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   Abstract—Network science has often analyzed networks as if 
they were made of homogenous, non-time varying, and unintelli-
gent nodes.  Network science should be expanded to include 
heterogeneous, time varying, and more intelligent nodes.  This 
paper presents some results that can be used to make intelligent, 
heterogeneous nodes.  Because these nodes are sensitive to 
behavioral factors, their performance varies naturalistically, 
resulting in time variations and more realistic behavior.   In 
conjunction with this work, I explore how various factors might 
interact to create nodes that may either be willing or unwilling 
to participate within a given network.   
 
   Index Terms—Agent-based modeling, Cognitive Modeling, 
Cognitive architecture, High-level Behavior Representation, 
Network Science, and Participation 
 

I.   INTRODUCTION 
Network science has often analyzed networks as if they 

were exclusively composed of homogenous, non-time vary-
ing, and unintelligent nodes.  This approach has proven 
problematic when modeling human social networks and 
where intelligent agents are nodes.  In this paper, I offer an 
agent-based approach for modeling heterogeneous, sensitive, 
and intelligent nodes as a step towards developing better pre-
dictive models of social networks.  I present some results that 
illustrate this approach using two cognitive modeling 
languages and explore factors that influence behavior, 
specifically the willingness of nodes to participate within a 
network.   

Real networks consist of different members.  Fig. 1 shows, 
as just one example, that individuals performing a simple task 
such as subtraction vary both in how many calculations they 
can perform, and how accurately they perform them [1].  For 
more complex tasks, individuals will vary even further.   

Additionally, the nodes in real networks possess varying 
degrees of knowledge.  This knowledge not only drives 
behavior but also requires nodes to communicate to transfer 
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that knowledge.  In the past, it was difficult to model individ-
ual differences, much less the knowledge possessed by nodes 
(let alone any other systems).  

Cognitive models make this possible.  Drawing upon a 
unified theory of cognition, cognitive architectures now exist 
that enable researchers to model both differences and knowl-
edge [2].  A cognitive architecture is an attempt to provide, in 
the form of a computer program, a realization of what 
mechanisms are fixed across tasks, such as working memory, 
perception, motor processes, and central cognition [3].  
Researchers add knowledge about the task to the architecture 
to create cognitive models.  

Currently, however, cognitive models are often (and fairly) 
seen as too difficult to create [4-6].  Thus, high-level 
languages for representing intelligent heterogeneous nodes 
are necessary.   

This paper briefly introduces two languages (Herbal and 
CoJACK) for creating intelligent nodes quickly.  CoJack, in 
particular, is designed to moderate its behavior based upon 
time and other analyst defined parameters.  Both languages 
reflect a general architecture-based approach for developing 
agents in environments where network effects are important 
and visible, and where adversarial problem solving can be 
studied.   

 

 
Fig. 1.  How users vary when performing subtraction (light gray or green) 

and how a model (black) predicts that that individuals will vary in that they 
will have a more peaked distribution of performance than the whole subject 

distribution.  
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This approach offers a way to create nodes that more 
accurately reflect performance in the world by modeling 
factors such as stress, caffeine usage, and cognitive load.  It 
also suggests that models of participation based upon interac-
tional processes are needed for nodes to be more accurate.  In 
other words, nodes performing more realistic tasks may 
choose to participate in some activities on some days and 
refuse on others. 
 

II.  MODELING REAL WORLD BEHAVIOR USING HERBAL AND 
CoJACK 

 
A.  High-level Behavior Representation Language (Herbal) 

Herbal is a high-level behavior representation language 
[7].  The Herbal system has three objectives [8].  It is 
designed to make cognitive models easier to create, use, re-
use, extend, and comprehend.  It is designed to provide a 
user-centric cognitive modeling environment.  Finally, it is 
designed to implement and test a theory of how to create 
high-level agents that, in effect, explain themselves by 
making design decisions explicit.   

Herbal is based on HCI theory, Software Engineering, and 
empirical studies of modelers. Herbal implements the prob-
lem space computational model as an ontology which users 
can edit in Eclipse.  This ontology is compiled using an 
XSLT script into Soar and Jess models concurrently.  The 
code expansion from the XML representation used in Herbal 
to represent the PSCM is approximately 8.  The Eclipse 
plugin includes descriptions of the components, as well as 
design information that provides a set of explanations that 
users typically request [8].  

