Contributions and steps toward the vision of routine automatic
model testing 172

Chapter 9

Contributions and steps toward the vision of routine automatic
model testing

Compared with Chapter 1, we are not in the same place in many ways, and we are considerably further
along toward the capacity to perform routine process model testing. Progress has been made on
defining a methodology for testing the sequential predictions of process models. A computer
environment has been implemented to support this methodology, and this environment has been used
to test an actual model with actual data. Portions of the environment are used by researchers around
the world. The environment was used to test and extend the sequentiality assumption of Ericsson and
Simon’s (1984) theory of verbal protocol production. The path to an intelligent automatic modeling
system based on agent tracking is clearer. Only model testing (open analysis) has been considered in
this work, but the methodology and environment should largely be applicable to using models to
classify sequential behavior (closed analysis) for such things as cognitive-based testing (Ohlsson,
1990).

The central problem: dealing with large amounts of information. Within the methodology of TBPA
the essential problem in testing process models still appears to be one of manipulating and
understanding the large amounts of information involved: the model, its predictions, and the data used
to test it. Scientists do not decry the difficulty of model creation and manipulation as often as they
have the amount of bookkeeping required for testing the sequential predictions. The size of the data
sets prove a real problem; the amount of qualitative information used in this task is relatively large
given the analyst’s limited processing capabilities.

Each of the steps in TBPA requires manipulating large amounts of information. This is a central
problem that runs through this work, and it is fought in every tool in the Soar/MT environment. Two
approaches have been developed for dealing with it. The first is to automate as many tasks as possible,
and to support the analyst for the remainder. The second is to design and use visual displays of
information.

Secret weapon #1: Automate and support. Automating aspects of each step reduces the work load
required of the analyst. Soar/MT assists the analyst by automatically aligning unambiguous parts of
protocols, creating model-based summary displays of the comparison, and providing many aids for
displaying and manipulating the model. Although the automatic processes fall short of the ideal speed,
and still must be speeded up through better algorithm and data structure design, they have proved
useful in their current state. The process is not so inherently large or computationally intensive that
so-called super-computing will be required.

The data set presented with Browser-Soar (Peck & John, 1992) is not the largest data set ever used to
test a model (although it is fairly large, see Table 2-2), but Soar/MT has substantially speeded up the
analysis of this data set. We can now imagine analyzing enough protocol data to achieve Ericsson and
Simon’s (1984) vision of verbal reports as data.

Supporting the analyst in performing the tasks that are not yet automated has required careful design of
the displays and manipulation tools for the large amount of information. The current maximum size of
the predictions and data, not including the model, is about 330 Kb. The analyst cannot directly
visualize and manipulate information sets the size of a small phone book (5,000 names at 60 bits per
name, or 300 Kb total). Special displays have been created to show the important trends in the data,
which is the next secret weapon.

Secret weapon #2: Scientific visualization of qualitative information. Appropriate visual displays can
support faster processing rates and provide new insights (Larkin & Simon, 1981). Visual displays of
qualitative information have become central to quantitative data analysis in many domains and they
have lead to the major methodology of scientific visualization.

Soar/MT - 20 December 1992






Contributions and steps toward the vision of routine automatic
model testing 173

Visual displays should now be considered essential for performing each step of protocol analysis and
process model testing. Visual displays help the analyst understand the model’s structure and
performance, relating them to each other in a single display, the SX graphic display. Tabular displays
of the model’s predictions, the data, and their correspondences show simple and directly where the
model's predictions do and do not match the data. Other displays aggregate the correspondences in
terms of the model components and in terms of relative processing rates. These displays summarize
where the model performs well and where it performs poorly, providing clues about where and how to
improve the model’s fit to the data.

9.1 A methodology for testing the sequential predictions of process models

Trace Based Protocol Analysis (TBPA), a methodology for testing the sequential predictions of
process models with protocol data has been defined through listing its inputs, processing steps, and
their requirements. TBPA tests a model by running it to generate a trace of how the model performs
the task. This trace provides a set of theoretical predictions of what will be found in a subject’s verbal
and non-verbal protocol, and it is used to interpret the data. TBPA is designed to be an integrated and
iterative process, so a summmary of where the predictions are unmatched in the protocol is then used to
modify the model, and the model is run again. The necessary inputs to TBPA, its steps, and the
processing requirements for each step to perform the testing routinely, were specified in enough detail
to create a computer environment to support this methodology.

