Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 126

Chapter 7

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply

Browser-Soar (Peck & John, 1992) is a model of a user using an on-line help system. Ten episodes
totalling approximately ten minutes of a single subject’s behavior have been used to test it. This
chapter examines Browser-Soar in detail, duplicating and extending the previous set of analyses. By
choosing to duplicate and extend an existing analysis, it includes a set of analyses known to be useful,
and provides a reference point for measuring its speed and discrimination.

Soar/MT allows the sequential predictions of Browser-Soar to be tested more quickly and at a finer
level than can be performed by hand using sheets of paper and a plain spreadsheet (Excel) to hold the
correspondences. Displays showing the fit of the data to the predictions can be easily created, and
provide additional insight for characterizing the model and how to improve its predictions.

Browser-Soar provides predictions of when structures enter working memory. This allows testing the
sequentiality assumption of verbal protocol theory, that mental structures are reported on in the order
that they appear in working memory. This assumption is found to hold for verbal utterances.
Sequentiality can also be tested for mouse actions and they too are performed in order. However the
verbal utterance and mouse action information streams do not initially appear to be sequential with
respect to each other. The most likely cause for this discrepancy is that an approximation in the
interpretation and alignment process was used. The data in the two information streams should be
considered sequential. When this is done, the overt actions provide fixed reference points for
computing the lag of the verbal utterances.

With a measure of the model’s performance and fit in hand, a small modification of Browser-Soar
suggested by the measures of fit is attempted, removing some problem spaces that might be redundant.
This change does not drastically improve the fit, and this is shown clearly in the analytic displays. The
resulting model, however, is more parsimonious with the effects of leaming.

In nearly every case the results reported here duplicate what Peck and John already know about
Browser-Soar, but they come at less expense and can be shown more compellingly with Soar/MT’s
displays.

7.1 Description of Browser-Soar and its data

While Browser-Soar and its data are explained fully elsewhere (Peck & John, 1992), an overview is
presented here with particular emphasis on the aspects of the data and model that receive attention in
this reanalysis. Because Peck and John have generously allowed me access to their original data, I am
able to include additional descriptions of the data here.

Description of the data. The Browser-Soar data used to test Browser-Soar was gathered from a single
user interacting with the cT programming environment on the Macintosh computer (Sherwood &
Sherwood, 1984; Sherwood & Sherwood, 1992) to perform her own task arising out of her work,
creating a graphing program for her own use. She was a non-professional but experienced computer
programmer who had never used cT before the experiment. The episodes of interest occurred when
she used the on-line help system to learn about cT. The data that Browser-Soar is tested with
represents only a portion of the 85 episodes using the help browser that occurred during the three and

one-half hours of behavior that was videotaped. A portion of the remaining data was used informally
to help create the model.

The first four episodes were chosen to cover a wide variety of browsing behavior, and the remaining
six were chosen randomly from all the browsing episodes that were videotaped. Each episode
represents a different environment and goals.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 127

As noted in Table 7-30, the ten episodes averaged 56 s in length and included a total of 58 verbal and
non-verbal segments. Each episode included a mean of 126 words. This was not reported in the
original analysis because computing the number of words ger episode is something that is not easy to
do, at least given a journeyman’s familiarity with Excel.® The subject’s behavior provided a high
density of data, on average, over an action or utterance every second, and a relatively high
verbalizations rate of 146 words per minute.

Three information streams from the subject were transcribed by hand into Excel spreadsheets, the
verbal utterances, the mouse movements, and the mouse clicks. Verbal utterances were broken into
separate segments when pauses of more than 100 ms occurred.

There are three special features of the Browser-Soar data worth noting. The first is that the types of
mental information reported is small. The user generally only mentions search criteria, evaluation
criteria, and the words that she is reading. Second, this is not a hard problem. In contrast to many
tasks that have been modeled, using the computer interface is routine behavior for the subject and their
internal representation of the task is not changing. Finally, there is what will turn out to be a useful
mix of overt, necessary task actions (mouse actions) with verbal statements. The overt, motor actions
will help disambiguate the verbal, and vice-versa.

Description of the Browser-Soar model. Figure 7-33 depicts the problem spaces in Browser-Soar and
their relation to each other as drawn with the SX graphic display. Figure 7-34 presents the problem
spaces as depicted by Peck and John (1992). All the problem spaces are related by operator no-change
impasses except the Selection problem space, which is used to resolve operator ties in the
Find-criterion space. Browser-Soar does not reuse any problem spaces, so the maximum goal depth
will be six, not counting the top-goal.

The Soar learning mechanism is not turned on in the Browser-Soar model. Peck and John (1992)
argued that there will be little learning observable in this set of tasks. The user is either performing as
an expert, that is, will not be learning how to move the mouse, or is learning items that will not transfer
between trials, such as how to print out a variable’s value.

Based on a sample run (the "Write" episode, the subject was seeking information about writing
information onto the cT screen) and assigning the productions to problem spaces graphically, the
problem space level statistics function in the SX graphic display reports that there are a total of 18
problem spaces and at least 31 operators. The statistics based on a complete run are shown in Table
7-29.

Browser-Soar is actually a short progression of models based on testing and modify it with the ten
episodes. During this progression Browser-Soar remained rather stable. Between the first and the
tenth episode, two operators were added to Browser-Soar, and four operators application conditions
were changed. Because there are so few adjustments, in this analysis Browser-Soar can be treated as a
single program.

Comparing the listing of problem spaces in Table 7-29 with Peck and John’s (1992) listing, it appears
that either they do not include all the Macintosh method problem spaces, or the organization of
Browser-Soar has changed since it was reported. Table 7-29 includes an additional operator more than
reported by Peck and John (1992) (probably several more, because four of the Mac-method-* problem
spaces also would have operators). This missing operator could be the Browsing-task operator itself,
or it could be an operator used in two spaces, which the SX graphic display would count twice. The
difference in object counts is compounded by Peck and John’s treatment of the model. They knew that
they did not have an adequate model of reading, and did not attempt to match the model’s behavior
below reading the whole screen.

8Macros can, however, be created to perform this task (Schroeder, 1992).

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 128

TOP-SPACE

lvﬁx\"? '3 BROWSING
oD NC

L4
FIND-APPROPRIATE-HRLP

A

EFINE-SEARCH-CRITERION

A

p NC
8

EVALUATE-HELP-TEXT
0P HC EARCH-FOR-HELP ALUATE-HEL
DEPINE-EVALUATION-CRITERION
L (ad
=20 T1@ MAC-MNETHODS-FOR-ACC NCpy
RLECTION

P NC EVALUATE-PROSE-IN-WINDOW

NC
MAC-METHOD-OF-CLICK-PREV-INDEX
NC p NC
P c

P N
ALUATE-ITEMS - in-niNDO
~METHODS-FOR-CHANGE -CURRE| NINDOW
MAC-METHOD~OP-CLICK-ON-ITEM
MAC-METHOD-OF~DOUBLE-CLICK-ON-ITEM
P \l
C-METHOD-OP-DRAG,Op NC p NC
C-METHOD-Or = sy OLL
] MAC-METHOD-OF-PAGE

Figure 7-33: The problem space organization of the 19 problem spaces in
Browser-Soar generated with the SX graphic display.

