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Very short summary

Soar is a unified theory of cognition, a cognitive architecture, realized as a production

system, a type of expert system.  It is designed to model human behavior on multiple

levels.
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1. Unifying computational mechanisms to form a theory of

cognition

Soar is a unified theory of cognition (UTC) realized as a computer program.  Soar

can be considered in three complementary ways.  First, Soar can be seen as a theory

of cognition realized as a set of principles and constraints on cognitive processing  --

a cognitive architecture (Newell, 1990).  In this respect, Soar provides a conceptual

framework for creating models of how people perform tasks, typically assisted by

the corresponding computer program.  In this view Soar can be considered as an

integrated architecture for knowledge-based problem solving, learning, and interacting

with external environments.  It is thus similar to other unified theories in

psychology, such as ACT-R, EPIC, PSI, and CAPS.  [also cite other relevant

sections in encyclopedia].

Second, Soar can be seen as the computer program that realizes that theory of

cognition.  There are debates as to whether and how the theory is different from the

computer program, but it is fair to say that they are at least highly related.  It is

generally acknowledged that the program implements the theory and that there are

commitments in the program that must be made to create a running system that are

not in the theory -- places where the current theory does not say one thing or

another.  In this way it is similar to other psychology theories realized as computer

programs, such as ACT-R and individual connectionist models of specific tasks

realized as programs.  [also cite relevant sections in encyclopedia].

Third, Soar can also be seen as simply as a specialized AI programming language.  In

this view only performing the task in an intelligent way is important.  In this way, it
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is similar to expert system tools such as OPS5 and CLIPS.  [also cite relevant

sections in encyclopedia, e.g., expert systems and examplars like Mycin].

The deliberate combination of these approaches to understand intelligence by

confounding research on AI and psychology has been fruitful.  Researchers

interested in creating cognitive models have used Soar primarily to model human

behavior in detail, to suggest new uses of existing mechanisms to create behavior, and

to propose improvements to the Soar programming interface.  Researchers interested

in creating AI programs have contributed to the efficiency, functionality, and

generality of Soar as a programming language and provided information on the

functional requirements of building working systems.

2. Soar as a Unified Theory of Cognition

Soar was put forward by Newell (1990) as a candidate UTC.  Newell’s book

presents the full description of the virtues of unification.  Three of the most

important include (a) coherence in theorizing: ’It is one mind that minds it all’.  (b)

Bringing to bear multiple constraints from empirical data. (c) Reducing the

theoretical degrees of freedom.

Being a unified theory of cognition does not mean that there is only a single

mechanism for each task or behavior, although in most places in Soar there is only

one.  It does mean that the set of unifying principles and mechanisms are required to

work together as a single set to support all of cognition -- there is not a big switch or

a set of disjoint modules.  This point has often been misunderstood, but has received

some support and discussion, for example, in a target article in Brain and Behavioral

Sciences (Newell, 1992).  ACT-R is another unified theory in that it proposes a

larger set of mechanisms but is still a fixed set designed to account for all of human

behavior.
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Unified theories represent a grand vision.  None of them can yet provide even a

verbal explanation referencing architectural mechanisms to explain all of human

behavior let alone provide implemented models, and few have yet covered more than

a small set of regularities.  (The name may even be a misnomer, for they are

attempting to be unified theories of all human behavior, not just cognition.)  The

intention of these endeavors is to cover larger amounts of data than have been

attempted before, and to keep the subareas tied together through a common set of

mechanisms, which they do.  A common and unproductive criticism is that an

architecture is wrong because all areas are not yet covered.  All theories suffer from

this limitation.  Newell (1990, p. 38, citing McCulloch) noted ’Don’t bite my finger,

look where I’m pointing’.  While all areas are not yet covered (but should be), a much

more valid and valuable criticism would be that an important subarea cannot be

accounted for by the current architecture.