The Herbal system has been tested several times.  Studies 
show that it is about 77% faster to create a model using 
Herbal versus using plain Soar.  In addition, Herbal is easier 
to use for a wider range of users [9, 10].   

 

 
Fig. 2.  Herbal interface, noting several of the explanation types provided.  

 

Besides its accessibility and convenience, Herbal is a 
flexible language, capable of tackling a wide range of prob-
lems.  It has been used to create user assistants (directive and 
non- directive) for the Rampart [11] anti-terrorism force 
protection planning environment [12].  It has been used to 
rapidly model multiple strategies for solving simple problems 
in a multi-problem problem solving task.  The resulting 
models in this study matched the responses of most subjects 
where their problem solving strategies were known [13].  It 
has also been used to model adversarial reasoning, matching 
in this case, how likely users switch strategies when facing 
different pitchers in a simple baseball game [14].   We are 
currently using Herbal to develop agents in an IED produc-
tion network.  

Herbal offers a way to create Soar and Jess models more 
quickly and perhaps more accurately than in the past.  
Furthermore, Herbal agents offer a new ability.  Herbal 
agents can explain themselves to their users and developers.  
Herbal does this by more explicitly representing the high-
level structure in the model, and making it and the design 
rational more explicit.  Thus, Herbal offers a way of making 
intelligent nodes without the fussiness and opaqueness asso-
ciated with older cognitive modeling languages. 

 
B.  CoJack 

CoJACK, our second language, is a Cognitive BDI 
Architecture.  CoJACK offers another approach for creating 
intelligent nodes quickly [15-17].  It is based on the JACK 
agent architecture.  Agent architectures are designed by 
programmers to create intelligent systems quickly. 

CoJACK has been modified to include several aspects of 
Soar and ACT-R in JACK [18].  This makes the JACK archi-
tecture run more slowly, allowing agents to perform tasks at 
more realistic time intervals.  CoJack also enables agents to 
make errors in declarative and procedural memory, provides a 
more detailed trace of an agent’s cognitive performance, and 
includes a situation awareness component.  Fig. 3. shows a 
schematic of CoJACK, specifically the modules used to 
model individual differences within the architecture.  These 
modules include multiple parameters that users can modify 
statically or somewhat dynamically to represent effects such 
as caffeine or stress.   

 

 
Fig. 3.  CoJack schematic showing the underlying BDI agent architecture, 

JACK, and how the cognitive architecture can be modified with  
a set of parameter settings. 
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CoJACK has already been used to model networked 
agents.  Evertsz, Ritter, Russell, and Shepherdson (2007) 
modeled the effects that Rules of Engagement (ROEs) have 
on performance using CoJack [19].  Evertsz, Busetta, 
Pedrotti, Ritter, and Bittner (2008) used CoJack to explore 
how moderators lead to differences in performance [20].   

Both these studies implemented their agents within the 
dTank simulation tool, a simple system for rapid prototyping. 
We estimate that it is 100x faster to set up than OneSAF.  It is 
not designed to be completely accurate (it assumes dead-
reckoning and constant velocity on a flat surface) but to be 
somewhat accurate and to be easy to use, and to help with 
demonstrations of principle. dTank has been used for 
teaching undergraduates at several universities, to study the 
effects of communication in teams [21], and the effects of 
situational awareness (SA) [22].  An example dTank map is 
shown in Fig. 4.  
 

 
Fig. 4.  Example dTank map showing the map of the Battle of El-Alamein. 

 
In the 2008 study, the researchers pitted teams of CoJack 

and simple Java tanks against each other.  Each team 
consisted of four tanks fighting on a plain map.  Fig. 5. shows 
how they performed, as a measure of how many tanks out of 
the 4 on the other team were destroyed, where as Fig. 6. 
depicts individual differences in default action time and 
memory latency.   

 

 
Fig. 5.  Comparison of agents in dTank, including SEM bars  

based on 60 runs. 

 
Fig. 6.  How performance varies as procedural knowledge noise, default 

action time, and memory latency are varied from the default, from 0.5 to 20. 
 