Clarification of the testing process. What it means to test the model became clearer from specifying
each step in the process. What are tested in any given episode are the model’s predictions. The
comparison of the predictions with the data is not just one of alignment. The model’s predictions are
used to interpret the data. With unambiguous data, such as mouse clicks on menu items, the process
appears to be one of simple alignment and it can be treated that way. When the data are verbal
protocols, then the items in the trace may provide substantial guidance for interpreting the meaning and
function of the information described verbally.

Some theories require every prediction to be matched, but the theory of verbal protocol used to
interpret the utterances (Ericsson & Simon, 1984) states that not every possible prediction will be
found. The model’s predictions are predictions of what could be found in the subject’s verbal protocol.

The need for declarative versions of models. It is necessary for model based analysis to refer to
structures of the model and to note which parts of the model did and did not apply, or were and were
not supported. It is necessary to have declarative representations of process models representing
procedural knowledge. Running the model to create the structures upon demand is not enough. There
is the simple problem that the structures will be created and then disappear as the context changes.
There is also a more complicated problem of coverage, on any given run not all the possible structures
will be created. Examining the initial implementation of the model is not adequate either, the model
might learn from its environment, and computing all the model’s structures is equivalent to running it.

At a minimum, it is necessary to create a description of the model computed by observing the model’s
performance over time, although combinations of the other methods, such as derivation from the static
structure, are a useful adjunct. Although this method is the best way to build the model, even this
model is not guaranteed to be complete.

The DSI creates a declarative representation of Soar models. While the Soar model runs, the DSI
displays and remembers which and how often the problem spaces, states, and operators have been
applied. By watching the model as it runs the DSI builds up as complete a view of the model as is
possible. The resulting description can be used by other components in the environment. The
interpretation environment can use it to initially code the data. The saved model can be used to
summarize the correspondences created though interpreting and aligning the data with respect to the
predictions.

Soar/MT - 20 December 1992



Contributions and steps toward the vision of routine automatic
model testing 174

9.2 Each step in the methodology was supported in a software environment

An environment to support an analyst performing TBPA has been created based on its requirements.
The environment directly supports the main tasks of model tracing; interpreting and aligning the
model’s predictions with the data, both automatically and semi-automatically; aggregating the
comparison data in a variety of displays designed to show how to improve the model; understanding
and modifying the model based on how it does not fit.

The steps were specified and broken down to a level that they could be performed automatically, or
semi-automatically. Building, loading, and running models was supported in a semi-automatic way.
Many small tasks are supported through keystroke macros in the structured editors and smarter
interfaces. Finding the emergent properties of Soar models (listing the problem spaces and their
operators) is supported, as is counting how often they are instantiated. Unambiguous portions of the
subject data are now matched automatically. The same algorithm can be used to interpret and align the
data in an incomplete and heuristic fashion, requiring the analyst only to check and clean up the
approximate interpretation. Finally, the analytic displays can be automatically created from the
comparison data.

The environment also supports the requirements of integrating the steps, automating the tasks where
possible, and supporting the analyst for the rest. The environment and the methodology it supports
were tested by testing a process model, and in the process learning new things about the model and its
fit to the data. The tasks in TBPA that the environment support overlap with other tasks often
performed in cognitive model building and modification, data manipulation with a tabular display, and
exploratory data analysis.

Sub-portions of the environment supported other users doing the sub-tasks for different reasons, the
DSI for AI modeling, Dismal for spreadsheets, and S-mode for statistics and graphing. A survey of
users of the DSI found that over half the Soar community uses some portion of the DSI whenever they
use Soar. It would be safe to say that pieces of the environment supporting these tasks are in use by
over 500 researchers around the world.

The analyses are fast enough to be considered routine. A minute long episode of subject data
(approximately 20 verbal segments and 30 motor actions in the browsing task) can now be compared
with the model’s predictions in 2.5 hours given sufficient inputs, the process model and transcribed
data. This is almost within automating range; when it took 60 hours to perform (estimate derived from

Ohlsson, 1980), too many under specified processes were required, and automating this task was not
conceivable.