A

A

IND-CRITERION

A A

The static structure depicted in Figure 7-33 shows the normal dynamic selection and use of the
problem spaces. It was created by loading Browser-Soar and running an episode. The problem spaces
that were created were then rearranged from their location on a grid to the tree structure shown in the
figure, connected together by hand, and annotated. Their organization was written out so that this
structure could be used again.

Figure 7-35 shows the goal stack in Browser-Soar at decision cycle 17 of the Write episode. The
selection and use of problem spaces moves roughly from top to bottom and left to right. At the start of
the browsing episode, the Browsing space is selected and the Find-appropriate-help operator is
applied. This cannot be directly implemented, so the Find-appropriate-help problem space is selected.
Within this problem space, the operators Define-search-criterion, Define-evaluation-criterion are
called to initialize the search. Both of these operators cannot be directly applied, and similarly named
problem spaces are used to implement them.

The Search-for-help operator is applied once the search and evaluation criteria are defined. This
operator also cannot be directly implemented, and the Search-for-help problem space is selected.
Within this problem space, operators (and corresponding problem space to implement them) are
applied to search the help screen (Find-criterion), and to select an interesting item to read about if it is
found (Mac-methods-for-accessing-item). When searching for interesting items, the Find-criterion
problem space uses two operators, one to evaluate items in the window, and one to scroll the screen

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 129

Skill spaces used throughout
Browser-Soar model

Natural- < Macintosh
Language

=273 Problem spaces modeling knowledge of browsing in general
C==2] Problem spaces modeling knowledge of the cT help browser

Figure 7-34: The problem space organization of Browser-Soar taken from Peck and John (1992).

when the end of the screen of items is reached (Mac-methods-for-changing-window). Both operators
are implemented in their own space.

Once an item has been found and selected by clicking on it, the Evaluate-help-text operator is selected
in the Find-appropriate-help problem space. This operator is implemented in its own space using two
operators. The first operator selected will be to evaluate the help text by reading it. The other operator
is the same scroll used to scroll the window of items to select from.

When they did their analyses, Peck and John grouped two of the Soar operators in
Evaluate-items-in-window problem space that implement reading the computer screen into a higher
level operator, Evaluate-current-window, not shown in the automatically derived figures. In Peck and
John’s operator support displays, the low-level operators, such as Read-input, do not appear, for all the
coding was based on the higher level operator. This coding scheme was duplicated in the later
analyses that are reported here, except that the lower level operators and problem spaces do appear in
the automatic display and aggregate model statistics.

Figure 7-36 shows the number of productions used to implement each problem space. Approximately
430 productions are generated from the 193 TAQL constructs used to create these problem spaces.
The exact numbers varied slightly between episodes. When the productions were sorted into problem
spaces, a problem space was found for most productions. Productions and TAQL constructs that are
included as part of Soar’s default knowledge are not included in the counts or the display.

Productions without a problem space name directly in their condition were assigned to Every-space, 29
in all. Every-space is used to display productions that could fire in every space. Examining these with
the graphic display indicated that 15 of them are for proposing new problem spaces based solely on the
goal and its superstate, 12 are internal TAQL productions, one is used to note that all search-for-help
operators are equivalent, and one prints out the search criteria whenever it changes.

The number of productions associated with each problem space is an approximate measure of the
amount of knowledge in each problem space. One of the reasons this measure is approximate is
because TAQL uses a production for each of its state edits. Only the user’s productions are included in
this display, so the lack of productions associated with the Selection space means that it only uses the

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 130

Table 7-29:
Problem space level statistics for the "Write" episode. The top block presents the problem
spaces and operators represented in the graphic display. The selection counts for each goal,
problem space, state, and opeator are presented in their hierarchical calling order.

PECM Level statistics on November 27, 1992

18 problem spaces, with a total of 31 operators.
Ops Problem space

top~-space

browsing

find-appropriate-help
define-search-criterion
define-evaluation-criterion
search-for-help

find-oriterion
evaluate-items-in-window
mac-methods-for-change-current-window
mac-method-of -scroll
mac-methods-for-access-itea
mac-method-of ~click-on-item
evaluate-help-text
evaluate-prose-in-window
mac-method-of -drag

mac-method-of ~page
mac-method-of-click-prev-index
mac-method-of -double-click-on-item

COOOCWWNHMWHENWIRNDNDN A MM

The actual selection counts and calling orders:
1 6: g1 (g1)
«Pt top-space (top-space) (3 chunks)
. 8: 85 (no name)
. 01 browse (browse)
G: (operator no-change) (gil9)
+P: browsing (browsing) (16 chunks)
« B:i 839 (no name)
G: (state no-change) (g3145)
«G: (goal no-change) (g3152)
+« @i (goal no-change) (g3159)
G: (goal no-change) (g3166)
-@: (goal no-change) (g3173)
«+ + .+ Gt (goal no-change) (g3100)
« 01 find-appropriate-help (find-appropriate-help)
G: (operator mo-change) (g43)
«P: find-appropriate-help (find-appropriate-help) (55 chunks)
. 81 859 (no name)
. O: define-search-criterion (define-search-criterion)
G: (operator no-change) (gé5)
«P: define-search-criterion (define-search-criterion) (30 chunks)
. 8: 879 (no name)
+ O1 generate-search-criterion((write)) (generate-search-criterion)
» O: evaluate-search-criterion (evaluate-search-criterion)

[l T e o S T e N NN

(continued on next page)

default productions provided with Soar. It appears that it takes a minimum of three user productions to
create a usable problem space.

Browser-Soar interacts with a simulation of the cT help browser. The simulation provides Browser-
Soar with the contents of each window in the browser. The simulation does not take into account the
length of time a mouse is held down; on each mouse click it scrolls to the same place the subject
scrolled to in the same situation. If the model were to scroll in the wrong direction (which it no longer
does, and perhaps never did), it would be up to the analyst to catch this.

Description of original Browser-Soar analyses. Peck and John’s (1992) originally performed the
alignment by hand, aggregating the correspondences into summary measures for each episode and for
each operator. They used limited graphic displays of the alignment, relying mostly on a tabular
representation. Their analysis also included a picture of the Browser-Soar problem spaces drawn by
hand in MacDraw (their Figure 3).

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 131

Table 7-29: Problem space level statistics for the "Write" episode (concl.).