3. The details: Goal-directed search in hierarchical problem

spaces based on production rules

Soar, as a theory, as a cognitive modelling language, and as an AI programming

language incorporates problem spaces as a single framework for all tasks and

subtasks to be solved, production rules as the single representation of permanent

knowledge, objects with attributes and values as the single representation of

temporary knowledge, automatic subgoaling as the single mechanism for generating

goals, and chunking as the single learning mechanism.  Specifically, Soar provides a

general scheme for control -- deciding what to do next -- that is hypothesized to

apply to all cognition.  These mechanisms can be used in different ways, however.

For example, chunking can be used to learn declarative and procedural knowledge.

Soar can be viewed at three levels.  At the highest level, it approximates a

knowledge-level system (Newell, 1982).  This is an abstract level where a system is
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described in terms of its knowledge, and which is only approximated by any realized

system including Soar.  It has two lower levels, the problem space and symbol level.

They work together to support learning.

3.1 The problem space level

Figure 1 shows a graphic depiction of the two lower levels.  These two are similar to

Marr’s lower two level of analysis [see entry this encyclopedia].  The higher of

these levels is the problem space level where behavior is seen as occurring in a

problem space, made up of Goals, Problem Spaces (PS), States (S) and Operators (O

or Op).  Note that these terms here name specialized constructs in Soar, and are

related to, but not strictly equivalent to, their typical meanings in cognitive science.

A problem space is a set of representations for a problem, the structures for states,

and all the operators relevant to that representation.  The operators may be implicit

and shared with other spaces as well.  There can be several problem spaces active at

any one time.  Each state may lack some required knowledge and have a state created

to help it find the knowledge it needs, and similarly be providing knowledge itself.

In Figure 1 this state relationship is depicted through the states S1, S2, and S3.  The

main idea behind organizing knowledge into problem spaces is that it reduces the

search for information.  This approach has also been used as a successful software

design technique.

While problem solving there is a current state structure that specifies the situation of

the problem solver in each problem space.  For example, in a blocks world, the state

might consist of ’block A is on top of block B, and block B is on the table’.

Fluent, expert behavior consists of a repeated cycle on the problem space level in

which an operator is selected and is applied to the current state to produce a new

(i.e., modified) current state.  The process of choosing and applying a new operator
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(or creating a new state) is called a decision cycle.  So in our previous example, we

could have applied an operator to move block A to the table, in which case the

current state would include that block A and block B are both on the table.

3.2 The symbol level

The problem space level is realized by a lower level, a symbol level.  At this level of

analysis long-term recognition memory, realized as production rules, is compared to

the current set of contexts.  Rules (shown as P1 and P2 in Figure 1) will have their

conditions (e.g., C1, C2) matched against the current context.  Their actions (e.g.,

A1, A2) will act on the problem space level to generate operators, propose how to

choose between operators, implement operators, or augment the state with known

inferences.  Each cycle of rule application is called an elaboration cycle, and there

may be multiple elaboration cycles per decision cycle.  All rules that match are

allowed to apply.  If they make conflicting suggestions, the architecture sorts them

out using an impasse.

The rules are structured to match objects in the architecture.  The rules can test the

attributes and values of states, and test for operators by name and by their attributes

and values.  The rules’ outputs are constrained to be in terms of the problem space

structures.  That is, the rules can propose, suggest preferences for, and modify

states and operators.  These constraints on the representation of the rules are part of

what makes the system a cognitive architecture and not just a free-form

programming language.

Soar uses a modified RETE algorithm to apply the production rules.  This algorithm

takes time to match a rule set proportional to the number of memory elements that

change, not the number of rules.  This leads to very little slow down as larger rule

sets are used (but requires larger computer memories).  The largest systems created
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have had over a million rules with little or no slowdowns with additional rules

(Doorenbos, 1995; Doorenbos, Tambe, and Newell, 1992).