Example testing of Browser-Soar using TBPA. The methodology was demonstrated on the Browser-
Soar (Peck & John, 1992) model. A set of suggestions for improving Browser-Soar was generated,
and one of them was implemented. This lead to a slightly better fit, but more importantly, to a much
more parsimonious model. Browser-Soar and its data set did not push this methodology in all
directions, but this was good. It allowed making headway on some problems by avoiding others.

9.2.1 Interpreting and aligning the model’s predictions and the data

This thesis explored the automatic alignment of unambiguous data to model predictions. The Card
algorithm for doing this was slightly improved, and its behavior characterized more clearly.

A spreadsheet approach to the comparison process was demonstrated, and it appears to visually
support many of the necessary operations on the data that would otherwise require extensive
computation by hand. For example, areas where the predictions match the data in a denser manner is
clearly presented. The spreadsheet was also effective in supporting the analyst in easily adjusting the
alignment manually when necessary.

Soar/MT - 20 December 1992



Contributions and steps toward the vision of routine automatic
model testing 175

9.2.2 Analyzing the results of the testing process

A lack of clarity about what measures are necessary or desirable for measuring predictions fit to the
data may have contributed to the lack of progress. The review in Chapter 2 outlined the uses and
abuses of several of these measures, and championed Grant’s (1962) approach of analytic testing, of
finding out where the model can be improved.

A display for showing the support of operators in the model was automated, and an additional family
of displays were produced for presenting and analyzing the relative processing rate of the subject with
respect to the model. These two sets of displays can be created automatically from the comparison
data. They have shown the periodicity of human browsing behavior, the types of mismatches between
model and data, and ways to improve the fit of the model. There are many ways for data to not match
the model. Additional graphs will be necessary, so an environment is provided to assist in editing and
designing these graphs.

9.2.3 Steps related to manipulating the model: Prediction generation and modification

While the model’s components are used throughout the analyses, the process model itself is directly
involved in two steps, that of generating the sequential predictions, and the final step of revising the
model based on the testing process.

Generating the predictions. Generating the model’s predictions in a way that they can be used for
automatic alignment has required extending infrastructure from the model (in this case, a Soar model)
out further toward the data. This has resulted in a better trace — one that is less ambiguous and more
readable by humans. Based on the example analysis, we also found that a problem space model must
provide state traces in addition to operator traces.

The improved trace lead to an unexpected benefit. We found that deriving aggregate measures in the
trace was useful for comparing models and describing their behavior in general terms.

Manipulating and creating models. The Developmental Soar Interface demonstrates the feasibility and

utility of several design principles. Across the environment it was possible to meet the design shown
in Table 9-34.

Table 9-34: The ease of use and learnability design features met by each tool in the environment.

¢ Provide a path to expertise through:
* Menus to drive the interface.

* Keystroke accelerators available and automatically placed on menus for users to
learn.

* Help provided for each command on request.
* Hardcopy manuals also available on-line through the menu.
e Treat structures on the theoretical level as first class objects.

¢ Provide a general tool with macro facilities.

These features make the task of inserting the model’s knowledge into Soar easier. Keystroke level
models can be presented as evidence for this, as well as the fact that approximately two-thirds of the
Soar community now use some portion of the DSI in their daily work.

Node based graph display. Many structure display algorithms draw the complete structure, forcing the
user to scroll a window pane across it. Presenting Soar’s working memory contents is such a structure

Soar/MT - 20 December 1992



Contributions and steps toward the vision of routine automatic
model testing 176

display task. The set of tasks users need to perform when examining the structures within working
memory have been identified, and a display meeting these requirements has been designed and
implemented. The task analysis lead to a different design than a big scrollable window — a node-
based design that allows users to open up individually selected nodes in working memory, close their
parents, and so on. The users seem pleased, and it provides a much faster display.

General results about Soar. The visual and structural representations in the Developmental Soar
Interface highlighted several features of Soar models and the TAQL macro language. For TAQL, the
templates within the structured editor provided a measure of the cumbersome size of the TAQL syntax.

For several specific models we were able to display how their behavior is not best characterized as just
search in problem spaces. Behavior within many models now includes routine behavior, search
through problem spaces, migration of knowledge between problem spaces, and composition of
knowledge.