« 0: define-evaluation-criterion (define-evaluation-criterion)
G: (operator no-change) (g103)
+P: define-evaluation-criterion (define-evaluation-criterion) (17 chunks)
. 8: 8117 (no name)
. O: generate-evaluation-criterion((value-of-something)) (generate-evaluation-criterion)
+ + 01 evaluate-evaluation-criterion (evaluate-evaluation-criterion)
. O: search-for-help (search-for-help)
G: (op tor no-change) (g1025)
.P: search-for-help (search-for-help) (17 chunks)
. 831 81043 (no name)
« 03 find-criterion(keyword) (find-criterion)
G: (operator no-change) (gl049)
«P: find-criterion (find-criterion) (27 chunks)
- 8t 81066 (no name)
+ 0: focus-on-current-window (focus-on-current-window)
.« Ot evaluate-current-window (evaluate-current-window)
G: (operator nmo-change) (g2415)
«P: evaluate-items-in-window (evaluate-items-in-window) (85 chunks)
. 8: 82432 (no name)
e e .« o« O: read-input (read-input)
s+« + + o Ot attempt-match(i2504) (attempt-match)
. 01 change-current-window (change-current-window)
G: (op tor no-change) (g2339)

N
\I\IGMOOUWNNNN““NNNHPFH.‘H
. . o s e 2 s & o a2 e a o o s e s e

11 «P:1 mac-methods~-for-change-current-window (mac-methods-for-change-current -window) (34 chunks)
11 . . 8: 83042 (no name)

11 » 01 scroll(help-text) (scroll)

11 G: (operator mo-change) (g3054)

11 <P: mac-method-of-scroll (mac-method-of-scroll) (21 chunks)

11 . . 8: 83070 (no name)

4 . . 01 move-mouse(help-text down) (move-mouse)

11 . O: press-button (press-button)

11 . 03 release-button (release-button)

. 01 access-item(keyword) (access-item)
G: (operator no-change) (g2527)
-P: mac-methods-for-access-item (mac-methods-for-access-item) (¢ chunks)
. 8: 82542 (no name)
+ 0: click-on-item(12537) (click-on-item)
. G: (operator no-ch) (g2548)
+ + « + + P: mac-method-of-click-on-item (mac-method-of-click-on-item) (5 chunks)
. « 8: 82562 (no name)
« 0: move-mouse(keyword unspecified) (move-mouse)
. . « 0t click-button (click-button)
+ 01 evaluate-help-text (evaluate-help-text)
G (op t no-change) (g2576¢)
«P: evaluate-help-text (evaluate-help-text) (26 chunks)
. 8: 82592 (no name)
. 0: focus-on-help-text (focus-on-help-text)
+ +» 01 evaluate-current-window (evaluate-current-window)
G: (operator no-change) (g3104)
.P:1 evaluate-prose-in-window (evaluate-prose-in-window) (69 chunks)
« B: #3122 (no name)
« 0: read-input (read-input)
. 0: comprehend (comprehend)
« 0: compare-to-criteria (compare-to-criteria)
- 0: change-current-window (change-current-window)
@1 (operator no-change) (g3027)

SR ARAAARAAANRNRURNRVDBODDRONODONDN
« ® s s s e s s s s e a . e s e L

11 P mac-methods-for-change-current-window (mac-methods-for-chang current-window) (34 chunks)
11 81 83042 (no name)

11 O1 scroll(help-text) (scroll)

11.. @1 (op no-change) (g3054)

11P: mac-method-of-scroll (mac-method-of-scroll) (21 chunks)

11 8: 83070 (no name)

4.0t move-mouse(help-text down) {move-mouse)

11 01 press-button {(press-button)

11 PN . 01 release-button (release-button)

1. . . O: change-search-criterion (change-~search-criterion)

The model trace and protocol were first printed out and interpreted and aligned by hand, with the
correspondences and annotations entered into an Excel spreadsheet. Over the course of testing
Browser-Soar with the ten episodes, few changes to the model were required. The first episode was
used to create the initial model, and during testing of the next three episodes four additional operators
were added and two were modified. During the analyses of the last six, the only changes required of
the model were modifying two of the operators.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 132

- TOP-SPACE
browse

EVERY-SPACE . BROWSING
find-appropriate-help
g19]
op nc

-« PIND-APPROPRIATE-HELP
'search-for-help

DEFINE-SEARCH-CRITERION

EVALUATE-HELP-TEXT
s SEARCH-PFOR-HELP

DEFPINE-EVALUATION-CRITERLON find-criterion(keyword)

MAC-NETHODS-POR-ACCESS-ITREM

BVALUATE-PROSE-IN-WINDOW
— FIND-CRITERION
hange-current -window
] MAC-METHOD-OP-CLICK-PREV-INDEX

EVALUATE-IVEMS- IN-WINDOW
s MAC-METHODS - POR - CHANGE -CURRENT-WINDOW
l<i!'o11 (xeyword) MAC-METHOD-OP-CLICK-ON-ITEN

g423
op o MAC-METHOD-OP-DOUBLE-CLICK-ON- ITEX
~DRAG <
= MAC-METHOD-OP - SCROLL

Bove-mouse(keyword down) _ MAC-METHOD-OF-PAGE

MAC-METHOD-O,
< e
51

Figure 7-35: Browser-Soar during a run.

All the interpretation was done with respect to operator applications. This included overt, task actions
necessary to perform the task, and internal mental actions necessary for deciding what to do and for
understanding. The verbal utterances were interpreted with respect to internal operators or their
results. Mouse clicks were always interpreted with respect to overt task actions. Mouse movements
could correspond to either. When the model predicted that they were required to perform the task and
they were used in a task specific way, they were interpreted as overt task actions. When the model did
not predict their use, and the mouse pointer could be interpreted as over some part of the display
currently being used or read, they were treated like eye-movements and interpreted with respect to an
internal operator.

Peck and John’s major analyses were to aggregate how many of the subject’s behaviors were predicted
by the model’s actions, aggregating separate measures for directly observable operations, such as
mouse clicks, and mental operators that are only observable through verbal protocols or movements of
the mouse over words on the screen. Over 90% of the subject’s actions and utterances were accounted
for by the model’s predictions, and the fit between data and predictions was judged to be very tight.
These computations were computed by hand for each episode.

The percentage of operator predictions supported by the data were also computed. At 15% this
initially appears to be a low rate. One must keep in mind that the trace of the Browser-Soar model
provides more predictions than can be tested, even given the rich verbal and non-verbal data streams
used to test it. Across all episodes they found indirect evidence for 57% of the operators that could not
be directly observed.

