A methodology and software environment
for testing process model’s sequential predictions
with protocols

Frank E. Ritter

20 December 1992
CMU-CS-93-101

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted to the Carnegie-Mellon University Department of Psychology in
partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Psychology in the Al and Psychology program

This research was partially sponsored by a training grant from the Air Force Office of Scientific
Research, Bolling AFB, DC; in part by the Avionics Laboratory, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH
45433-6543 under Contract F33615-90-C-1465, Arpa Order No. 7597, and in part by the School of
Computer Science, Carnegie-Mellon University. The research was also supported in part by Digital
Equipment Corporation through an equipment grant. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of U. S. Government or Digital Equipment Corporation.

Table of Contents

Table of Contents
I Introduction to TBPA
1. Testing process models through protocol analysis
1.1 The need for routinely testing process models’ sequential predictions
1.1.1 The potential benefits of routinely testing process models’ sequential
predictions
1.1.2 The difficulty of testing sequential predictions
1.2 The steps of testing process models’ sequential predictions with protocol
data
1.3 Developing a methodology for routinely testing process models’ sequential
predictions
1.3.1 A detailed specification of what is necessary for routine testing of process
models with protocol data
1.3.2 An environment to support the needs of routine testing of process models
1.3.2.1 A tool supporting the interpretation and alignment of the data with
respect to the model’s predictions
1.3.2.2 A measurement system for telling where a model needs improvement
1.3.2.3 An interface for tracing, understanding, and modifying models
1.3.3 Documentation of the utility of the environment and methodology
1.3.4 Testing and extending the sequentiality assumption of verbal protocol
generation
2. Testing process models with protocol data: Review of past work
2.1 The possible relationships between process models and protocols
2.2 Review of creating and testing models with protocol data
2.2.1 Exploratory analysis leading to process models
2.2.2 General testing of process models
2.2.3 Trace based protocol analysis
2.2.4 Summary of important data features
2.3 Tools related to process model testing
2.3.1 Tools for building models from protocols
2.3.1.1 Declarative knowledge coding tools
2.3.1.2 Exploratory protocol analysis tools
2.3.2 Model testing tools
2.3.2.1 Strategy classification tools based on process models
2.3.2.2 Model tracing modules within intelligent tutoring systems
2.3.2.3 Tools for aligning the sequential predictions with data
2.3.3 Tools for building and understanding models
2.3.3.1 Process model induction tools
2.3.3.2 Tools for understanding and building symbolic cognitive models
2.3.3.3 Knowledge acquisition tools
2.3.4 Summary of useful tool features
2.4 Measures of model to data comparison
2.4.1 Using criteria to develop a set of measurements
2.4.2 Description of measurement inputs
2.4.3 Non-numeric descriptive measures
2.4.4 Simple numeric measures
2.4.5 Measures of component utility
2.4.6 Inferential measures
2.4.7 A unified view: Criterion based model evaluation
2.4.8 Summary of measures
2.5 Previous models of process model testing
2.6 Summary of lessons for process model testing methodology and tools

Soar/MT - 20 December 1992

=) NMbh W

o \& - -N- IR RS | I | a

Table of Contents ii

Appendix to Chapter 2: Review of the Card model alignment algorithm 55

3. Requirements for testing process models using trace based protocol 57
analysis

3.1 Definition of trace based protocol analysis (TBPA) 57

3.1.1 The inputs to TBPA 57

3.1.1.1 A 0t® order functional model 57

3.1.1.2 Transcribed protocol data 58

3.1.2 The TBPA loop and its requirements 58

3.1.2.1 Step 1: Run the model to create predictions 59

3.1.2.2 Step 2: Use the predictions to interpret the data 62

3.1.2.3 Step 3: Analyze the results of the comparison 63

3.1.2.4 Step 4: Revise the model to reduce the discrepancies 64

3.2 Supporting TBPA with an integrated computer environment 66

3.2.1 Why an integrated environment is needed 66

3.2.2 The environment must automate what it can 67

3.2.3 The environment must support the user for the rest 67

3.3 The role of an intelligent architecture in the testing process 68

3.3.1 Soar: The architecture used in this environment 68

3.3.2 Making functional models examinable 70

3.3.3 Using the architecture to automate the analysis 72

3.4 Summary of requirements and description of the environment’s design 72

II Supporting the TBPA methodology: A description of the Soar/MT 76
environment

4. A spreadsheet for comparing the model’s predictions with the data 77
4.1 Displaying and editing the correspondences 78
4.2 Automatically aligning unambiguous segments 81
4.3 Interpreting ambiguous actions 83
4.4 Supporting the global requirements 84

4.4.1 Providing an integrated system 84
4.4.2 Automating what it can 84
4.4.3 Providing a uniform interface including a path to expertise 84
4.4.4 Providing general tools and a macro language 85
4.4.5 Displaying and manipulating large amounts of data 85
4.5 Summary 85