3.3 Learning and chunking -- What makes Soar special

But what happens if something prevents the process of operator application from

continuing smoothly?  For example, perhaps the current knowledge in the Soar

model cannot propose any operators to apply to that state.  Or the model knows of

several operators, but has no knowledge of how to choose between them.  In such

cases, the Soar model encounters an impasse.  There is a limited number of types of

impasses defined by the architecture, which primarily arise through a lack of

knowledge (inability to apply or select an operator) or through inconsistent

knowledge (conflict in the operator choice).

When Soar encounters an impasse in context level-1, it sets up a subcontext, a

subgoal, at level-2, which has associated with it a new state, which may end up with

its own problem space and operators.  Note that the operators at level-2 could well

depend upon the context at level-1.  The goal of the level-2 context is to find

knowledge sufficient to resolve the higher impasse, allowing processing to resume

there.  For example, we may not have been able to choose between two operators, so

the level-2 subgoal may simply try one operator to see if it solves the problem, and

if not, tries the other operator.

The processing at level-2 might itself encounter an impasse, set up a subgoal at level-

3, and so on.  The problem solver typically has a stack of such levels, each generated

by an impasse in the level above.  Each level can have its own state, problem space,

and operators.

In Figure 1, there were several operators proposed for the pond, including canoeing

and fishing, and no knowledge was available to choose between them, so a new
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context was created to allow the architecture to consider this problem explicitly in a

selection problem space, through what is called an operator tie impasse.  Knowledge

was available in that space, which suggested testing the canoeing operator and seeing

how it would play out.  The operator Eval-canoeing was attempted, but nothing

happened (an operator no-change), so another impasse was declared and an operator

could be proposed in an evaluation problem space.

[Insert figure 1 about here]

Whenever processing in the subgoal generates results that allow a higher level to

continue, such as if the operator Find-canoe allows Eval-canoe to continue, the

architecture notices this, and automatically generates a new rule (also called a chunk)

to summarize this problem solving.  This rule’s conditions are based on backtracking

through the problem solving to find out what aspects of the initial situation were

used, and the rule’s action(s) are the output of Find-canoe that removed the higher

level impasse.  In this case it would likely be a change to the Eval-canoe operator or

to its state.

The next time that such a condition occurs, the rule will match and update the

operator or state, and the impasse would be avoided.  This is the basic learning

mechanism in Soar.  This approach provides a strong theory of when and how

learning and transfer will occur.

Chunking has been used to create a wide range of higher level learning by varying the

type of impasse and the knowledge used to resolve it, including explanation-based

learning, declarative learning, instruction taking, and proceduralization.
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4. The history of Soar

The intellectual origins of Soar can be found in the seminal work of Newell and

Simon on human problem solving.  It builds upon the work on production system

architectures from the 1970s onwards -- Newell’s work on the problem space as a

fundamental category of cognition (Newell, 1980b).  Soar as a unified theory of

cognition also draws some of its theoretical roots from the Model Human Processor

envisioned by Card, Moran, and Newell (1983).

The first implementation of Soar was done by Laird modifying Rosenbloom’s XAPS

architecture.  Impasses were introduced in Soar 2, a reimplementation of Soar in

OPS5, which allowed rules to fire in parallel and included the problem space decision

mechanism.  The original motivation was two-fold: (a) Functionality: Create an

architecture that could support problem solving using many different weak methods

where the method arose based on the knowledge that was available.  (b) Structurally:

Create an architecture that integrated problem spaces and production systems.  Soar

initially was an acronym, State Operator And Result, but it is no longer recognized

as being an acronym because the theory is more complex.

A major watershed in the development of Soar was when Newell gave the William

James lectures at Harvard.  These lectures provide a platform to summarize major

work in psychology.  Newell used them to define what a unified theory in

psychology should include, provided Soar as a candidate unified theory, and

extended the Soar theory providing some detailed examples.  These lectures were

later turned into the ’UTC’ book (Newell, 1990).

In the last decade Soar’s development has been driven by applications.  Soar models

have been applied to real-time domains such as flying simulated aircraft (Jones,

Laird, Nielsen, Coulter, Kenny, and Koss, 1999).  Analyses of running models

showed that the state and problem space in the original Soar theory were not being
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used as initially imagined -- in most cases they did not vary and were simply

reiterations of the goal.