An operator support display drawn by hand in MacDraw (their Figure 4, our figure 2-7) illustrated the

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 133

TOP-SPACR

<

<= =

FIND-APPROPRIATE -EELP

INB-8RARCH-CRITRRION

SEma POR-HELE RVALUATR-HELP-TRXT

< DS m-lvuuu:ol-curnx

T,

o MAC-METHODS-POR-A! Q-ITRM
< BVALUATE-PROSE-IN-WINDOW
THD-CRITRRION % <
>

MAC-METHOD-OP-CLICK-ON-ITEM
ALUATE -ITEMNS - N -WINDO ‘

C-METHODE -POR -CHANGR\ CURRENT -WINDOW

[== = =]
< MAC-NETHOD-OP-DOUBLE- CLICK-ON- ITEX
-METHOD-OF-DRAG =
C-NETHOD-OF “SEOLL
MAC-METHOD-OF -PAGE
e

[mm)

Figure 7-36: Browser-Soar problem space organization with productions shown by
their problem space.

tightness of fit, but this was not done for all episodes because it took approximately a day to produce
(Peck, 1992).

7.2 Producing richer analyses more quickly

This demonstration of the Soar/MT environment must show that it is possible to duplicate the previous
tests of Browser-Soar, and that new, more useful analyses can be performed as fast or faster than have

been done in the past. Supporting the analyses is the most important though, speed can come from
faster machines or revisions of the software.

This demonstration will not include all the possible analyses that could be or were done by hand for
Browser-Soar or for other process models, but it should be clear from this example that the analyses
that were not performed are no harder, and are quite likely more easily performed with Soar/MT than
by hand.

The emphasis of the analyses will be Grant's (1962) emphasis, finding out where to improve the
Browser-Soar, not that all the improvements will be incorporated in this demonstration.

7.2.1 The interpretation of data with respect to the model trace done faster and tighter

Using the Soar/MT environment allowed the interpretation and alignment step to be performed more
quickly. The first four episodes were used to debug the Soar/MT system. For later episodes, either
analyst (FER or VAP) could go once through the TBPA loop, deriving the predictions, aligning them,
and creating the global displays in 20 minutes to 2.5 hours, depending on the pre-existing degree of

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 134

alignment, length of the episode, and desired level of detail. The amount of time to analyze another
episode is now much less than the initial ten hours needed to understand one.

In each episode the unambiguous data was aligned first. This took on average a minute to set up.
During the 30 minutes it would take to rearrange the cells the analyst did not need to be present. The
verbal protocols would then be partially interpreted, their locality would be bounded by the matched
non-verbal actions near them. A complete listing of the analyses’ results are shown in Table 7-30, and
the visual, analytic measures created for each display are included as the Appendix to this chapter.

After two episodes of observing me work and working jointly, Virginia Peck (VAP), analyzed three
episodes on her own except for creating the displays of model fit. She took approximately 100 minutes
to perform these analyses from producing the trace to interpreting the data. Her time was a limited
resource, and the software I was most interested in testing was the alignment capabilities, so I created
the displays based on her alignments. She also attempted to analyze the last data set, Zcommand, but
the unusual size (it is the largest episode by approximately a factor of two) disclosed some bugs in the
Spa-mode.

The Card2 algorithm worked admirably. Across the ten episodes it correctly aligned all of the 296
predicted unambiguous mouse actions (mouse clicks and mouse movements). The ability of the
algorithm to adjust the edit-list to align a predicted action with the last action in a series of similar
subject actions substantially contributed to this performance. Without that modification the results
would have been less, around 90%. For each episode the edit list used to align the two meta-columns
was generated in under a minute. The alignment of the data with the predictions then took
approximately 30 minutes for the Write episode. This alignment process does not require intervention
of the analyst. If the two information streams were partially aligned this took less time. A single trial
with a single subject on the Write episode, an average sized episode, took approximately 45 minutes to
align by hand with Excel. Longer episodes take more than proportionally longer in Excel (Peck,
1992), up to several hours.

After the Card2 auto-alignment algorithm was run, the analyst (FER, VAP, or both) would go through
the Spa-mode spreadsheet interpreting the remaining data with respect to the model’s predictions.
Because both data streams were completely included in Spa-mode, this resulted in a tighter match
between the two information streams. Each correspondence included a line of Soar trace (including
the decision cycle, the context element selected, and any traced substructures), instead of a coded
operator name. These alignments included in the display Soar actions not matched. Figure 7-37
provides a partial example, and the appendix to this chapter includes a complete example for the Write
episode.

These alignments generated in Spa-mode provide a more telling comparison of the predictions with the
data. Including both data streams in a tabular display shows gaps where the model performed more or
less actions (and thus took more or less time) than the subject. When we viewed the first episode
aligned this way, we were somewhat surprised by the amount of Soar trace not aligned with subject
data. It is also easy to find mismatched actions in this display. False alarms, actions by the model not
matched by the subject’s actions, which are not representable when the model’s predictions are not
directly included, can also be represented in Spa-mode. It remains slightly difficult to compare and
aggregate the comparisons between episodes with this spreadsheet representation because of the large
number of sheets of paper and dispersion of information across them.

7.2.2 Operator support displays created automatically -- as a set they highlight
periodicity in behavior

An operator support display for each episode was generated automatically from the alignment data in
the spreadsheets. These displays are shown in the appendix to this chapter as Figure 46, along with the
displays for a modified model and episode called Better-array, which is explained later in this chapter.
These displays originally took approximately a day to produce, so only four were created in the initial
analysis (Peck, 1992).

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply 135
T MOUSE ACTIONMS WIMDON ACTIONS VERBAL 8T § MIYPE MDC DC Scar Trace Comment s
180 91 O1 attempt-match ()
10 92 O: read-input (scalex)
182 3 O: attempt-match ()
18 %4 . . . C1 access-item (bierarchical)
184 95 . . . =01 g676 (oparator no-change)
108 96 thods-for item ()
186 97 8: 8691 ()
187 8 01 click-on-item (1686)
108 99= »>@1 g697 (operator no-change)
189 00 t 41 hod-of -click. item ()
190 01 8: 8711 ()
191 58 N(-y) 1 line to ‘scalex’ in "scalex Setting the Sc m 19 mr 102 102, O1 move-mouse (hierarchical unspecified)
192 598 C(“"scalex Setting the Scales*™) b 30 mba 103 103 . , , . ., 01 click-button ()
193 mouse pointer to watch
194 104 . . O: evmluate-belp-text ()
195 59 ‘scalex’ help text appears 105 . . »»G: g725 (operator no-change)
196 59 Let‘s look at ‘scale-x’. v 31 v 9
197 “soalex Setting the Scales” to bold
199 mouse watch to pointer
199 106 . . . P: evaluate-belp-text ()
200 107 . . . 8¢ 8741 ((d scalex) (; k. d-label-azes))
201 60 108 . . . 01 focus-cn-help-text ()
.
Figure 7-37:

Portion of the alignment of the protocol and model trace from the Axis episode. On each row: T is time of
subject’s actions in seconds. MOUSE ACTIONS is any mouse action. WINDOW ACTIONS are any
responses from the actual cT system that the subject saw. ST is the segment type. VERBAL is any verbal
utterances by the subject. # is the segment number. MTYPE is type of match, MDC is the decision cycle
matched, DC is corresponding Soar decision cycle. Soar Trace holds the model’s predictions.

