technology if
it is available, for example, high-performance computing.
Thus, it can be taken up in many research settings.

This review has noted several interesting problems in
modeling emotions. These projects are examples of how
computational modeling of cognition can be used to unify
psychology and to make increasingly accurate predictions
of human behavior. Similar projects are available applying
cognitive models to other areas of human behavior. As
such, they offer an excellent way to build collaborations
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across areas of psychology and the social sciences, and
to support applications in virtual worlds and to support
interface design.

These research problems are not unique to the architec-
tures discussed—the same problems are general and will
arise in other architectures. So, they will keep us busy
for quite a while, and can be attacked by a range of re-
searchers. The research agenda is modest in that we have
only just begun to accomplish work in this area. It is not
modest at all in that the research agenda is quite large.
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