Later versions of Soar have dropped problem spaces and states as explicit reserved

structures but allowed the modeller/programmer to represent them on the goal.

These steps have led to faster systems that allow multiple models on a single

computer to interact in real time, performing complex tasks.  Because these context

slots were not being used by models, their removal did not lead to changes in

behavior.

Architectural work on Soar is currently focused on improving its interface, new

learning algorithms built upon the chunking mechanisms, tying Soar to external

worlds, including behavior moderators like stress, and the implications of interaction

for problem solving and learning.  Future work could include reviving the Neuro-Soar

project (Cho, Rosenbloom, and Dolan, 1991).  This project showed it was possible

to realize the symbol level of Soar with a connectionist network, although modeling

so many theoretical levels made it quite slow.  Further information on the history of

Soar is available in Laird and Rosenbloom (1992; 1995), and implicitly in

Rosenbloom, Laird, and Newell (1992).

5. Matching human performance in diverse domains

One of the strengths of Soar is that it predicts the action sequences and times to

perform tasks.  Newell (1990) explains this in detail.  Newell’s numbers have been

refined over the last ten years.  The Soar philosophy has been to stick with

constraints from problem to problem and not to have numerous parameters that can

be adjusted for a specific task or data set.

For cognitive modeling, Soar’s strengths are in modeling deliberate cognitive human

behavior at time scales greater than 50 ms.  Published models include human
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computer interaction tasks, typing, arithmetic, categorization, video game playing

(i.e., rapid interaction), natural language understanding, concept acquisition, learning

by instruction, verbal reasoning, driving, job shop scheduling, and teamwork (the

Soar FAQ provides citations to these and more).

Soar has also been used for modeling learning in many of these tasks.  Learning adds

significant complexity to the structuring of the model, however, and is not for the

casual user.  Many of these tasks involve interaction with external environments.

Soar does not yet have a standard model for low-level perception or motor control,

but two systems that could be integrated, EPIC-Soar (Chong and Laird, 1997) and

Sim-eyes and Sim-hands (Ritter et al., 2000), have been created.

One of the signature data regularities modeled in Soar is the learning curve.  The

learning curve predicts that the time to do a task decreases according to a power law

(or perhaps an exponential decay).  Soar’s prediction of the power law of practice

arises out of how models in Soar do the task and what they learn.

The first way, and probably the simplest way the power law of learning has been

modeled in Soar is for the Seibel task.  This simple task is to push the buttons on a

panel corresponding to lights that are on.  There are ten lights, leading to 1023

different patterns of lights where at least one light is on.  The model proposes two

operators to do a left and right subregion.  If these are not individual lights, then an

impasse occurs, and each subregion gets two operators.  This continues until a single

light is a subregion.  The model can then return a chunk that does both subregions,

initially, two lights.  Early trials generate two-light patterns that occur quite often

and are very useful.  Later trials can build larger patterns with more lights, that occur

less often but save more time.

The Seibel model was one of the first learning models in Soar and represents

probably the simplest approach to learning in Soar.  It does not represent the
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current, more complex and accurate learning methods.  Current models include

learning by instruction, learning by following others, modeling transfer between

tasks, and learning category knowledge.  Now we are at the point where, if we can

model performance on a task in Soar, we expect to be able to model learning  (cf.

position in cognitive science until just recently).  Nearly all of the cognitive models

in Soar are models that learn, and a majority of these have been compared with data.

6. Soar as an expert system development environment

Soar has also been used to create a variety of classification expert systems, that is,

when given a situation they classify it.  These including elevator planning,

production scheduling, diagnosis, robotic control, and computer configuration.  It has

been used in the Sisyphus knowledge elicitation comparisons.

Perhaps the largest success for Soar expert systems has been in a procedural domain,

flying simulated aircraft in a hostile synthetic military environment.  Jones et al.