Within Soar models in general, displaying their behavior graphically pointed out how ephemeral
problem spaces and their structures are. In many ways the application and interactions of objects on
the problem space level should be considered as emergent behavior. The structure of the model is only
available from repeated viewing; the model itself has no representation of itself, and cannot conjure up
all the problem spaces and operators that are possible.

9.2.4 The synergy from integration

The environment receives much of its power from integration. The model, its behavior, the subject
data, and the comparison of the model and the data all exist in the same environment. This supports
several analyses that would be difficult without the integration and it allows them to be much more
fluid. Integration allows: (a) direct, preliminary coding of the protocols based on the model’s
components; (b) appropriate mixed (text and symbolic graphics) presentation of data in the DSI; (¢)
appropriate mixed (text and symbolic graphics) presentation of data in the analyses; and (d) the
portions of the trace that were well aligned and not well aligned could be directly compared with the
model’s structures.

9.3 Validated and extended the sequentiality assumption of protocol
generation theory

Using the TBPA methodology and the Soar/MT environment, the Browser-Soar model and data of
Peck & John (1992) were re-examined. Besides providing a test-bed for the methodology and
environment, this effort yielded the following new scientific result.

The verbal protocol production theory of Ericsson and Simon (1984) assumes that working memory
structures are reported in the order that they enter working memory. This assumption can be tested
with a model that predicts when objects enter working memory. The Soar/MT display of the relative
processing rates of the Browser-Soar model and the subject provided a direct visual test of this
assumption. The underlying data structures were then directly queried to confirm and count the
number of sequential and non-sequential pairs of events there were. In every episode of the Browser-
Soar, the sequentiality assumption was found to hold for the verbal protocol. An examination of the
non-verbal protocol segments found that they too were always performed in the same order as the
model, both for overt task actions, and for actions that were not directly related to the task, such as
moving the mouse pointer over words being read on the screen.

The two data streams appeared to be presented in a non-sequential order. Verbal utterances typically
lagged 10 to 30 simulation cycles (approximately 1 to 3 s) behind the overt actions; and rarely (3/300)
they lagged up to 400 simulation cycles (approximately 40 s).

The shorter lags were probably reports of working memory delayed by workload associated with the
task, and minor inconsistencies in the model. Examination of the correspondences showed that the

Soar/MT - 20 December 1992



Contributions and steps toward the vision of routine automatic
model testing 177

primary cause of the long lags was probably an artifact of the interpretation process. The verbal
utterances in the analysis were matched to operators rather than to the state information created by the
operators. This approximation simplified the analysis considerably, and it should remain available —
it is a valuable technique. But it must be seen as only an approximation; one that will sometimes lead
to inconsistencies in the comparison. Any operator that sets up long lasting state information can
cause this problem.

As a result of these analyses it is proposed that the sequentiality assumption holds for both verbal
utteranances and task actions. Including motor task actions as part of the protocol provides reference
points for fixing the correspondences between the predictions and subject’s actions, and allows the lag
of the verbal utterances to be measured.

9.4 Progress toward the vision of routine applied theoretically
guided protocol analysis

This work has made appreciable progress toward the vision of automatic modeling. All the parts of
Soar/MT are part of a grand vision of what an integrated modeling and data analysis system would
need to do, and could do. The major steps and inputs have been identified as the parts of TBPA, and a
prototype environment has been created that an automatic modeling system would need. The next
steps will be to create initial models, and to provide a more intelligent process for interpreting
ambiguous data with respect to the model’s predictions.

Because this environment is based on an architecture for general intelligence, it is conceptually
possible to add knowledge to the architecture of how to perform parts or all of the analysis. To do this
completely would require incorporating a complete model of the analyst. However, the architecture
used in this environment, Soar, also learns. So perhaps an easier, but less direct way to automate this
task might be through having a Soar-based agent learn to perform the analyses by watching a series of
analyses. As it watched a series of routine analyses over similar episodes be performed, it could
follow along, learning how to run the analyses, and then driving the analyses programs itself.