Each display provides a visual depiction of the operator applications for the episode modeled, along
with the support each operator received, if any, from corresponding verbal utterances, move actions
nhecessary to perform the task, and mouse movements over screen items that were read. The
indentation of the operator names corresponds to their problem space level, and roughly to which
problem space they belong to.

For each episode. Individually the operator support displays indicate for each episode the level of
support for the model’s operators in that episode. Figure 7-38 shows the operator support display for
the Write episode. It shows that most of the subject’s actions could be interpreted by the model’s
actions. The verbal utterances mostly match the Evaluate-current-window operator, as do the mouse
movements that are not required to perform the task.

We also can start to see that the subject’s performance shows a definite periodicity. The cycle of
evaluating a window, changing it through scrolling by moving the mouse and then clicking on the
scroll bar occurs 13 times, with some variations. On the third cycle of examining help topics, the
subject sees something that changes her search criteria. On the ninth cycle, she finds a topic that
matches the criteria she was looking for, and selects an item for examination. On the remaining cycles
she examines the help window. So the main loop is based on menu interaction, and there may be a
secondary loop of revision of the search criteria. Just this episode is not enough to tell.

Ohlsson (1980) noted that he could find regularities in protocols that covered a shorter period of time
than Newell and Simon (1972) used (200 s versus 1,000 s). This display shows that regularities can
occur over shorter time periods. The point is getting enough data, not time. In this domain, in addition
to verbal utterances, the mouse movements and mouse button presses help provide the required data
density.

A few of the subject’s actions could not be interpreted, and they are shown on the bottom as
corresponding to the NOT MATCHED operator. Just examining the surface of this display does
provide any insight into why they were unmatched, although two of the mouse movements appear to
come after a click button operator. When the points and their context are examined by clicking on
them (or by finding them in the original spreadsheet, but this is more work), the first is found to be a
random mouse movement to a position that is not over something being read or in anticipation of a
later click or move, the second the subject laughing, the third another random mouse movement, and

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 136

OPERATOR .
Browse B Model action
Find-appropriate-help O Conesponding overt mouse behavior
Define-ssarch-crit X Correapondng impiicl mouse behavior
Generate-ssarch-crit V' Coreaponding verbel utterance
Evailuate-search-crit
Define-evaluation-crit
Generate-evaluation-crit
Evaluate-evaluation-crit
Change-ssarch-crit
Modify-search-crit
SearchHor-help
Find-crit
Focus-on-curment-win
Evaluate-help-text
Focus-on-help-text
Evaluste-current-win
Change-current-win

Click-button
Double-click-button

S N I T T T N W T T U T T A T I I O I O |

NOT MATCHED

| SSSS F WU S M W T T U S S S S U SR SR SN SIS SR SN SH SN SHN T N SV S

Operator appllf:atlons .
Browser-Soar episode 1 :write

Fri Dec 421:40:30 EST 1062

Figure 7-38: Operator support display for the Write episode.

finally, a movement that is interpreted as a mistake. The last mouse uncoded action is a mouse
movement that falls short of a scroll bar, and is soon followed by a mouse movement to the position
the model predicts.

Across episodes. As a group the ten operator support displays (included as Figure 46 in the appendix
to this chapter) tell us even more, and the reader is encouraged to examine them before proceeding.
The largest effect visible when viewing these en masse is the periodicity. The longest episode, Zwrite,
looks like the display of an oscilloscope indeed.

When viewed together we also can start to characterize what operators are supported and with what
types of evidence. We can see that the subject did not talk about every operation. (Many operators
have no mark (V) indicating a corresponding verbal utterance.) This is predicted by Ericsson and
Simon’s (1984) theory of verbal protocol production, so this is as expected, and the rate, in quantitative
terms is probably acceptable as well. However, it is slightly surprising to see what this looks like, see
just how little is said and supported in each single episode. Based on these displays, Browser-Soar
appears too small grained indeed, much more detail is provided than in Newell & Simon’s models
where nearly every production firing could be matched against a verbal segment,

Across the ten episodes, the subject talked about operators that she should have talked about, and did
not describe operators that she should not have. Higher level operators, such as setting up the search
criteria and evaluating the window contents were often talked about. These operators manipulate
verbal representations, so they should appear in the verbal protocol stream. The motor operators for
actually scrolling the windows were never mentioned in the verbal protocol, and this is appropriate

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 137

given our measurement theory (Ericsson & Simon, 1984), for they would include non-verbalizable
operators or information.

What is not verbalized? The Change-current-window and its implementation operators Scroll, Page,
Drag, and Click-on-item, were never supported by verbal utterances, nor could they be directly
supported by mouse movements or mouse button actions for they are themselves implemented with
lower level primitives such as Click-button and Move-mouse. In the future, they must be considered
for removal, unless other evidence, perhaps timing evidence, can be provided for them.

The mouse clicks also appear not to be in working memory. In no episode did the subject report that
they were using the mouse. Based on the Soar architecture we would believe that they are motor
operations, so we would not expect them to be directly represented. The external motor actions need
to be set up, however, and the operator that does this remains unsupported.

New guestions these displays raise. In each episode at least one of the operators that set up the search
in the cT help browser, the first seven operators below the Browse operator, is mentioned at the
beginning of an episode. Never are they all mentioned, and eight different combinations appear across
the ten episodes. It may be possible to combine or rearrange these operators to provide more
consistent support for a single operator or set of operators.

During both the Zwrite and Vars episodes, there is a long period of behavior where nothing is said.
Similar periods exist in other episodes but there are verbal utterances and mouse movements to support
the intermediate operators of reading the topic lists. Characterizing these periods in some way remains
an open problem.

Several problems remain with this display. The indentation of the operator names hints at their
hierarchical relationship to each other. The implementation of their relationship remains poorly
specified and awkward. Operators can come from different problem spaces, and still appear at the
same level in the hierarchy.

7.3 Where the model and subject process at different rates shown clearly

Relative processing rate displays were created automatically from the alignment data for each episode.
A complete set of these displays is included in the Appendix to this chapter as Figure 47.

7.3.1 Processing rate display based on decision cycles shows that the quality of fit is high

The relative processing rate display can provide hints about how to improve the model within a single

episode. Across episodes it can provide additional hints, and measures of the architecture can start to
be taken.

For each episode. As an example, consider Figure 7-39, which shows the relative processing rate
display (developed in Chapter 5) for the Write episode of Browser-Soar. Fach correspondence
between the model’s predictions and the subject’s actions is noted with a connected symbol. Each
correspondence shows the relative times when the model and the subject performed the same action.
The time that the subject performed the matched actions is represented in seconds on the x axis, and

the time that the prediction occurred in the model’s behavior is represented in model cycles on the y
axis.