(1999) report how Soar flew all of the US aircraft in an international 48 hour

simulation exercise.  The simulated pilots talked with each other and ground control,

and carried out over 700 sorties with up to 100 planes in the air at once.

For building AI and expert systems Soar’s strengths are in integrating knowledge,

planning, the ability to react quickly by modifying its internal state or changing its

goal stack, search, and learning within a very efficient architecture.  It also has the

ability, used in a model that plays Quake, to create a state mirroring its opponent’s

state, and consider what the opponent will do by considering what it would do itself

in the same situation.

7. Challenges for Soar and other UTCs

As one of the first unified theories of cognition realized as a program, Soar has faced

and still faces several challenges.  These challenges will also apply to other unified
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theories of cognition.  Work continues on applying Soar to a wider range of tasks

and including learning and interaction in these models.

Newell (1990, p. 508) wrote that science, more than politics, is the art of the

possible.  Usability has become increasingly recognized as important.  As Soar

moves out of the universities that created it, it must be usable by more casual users

with less formal training.

The process of developing Soar has required the use of a community of researchers.

Keeping a group of up to 100 researchers together intellectually has been difficult.

Explicit mechanisms are necessary, such as papers and programs repositories, yearly

meetings, mailing lists, Frequently Asked Questions (FAQs) lists, and web sites.

8. Summary

There are a number of relatively unique capabilities that arise out of the combination

of the structures and mechanisms in Soar.  (a) Problem solving and learning are

tightly intertwined: chunking depends on the problem solving, and most problem

solving would not work without chunking.  (b) Interruptibility is available as a core

aspect of behavior.  Rules match against the whole context stack.  Processing can

thus proceed in parallel on several levels.  If the situation changes, rules can fire

quickly suggesting new operators at the level most appropriate for dealing with the

change; (c) It is possible to create large rule systems because they can be organized

in problem spaces; and the architecture makes them fast to build and to run.  (d)

Planning can be integrated with reacting as well with dynamic decomposition of

tasks.

It takes effort to learn Soar.  More practice is needed than for other, simpler,

systems.  The projects that have used Soar successfully have often been able to
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solve problems that were previously unsolvable or unmodellable, but Soar has not

presented a magic bullet.

If you want to create a large cognitive model or an expert system, then Soar is quite

appropriate.  Also, Soar is appropriate for projects where learning, interaction, or

both are important.  If these capabilities are needed to model human data or to

perform a task as an expert system, then Soar may not only be just what is needed,

but may also be the only system available.

See also: Unified theories of cognition, ACT-R, power law of learning, cognitive

modeling; others based on sections in the encyclopedia.  computational learning

theory#computational models: why build them?#computer modeling of cognition:

levels of analysis#history of cognitive science and computational modelling#learning

rules and productions#production systems and rule-based inference#skill

acquisition: models#Unified theories of cognition
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Glossary

Unified theory of cognition#A theory of cognition that proposes a single set of

mechanisms to explain all of cognition and behavior.

cognitive architecture#A theory proposing a set of fixed mechanisms to account for

aspects of human cognition that constant across tasks, where what varies is the

knowledge needed to perform the task.

expert system#A computer program designed to recreate the performance of an expert

on a task.

cognitive model#A computer program designed to generate the same behavior as a

human processing information in the same way.

problem space#A set of operators and a state representation that organize knowledge.
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knowledge level#A level of analysis that looks at the amount of knowledge that

system knows, not how it processes or uses that knowledge.

problem space level#A level of analysis of behavior that looks at behavior in terms of

problem spaces and their parts.

symbol level#A level of analysis of behavior that looks at the mechanisms that give

rise to behavior on the problem space level.

impasse#An architectural feature when problem solving is stopped because no

knowledge can be applied (i.e., no rules match).

chunk#With respect to Soar, a rule learned when an impasse is resolved.
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Long-term Recognition Memory
P1: C1 & C2 & C3  --> A1, A2
P2: C3 & C4           --> A3
... --> ...
... --> ...
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Figure 1.  A graphic description of structures in Soar.