Not that we are there, but we can now see further down the path toward completely automatic
modeling. If NL-Soar (a Soar system for interpreting natural language) were to be incorporated, then
Soar/MT might take in instructions for different experiments, and use the models that NL-Soar creates
from reading the instructions as initial models to predict the behavior of subjects for each experiment
(Lewis, Newell & Polk, 1989; Newell, 1991). The alignment also could be automated. The non-
verbal overt actions can be compared directly; the verbal utterances would have data structures, the
predictions, laying around that are designed to be sufficient to parse them. NL-Soar (Lehman et al.,
1991) is available as a potential parser designed to use these predictions.

This style of protocol analysis requires further computer science and AI work: performing the
alignment of predictions to natural language, running the models more quickly, and gathering better
statistics. But it remains a task within psychology: the real use is for comparing protocols against
models’ predictions.

Remaining problems. Many problems remained in this methodology and environment. I would like to
note a few here to admit its deficiencies, to warn potential users of the current specificity of the tasks
Soar/MT can address, and to suggest directions for future work.

How to aggregate support from the predictions to the model structures is not always as straightforward
as it appeared in the sample analysis of Browser-Soar. There is a problem of specifying how the
predictions are used to interpret the data. There is also a problem in specifying how to aggregate
support for model components. Across episodes, the structures in the model that generated the
predictions remain and summarize the behavior over time. The current model implemented its
operators rather directly and in the same manner each time. This need not be the case. Consider an
Add operator such as Siegler uses in his work modeling children’s arithmetic knowledge (Siegler,

Soar/MT - 20 December 1992



Contributions and steps toward the vision of routine automatic
model testing 178

1988; Siegler & Shrager, 1984). Different operands result in different reaction times and error
patterns. Assigning support to an operator in this case must be differentiated by the operator’s
arguments, and a representation for this must be developed. So there is an additional step to TBPA,
not yet made explicit, of translating the support that individual predictions receive from the data back
to the structures in the model that generated them.

The analyst is currently left with an abduction task of improving the fit with indications of where the
model does not fit and with tools for understanding and modifying the model. There are some simple
rules that would apply in specific circumstances, and these were noted in the chapter describing the
graphical measures of model fit. The possibility of finding a more complete and algorithmic
description, like Heise (1987, 1989; Corsaro & Heise, 1990; Heise & Lewis, 1991) provides for his
models, should be explored.

Speed, always and everywhere — the analyst always desires a faster system that performs more
complicated analyses automatically. Partial views of the data and model are included in this. The
recent translation of Soar to the C language offers a speedup in the basic architecture. Taking
advantage of this may require translating the DSI into C.

Directions for future work. The way to improve this methodology is the same way to improve a
model, by testing and using it on additional models and data sets. Some preliminary discussions have
taken place with other researchers about using Soar/MT to test their process models, usually models
implemented in Soar.

The software environment could be automated further, and as noted in Chapter 3, the next direct step
toward automatic agent modeling would be to represent the knowledge to perform a single step as a
Soar model. This would provide further automation. One of the potential places for doing this would
be to have NL-Soar parse the verbal utterances, another would be to further automate the generation of
the analytical diagrams.

9.5 Concluding remarks

We build our theories, test them, then modify them, iterating through a loop. This loop was described
briefly and perhaps for the first time with respect to process models and protocol analysis by Feldman
(1962, p. 342). But not surprisingly, it is like all theory testing in science. Models are not primarily
tested to be rejected (as the popularization of Popper’s (1959) views goes), or tested simply with a
significance test to determine their value, but models are tested in order to improve them (Grant, 1962;
Newell, 1990, p. 14). By using protocols to test these models, we are not attempting to code a segment
so that it is coded, but we are using the data to build a model (e.g., a simulation process model). That
is, to test whether subjects perform the same actions in the same order as the model predicts.

Because they will allow us to see new things, new analyses and tools are also science (Hall, 1992;
Laird & Rosenbloom, 1992; Newell, 1991; Ohlsson, 1990; Simon, 1991). New scientific problems are
found this way (Toulmin, 1972). Indeed, much of what science consists of — what is passed on from
generation to generation of scientists — is just technique (Ohlsson, 1990; Toulmin, 1972).

Because of the difficulties associated with creating process models and of manipulating protocol data,
sometimes analysts have lost sight of this fundamental nature of protocol analysis. The technique of
testing process models’ predictions of sequential behavior has been nudged forward just a bit.

Soar/MT - 20 December 1992