The number and relative linearity of the line of correspondences indicates that the predictions
generated by Browser-Soar are relatively well matched by the subject’s behavior. The number of
unmatched subject segments, placed on the bottom of the display at the time they occurred is a
relatively low amount, and there are no overt task actions performed by the model that were not
observed in the subject. If there were any, these would go near the y-axis.

The squiggles and sections with extremely high or low slopes show where the fit could be better.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 138

When the line becomes more vertical, it means that the subject has started to perform faster than the
model, and when the line becomes more horizontal, it means that the model is performing faster than
the subject. In Figure 7-39 both occur.

A regression line is provided to help judge the rate of correspondences, and it is used to provide some
additional information as well. Its slope is the relative processing rate for that episode in decision
cycles per second. The correlation it computes may be a prediction of how well the model can predict
the time course of processing in an episode, but it is likely to show a falsely high correlation. Note that
the relationship of decision cycles to seconds (the slope) is well within the range (indicated by the
dashed lines at 3 DC/s and 30 DC/s) predicted by the Soar theory.

In each episode the correlation between the subject actions and predictions (measured in decision
cycles and operator applications) is fairly high. The values of the slope and 2 value for each episode
are shown in Table 7-30. These values for r# values are comparable to well developed single response
models (e.g., 12 = 0.79: Thibadeau, et al., 1982; 12 = 0.94: Just & Carpenter, 1985). Browser-Soar is
near to making engineering level predictions of human behavior, as has been called for by John (1988).

Dashed lines are range of th ically exp d correspond. rates
§ i /
O Overt mouse behwviar /
X Implict mouse behavior
V Verbal utterance l
S _| B unmaiched beravix
- {
/
8 /
4 {
& . i
c n i 1
% 4 i /—/_/
g I/ - -
£ / . //
-) - -
£ 8 j -
°© / /"/’
! —
§ // - '/"/
. { =
§ i ’//"
/ L Model to data slope 5.322 dc/s
{ RMSD = 36.061 dc
7 - MAD = 29.455 dc
|y 2= 0.905
o - . @ N & 62 matched behaviors
- I | AL
T I I T T I
0 20 40 60 80 100

Subject time in seconds
Browser-Soar episode 1 :write Mon Deo 7022947 EST 1902

Figure 7-39: Relative processing rates display in decision cycles for the Write episode.

The first parts of display that give specific recommendations on ways to improve the model are the
relatively vertical and horizontal sections of the line of correspondences. These sections represent
periods where the model and the subject are processing information at relatively disproportionate rates.
When the points on the horizontal section between 20 and 40 s are examined by clicking on them, one
finds that they all matched to Evaluate-current-window operator. This operator is taking much longer
for the subject to perform than it does for the model (this operator essentially reads at 100 words/s).

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 139

The model could be improved by incorporating a more complete operator to evaluate the current
window, that is, read the help text.

The second part of the display to examine is the near vertical line at around 40 seconds. In this section
the model is reading every word on a menu while the subject must be skimming the menu’s contents,
as suggested by the relative rates of processing. Here the model must be smarter about what it is
doing, and do less processing than it currently does.

Table 7-30: Summary of raw measures for each episode and regression results.

Episode Time Words Raw Slope Slope
Segments (s) N Rate DCs dec/s DC-x2 op/s op-r2 DCs/op
w/min

1 write 62 66 113 102 399 5.32 0.90 1.18 0.93 4.50
2 unit 40 39 91 140 331 11.29 0.68 2.40 0.80 4.70
3 array 96 68 151 133 517 9.48 0.69 2.26 0.78 4.19
3’ array’ 96 68 151 133 346 6.37 0.59 1.49 0.75 4.27
4 precision 21 25 58 139 146 6.82 0.19 1.95 0.34 3.49
5 marker 32 47 162 206 116 2.58 0.43 0.91 0.33 2.83
6 axis 46 83 245 177 173 1.53 0.80 0.45 0.70 3.40
7 labelx 23 34 52 S1 77 2.04 0.51 0.61 0.53 3.34
8 circle 52 65 136 125 395 7.32 0.79 1.74 0.78 4.20
9 vars 69 27 44 97 805 35.21 0.90 6.21 0.90 5.66
10 zcommand 140 108 213 118 1529 16.62 0.58 2.76 0.66 6.02

Sum: 581 562 1265
Mean: 58 56 126 146 449 6.92 0.65 .05 0.67 4.23
8D: 37 27 68 36 439 4.65 0.22 1.66 0.21 1.32
Normalized SD: 0.63 0.47 0.54 0.27 0.98 0.67 0.35 0.81 0.31 0.35

»

From left to right the columns display for each episode the total number of subject data segments, the time of the
subject data being modeled, the number of words uttered during the segment and the rate in words per minute, the slope
of the least squares regression line on the correspondences in decision cycles per second, the r for that line, the slope
of the regression line in operators per second, the 12 for that line, and the relative rates in the episode of decision cycles
per operator. Aggregate measures do not include the Array’ episode. Each episode is equally weighted.

Across episodes. Several known problems of Browser-Soar are shown in these displays. Seeing the
problems occur in ten episodes is more believable than seeing it in just one episode. Over individual
episodes the regression line matched to the correspondences provides a good prediction of the subject’s
search time. The results of the regression for each episode are shown in Table 7-30.

The rate of the architecture, in decision cycles per second, is slightly slower in Browser-Soar than the
Soar theory predicts. Across all the episodes, as shown in Table 7-30, the average rate of decision
cycles is six per second. The Soar theory predicts ten per second, plus or minus half an order of
magnitude. As this is an average, the actual rate on a single episode can be much lower. This implies
that the model is still slightly lean, performing less of the task than the subject is, or that the theoretical
analysis of decision cycle rate is slightly high. The first explanation, that the model performing more
efficiently or doing less of the task is consistent with but not as far off as other model results (John &
Vera, 1992; Newell, 1972; Ritter, 1988; Ritter, 1989; Rosenbloom & Newell, 1982). The large
variance in the rate may be cause for some concern, or may just be artifact of the known problems in
the Evaluate-current-window operator, the Read-menu operator, and their ratio in each episode.

In none of the episodes do we find that the line of correspondences is concave upwards, indicating that
the subject’s relative rate of performance is increasing relative to the model. The displays tend to
display the opposite effect, that the line of correspondences is concave downwards. In general, this
would suggest that the model was learning and using what it learned (intra-trial transfer) more than the
subject was. I believe, however, that in these analyses, this is caused by the order of menu reading and

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 140

text reading in this task and the relative performance of the model with respect to the subject. In each
episode the basic task units are first to read a menu and then to read some help text, and this sequence
may be repeated. The model is slower than the subject at reading menus (causing the line to become
more vertical) and faster at reading help texts (causing the line to become more horizontal). This is
probably what is causing the curve of correspondences to be concave downwards. Any within episode
learning effects will not be visible until these larger problems are ameliorated.