5. Visual, analytic measures of the predictions’ fit to the data 87
5.1 Creating the operator support display automatically 87
5.2 Understanding the relative processing rate 89

5.2.1 A display for comparing the relative processing rate 89

5.2.2 Using the relative processing display to test the sequentiality assumption of 94
verbal protocol production

5.3 Creating additional displays 95
5.3.1 S: An architecture for creating displays 95
5.3.2 S-mode: An integrated, structured editor for S 96

5.4 Supporting the global requirements 97
5.4.1 Providing an integrated system 97
5.4.2 Automating what it can 97
5.4.3 Providing a uniform interface including a path to expertise 97
5.4.4 Providing general tools and a macro language 97
5.4.5 Displaying and manipulating large amounts of data 98

5.5 Summary of measures and recommendations for use 98

6. The model manipulation tool -- the Developmental Soar Interface (DSI) 100
6.1 Providing the model’s predictions in forms useful for later comparisons and 101

Soar/MT - 20 December 1992

Table of Contents

analysis
6.1.1 Providing predictions for comparison with the data
6.1.2 Aggregating the model’s performance
6.2 Displaying the model so that it can be understood
6.2.1 Normative displays of the model
6.2.2 Descriptive displays of the model’s performance
6.2.3 The working memory walker
6.2.4 A pop-up menu and dialog boxes to drive the display
6.3 Creating and modifying the model
6.3.1 Soar-mode: An integrated, structured editor for Soar
6.3.2 Tagl-mode: An integrated, structured editor for TAQL
6.3.3 The Soar Command Interpreter

6.4 Supporting the requirements based on the whole process and its size

6.4.1 Providing consistent representations and functionality
6.4.2 Automating what it can: Keystroke savings
6.4.3 Providing a uniform interface including a path to expertise
6.4.4 Providing a set of general tools and a macro language
6.4.5 Displaying and manipulating large amounts of information
6.5 Lessons learned from the DSI
6.5.1 The relatively large size of the TAQL grammar
6.5.2 Behavior in Soar models is not just search in problem spaces
6.5.3 Soar models do not have explicit operators
6.6 Summary

III Performance demonstrations of Soar/MT and Conclusions

7. Performance demonstration I: Analyzing the Browser-Soar model faster

and more deeply
7.1 Description of Browser-Soar and its data
7.2 Producing richer analyses more quickly

7.2.1 The interpretation of data with respect to the model trace done faster and

tighter

7.2.2 Operator support displays created automatically -- as a set they highlight

periodicity in behavior

7.3 Where the model and subject process at different rates shown clearly
7.3.1 Processing rate display based on decision cycles shows that the quality of fit is

high

7.3.2 The processing rate display can be based on other measures of the model’s

effort
7.4 High level features of the Browser-Soar model made apparent
7.4.1 Browser-Soar as routine behavior is made directly visible
7.4.2 Noting Browser-Soar’s large goal depth
7.4.3 Modifying Browser-Soar
7.4.4 Testing the modified Browser-Soar

7.5 Testing and extending the sequentiality assumptions of protocol generation

theory
7.5.1 Are verbalizations generated sequentially?
7.5.2 Are mouse actions generated sequentially?

7.5.3 Does the sequentiality assumption hold across verbalizations and mouse

actions?
7.6 Conclusions about Browser-Soar and the TBPA methodology
7.6.1 Some conclusions about Browser-Soar
7.6.2 Some conclusions about the methodology
Appendixes to Chapter 7

Soar/MT - 20 December 1992

iii

102
103
104
106
109
111
112
114
114
115
115
116
116
117
117
118
119
119
119
119
122
123
125

126

126
133
133

134

137
137

140

141
141
142
142
143
144

148
148
148

150
150
151
152

Table of Contents iv

1 Alignment of the Write episode of Browser-Soar 152
2 Displays of each analytical measure for each episode of Browser-Soar 158
8. Performance demonstration II: Use of Soar/MT components by others 164
8.1 Usage of the Developmental Soar Interface to develop Soar models 164
8.2 Usage of S-mode to create functions in S 166
Appendix to Chapter 8: Survey distributed to Soar users 168
9. Contributions and steps toward the vision of routine automatic model 172
testing
9.1 A methodology for testing the sequential predictions of process models 173
9.2 Each step in the methodology was supported in a software environment 174
9.2.1 Interpreting and aligning the model’s predictions and the data 174
9.2.2 Analyzing the results of the testing process 175
9.2.3 Steps related to manipulating the model: Prediction generation and 175
modification
9.2.4 The synergy from integration 176
9.3 Validated and extended the sequentiality assumption of protocol generation 176
theory
9.4 Progress toward the vision of routine applied theoretically guided protocol 177
analysis
9.5 Concluding remarks 178
References 179
1. How to obtain the software described in this thesis 193

Soar/MT - 20 December 1992