III.  MODELING PARTICIPATION 
 

After reviewing David Grossman’s work [23], among 
others, it was apparent that more accurately modeling partici-
pation in synthetic environments was possible in dTank.  It is 
possible to explore one of Grossman’s chief claims, namely: 
soldiers do not always want to participate.   

After an initial implementation, it is possible to generalize 
this claim to some extent to include agents operating in insur-
gent networks.  An agent-based approach augmented by a 
model of participation would also compliment and enhance 
current models of asymmetrical warfare by making the 
agents’ decision making processes more explicit and more 
context dependent.  Additionally, such an approach would 
benefit the Army’s current simulation based training by 
making agent behavior and outcomes more realistic [24]. 

Grossman suggests that several factors influence one’s 
willingness to participate, such as distance to the enemy.  To 
test his approach, we implemented a theory of participation in 
a light weight simulation (dTank) that complements current 
agent-based approaches to modeling squad/team behavior [6, 
23, 25].  Fig. 7 shows a trace of the average participation 
score of agents in a simple battle.   

The participation score is based on distance from the 
team’s leader, enemy, and fellow team members; attractive-
ness (defined as the ratio between friendly and opposing 
forces); a randomly generated predisposition score; and a 
default score for training.  The simulation was of two infantry 
teams, each consisting of four combatants.  In future simula-
tions, we hope to better model the influence of training, as 
well as capture the impact of crew-served weapons and 
suppressive fire.    

The figure shows that agents that used this score to choose 
to participate would behave differently than agents that 
always participated (shot at an enemy).   We believe but have 
not yet conclusively proven that this would lead to more 
realistic agent behavior overall.  It would, at least, stop agents 
from shooting at very large groups when alone, and would 
make agents in large groups more aggressive.   
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Fig. 7.  Trace of predicted participation for a simple scenario in dTank.  

 
While not finished, we have gathered several insights.  The 

function is not as smooth as one might expect.  After partici-
pating, the predicted participation value may drop or rise.  It 
may rise if the opponent is killed (because that will move the 
ratio of forces in the combatant’s favor), and it could decrease 
if the agents suddenly become aware of their proximity to a 
new opponent (a sudden and unprepared for decrease in 
distance).  Finally, while this value was computed within the 
simulation, it is clear that more meaningful values must be 
based on what the agent knows, has learned, and can remem-
ber about the world.  Doing this will make participation 
values reflect not only the influence of the interactional fac-
tors that Grossman identifies but also cognitive effects more 
generally.  

IV.  CONCLUSION 
 

This paper has briefly reviewed an agent-based approach 
for capturing knowledge and individual differences in a net-
work simulation.  We discussed two languages (Herbal and 
CoJack) as two methods of realizing this approach, and 
discussed dTank as a light-weight environment well suited for 
implementing it.  Finally, we identified a potential extension 
and application of this work, the modeling of agent participa-
tion.  

This paper examined how to capture variability, whether in 
the form of stress, interactional factors, or knowledge reten-
tion rates, in intelligent models.  These variations across 
agents (nodes) can help create networks that more accurately 
reflect the differences that actually exist between members of 
real networks, as well as differences between different net-
works.  This work even provides a basis for modeling how a 
network collectively will respond to time and stressors.  

Our work suggests that military and paramilitary networks, 
in particular, are sensitive to variation in factors such as team 
and leader proximity, social and physical distance, training, 

and attractiveness.  These factors, among other cognitive 
effects, appear to influence daily performance, and must be 
captured in future simulations to advance the state of the art. 

This work provides several opportunities.  The Herbal 
language and the CoJACK architecture can be extended.  
While both have been used, their use in network simulations 
can be deepened to support network related cognition more 
directly and fully.   

The use of the participation scores is in development.  
This, too, could be extended to more accurately reflect 
performance across a wider range of scenarios, and then more 
directly incorporated into future agent models.  Finally, these 
effects could be combined with stress, knowledge, and cogni-
tion to more accurately model both how agent participation 
influences larger networks and how those networks in turn 
respond to such stressors.  Using these results might prove 
helpful in exploring network interaction and integrity.   
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