There is often an initial horizontal segment in the first 5 to 10 seconds where the subject is taking
much longer than the model. The Write episode, for example, displays this effect. We can find out
from the operator support display that this region is exclusively where the selection and evaluation
criteria are decided upon. It appears that these operators are too simple, at least in terms of the amount
of processing that they perform. This mismatch is smaller than the text and menu reading rates, but
probably does reflect a basic problem.

We also can note some problems interpreting this display. The verbal utterances have durations, and
currently only their starting point is taken into account. All operators are treated as taking the same
amount of time. If substructure will be added at a later point to an operator, the analyst can not
currently represent that it should take longer than a simple operator.

7.3.2 The processing rate display can be based on other measures of the model’s effort

The relative processing rate display can represent the model’s rate of processing in measures other than
the decision cycle rate. In this subsection a version using operator applications is used to test Browser-
Soar. This display is the same display as the display based on decision cycles, except the model’s
performance is viewed with a different metric.

Figure 7-40 provides an example display of the relative processing rates of the model (in operator
applications) and the subject (in seconds). A complete set, one per episode, is included in the appendix
to this chapter. A regression line is still fit to the line of correspondences to indicate outliers, but an
expected range is not provided because the Soar theory does not provide one — it will depend on how
often problem spaces are entered and exited, which is based on the task at hand and the knowledge that
can be brought to bear.

The results of computing the relative performance of the model in terms of operator applications are
reported in Table 7-30. The operator application rate (in seconds) has a wider relative range and varies
more than the decision cycle rate does; the normalized standard deviation of the operator rate is higher.
The number of operator applications the model took to perform the task correlated as highly with the
subject’s performance as did decision cycles. The correlation is slightly higher, but it is not significant
(t(9) = 1.05), nor does it appear to a large enough difference to be important. This is not too surprising,
operator applications are caused by and correlate highly with decision cycles.

The known problems with the two Read-text and Read-menu operators can again be seen in these
displays. Relative learning rates within an episode can also be examined, but again, any relationships
found probably are due to the big bad Read operator.

This display does not appear to tell us anything new about Browser-Soar, but other models may see an
effect here if operators are less directly used, or more behavior occurs in each problem space.
Similarly, it does not imply that other measures of the model’s effort, such as rule applications,
elaboration cycles, or problem space selections, will not prove useful in some way. It is, however, the
most likely measure after decision cycles to prove useful.

We can note a constant relationship within Browser-Soar with this display that appears constant across
episodes: the number of decision cycles per operator as computed from the two regression slopes. It is
not clear yet what this really means, it may mean nothing, but if a relationship appears constant, there
may be reason for it.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 141

150
I

O Overt mouse behavior
X implioh mouse hehavior
V' Vebal uberance

@ Unmatched behavior

Model time in sequential operator applications

Model to data siope 1.182 ops/s
RMSD = 6.175 ops
MAD = 4.958 ops

2= 0037
N= 62 matched behaviors
B

T T T T T
0 20 40 60 80

Subject time in seconds
Browser-Soar episode 1 :write Menbeo 722825 E5T 002

Figure 7-40: Operator applications vs. subject time display for the Write episode.

7.4 High level features of the Browser-Soar model made apparent

Examining Browser-Soar in the SX graphic display suggests further modifications based on how it
models routine behavior. Performing a pseudo-model revision to incorporate the effects of learning
suggests that Browser-Soar might be improved by using less problem spaces.

7.4.1 Browser-Soar as routine behavior is made directly visible

Search in a problem space means lacking knowledge about how to proceed, and search between
alternatives where the solution path is unknown. The solution path in Browser-Soar is not unknown,
or at least not substantially unknown. Most operators are the only one proposed, and most problem
space impasses are resolved directly. We can see this in the graphic display while Browser-Soar runs.
Figure 7-35, which shows Browser-Soar during a run, shows that there are not many operators applied
in any one problem space. This is also visible in the problem space level statistics, few states are
visited, and not many operators are applied.

Search, in Browser-Soar, when it occurs, also occurs as much as search through problem spaces for
knowledge external to the initiating space. The name of "solution space” (Ohlsson, 1990) particularly
here, makes more sense, with Browser-Soar more like a task (Ohlsson, 1990) than a problem. This
result is noted by Peck and John (1992), but appears more clearly in these pictures and aggregate
statistics than in the textual trace alone.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 142

7.4.2 Noting Browser-Soar’s large goal depth

The goal stack depth is relatively deep in Browser-Soar. As noted in Figures 7-33, 7-35, and 7-36, the
goal stack often grows to be between four and six levels down from the top problem space. This
appears to be a large number for what is described as routine behavior (but we have no real metric). In
addition to the question of the depth of the goal stack, all the lower problem spaces for manipulating
the mouse and screen represent expert level behavior in the subject, that is, behavior that does not
significantly improve with practice. In Browser-Soar impasses still occur, and if learning was turned
on, knowledge would migrate between them. In expert behavior, the lowest level of operators and
problem spaces in Browser-Soar should not be visible because they have been learned by the problem
spaces that use them.

7.4.3 Modifying Browser-Soar

With the learning constraint in mind, a modified version of Browser-Soar was created and tested using
the pseudo-model revision method mentioned in Chapter 3. The modified version does not contain the
lower level problem spaces that would have been learned. The actual output operators were migrated
to higher level problem spaces, and intermediate operators and problem spaces that did not receive
support from the data, such as the operators in the Access-item problem space. A complete listing of
the modifications is provided in Table 7-31.

Table 7-31: Problem spaces and operators removed from the Browser-Soar model
simulating the effects of learning.

¢ Browsing PS and OP,

¢ Find-criterion OP and PS,

¢ Mac-methods-for-change-current-window PS,
¢ Change-current-window OP,

¢ Drag OP,

e Scroll OP,

¢ Mac-method-of-scroll PS,

* Mac-method-of-drag PS,

¢ Mac-method-of-page PS,

e Access-item OP,

* Mac-methods-for-access-item PS,

¢ Click-on-item OP,

* Mac-method-of-click-on-item PS,

¢ Evaluate-help-text OP,

¢ Evaluate-help-text PS,

* Double-click-on-item OP,

* Mac-method-of-double-click-on-item PS, and
o All associated goals and states.

Figure 7-31 shows the problem space organization of this modified version of Browser-Soar. The
organization can be compared with the original version shown in Figure 7-33. The new version has
fewer problem spaces, and is flatter. The maximum goal stack depth of this version is four, with final

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 143

depths of two and three. It has 8 problem spaces compared with 17 problem spaces in the original
Browser-Soar, 22 operators compared with 31 in the original, and a corresponding decrease in the
number of intermediate states and impasses.

TOP-8PACE

] EVERY-SPACR
nc

FIND-APPROPRIATE-HELP

EFINE-SEARCH-CRITERION

: ' /Op NC
TDEPI“- EVALUATION-CRITERION

=0, Tle

ISBLBCTIOH
/OP RC EVALUATE-PROSE-IN-WINDOW

Irnm-cxum:ou
/Op NC
rﬂLUATB- ITEMS-IN-WIKDOW

Figure 7-41: The nine problem spaces in the modified Browser-Soar
(see Figure 7-33 for the original structure).

The revised model was not implemented on the production level, but was created using a more
lightweight technique of trace revision. All the operator and problem spaces that were removed, were
simply deleted from the trace for the Array episode, the second largest episode, and the trace was
renumbered. This took approximately 20 minutes. These changes also could have been implemented
by modifying the model, and rerunning it. Theoretically there would be no differences, in reality,
actually editing the code instead of the trace probably represents an order of magnitude more work.

As the actual model was not modified, this represents an instance of pseudo-model based revision,
where an aspect of the analysis changed in terms of the model, without the expense of completely
implementing the changes on the production level.

7.4.4 Testing the modified Browser-Soar

After the revised trace was made, the two information streams were realigned from scratch. Because
no model actions with support were removed, the realignment was essentially the same. It would have
been faster to use the old alignment and modify it slightly, removing the empty cells, for no
correspondences were cut, but I wanted to see what the total process could look like, and see how long
a more modified model would take to test. The total time to perform the model manipulation,
realignment, and generate the analyses was 2.5 hours.

Figure 7-42 shows the operator support displays for the two versions of Browser-Soar. The displays
are essentially the same, the shape is the same, and the subject actions and the operators that they
correspond to are all represented. The only difference is that the modified version is more compact; it

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 144

has less operator applications.

Figures 7-43 and 7-44 show the model fit displays for the modified version of Browser-Soar next to
the original versions. These two displays show that the revised model has a denser level of support,
the lines connecting the corresponding model and subject actions are closer together, and the RMSD
and mean average deviation are lower. The rate of decision cycles to seconds ratio is also closer to the
predicted mean, and visually the fit appears to be better. The modified version has slightly worse 12,
more so when the model time unit is decision cycles (.69 versus .59) than for operator applications (.78
versus .75). The correspondence rates in decision cycles and operator applications per second for the
modified model also go down, as less is done.

It is hard to tell if these differences are important. It would perhaps become easier to tell after further
revisions of the Evaluate-current-window operator, and with a more proper regression line (Kadane et
al., 1981; Larkin et al., 1986). These results do point out that it is hard to distinguish learning on the
single problem space level at this time grain. In order to clearly distinguish these two problem space
representations we would have to look at more episodes, more subjects, or further constraints from
data. Given the lack of real difference, parsimony would argue for using the simpler, modified version
of Browser-Soar.

This analysis also calls into question the strict interpretation used. The subject must decide to move
the mouse. The operators that were removed originally represented this choice. With a different
interpretation function, these operators would have been supported and would not have been
removable. As noted in the list of corrections available when the model’s predictions mismatch the
data (Table 2-6), the interpretation function can also change. This case raises the question of how to
interpret data given Soar’s hierarchical operators and state representation. This may remain a problem
for some time.

7.5 Testing and extending the sequentiality assumptions of protocol
generation theory

As noted in their initial description, the relative processing rate displays allow the sequentiality
assumption of Ericsson and Simon’s (1984) theory of verbal protocol production to be tested. That is,
if verbalizations are produced in the order that the corresponding data structures appear in working
memory. There is another aspect to this assumption, that inputs to operators will be reported before
their outputs, but is a more specific form that will not be directly tested unless we run into problems.
A model of what appears in working memory is currently necessary to test this assumption. There are
no other ways to tell when information enters working memory, and thus that it is reported in order.
Having a model of the contents of working memory also allows use to judge if the verbalizations are
retrospective or prospective.

Browser-Soar provides predictions of the contents of working memory while using a specific on-line
help system. By examining the relationship of these predictions with the subject’s verbal utterances in
the ten Browser-Soar episodes, the sequentiality assumption can be tested.

The predictions of the external task actions (mouse movements and button presses) can also be
compared with the contents of working memory, but because getting the order of the external actions
the same for both model and subject is essential for performing the task, in a well developed model
like Browser-Soar there is not likely to be many mismatches. What will be interesting though, is using
the external actions to compute how later (or early) the verbal utterances are.

Finding that this holds will not be an iron-clad proof that this assumption holds. If it is an assumption,
then it cannot be proven, only shown that we meet it. If it is treated more as part of the theory of
verbal protocol production, then there may be similar models of browsing behavior where the
information is reported in a different order, and that the current set of verbal protocols would not match
sequentially.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply

OPERATOR
Browse

Find-appropriate-help
Dedine-search-crit

Generate-search-crit

Evaluate-search-crit
Deline-evalualion-crit

B Model action

O o o wme bebens
X' Cosvespanding impiicil mouse behavior
V' Conesponding verhel ulletance

Generate-evaluation-crit
Evaluate-evahuation-cit |

Change-search-crit

Modity-search-crit

Search-for-heip
Find-crit

Focus-on-current-win

Evaluate-help-mxt
Focus-on-heip-text

Evaluate-curment-win
Change-curment-win

Access-tem
Scroll
Page
Drag
Click-on-tem

Double-click-on-item

Move-mouss
Press-bution
Release-button
Note-saw-crit
Click-bution

Double-click-button

NOT MATCHED

OPERATOR

Browse

Find-approptiate-help
Define-ssarch-crit

Gensnate-search-crit

Evaluate-search-ciit
Define-evaluntion-ciit

Generate-svaksation-cit]
Evaluate-evaluation-crit

Change-ssarch-crit

Modity-search-crit

Search-for-heip
Find-crit

Focus-on-current- win

Evaluate-heip-text

Evaluate-cument-win
Change-current-win

Scroll

Page

Dmag
Ciick-on-tem

Double-click-on-item

i

S T T S N N U T N N T T N I I |

Note-saw-crit
Click-button

Double-click-button

NOT MATCHED

Figure 7-42: Operator support displays for the Array episode.
The original Browser-Soar predictions are on the top, and the modified version

I I OO O N N I I N Y Y O O |

|

T U S T T T T T S TR T W T 1

Operator applications

Browser-Soar episode 3 :array

’

W Model acton

O Conesponding oven mouse behavior
X Corresponding implict mouss bahewior
V' Conesponding verbal ullerance

FriDec 4 21:48:47 EST 1962

*v

YY

[S T S B T 1

1

114

T S W W S WS VRN S W W . |

L1 1

Browser-Soar episode 11 :better-array

Operator applications

on the bottom.

Soar/MT - 20 December 1992

FriDec 421:40:42 EST 1902

145

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply

200
1

Model time in Decision Cycles
300
1

//
§ .
/ Model to data slope 9.482 dc/s
RMSD = 81.258 dc
MAD = 69.692 dc
2= 0007
° 44 8 &8 a8 N = 96 matched behaviors
T T T T T T
0 20 40 60 80 100
Subject time in seconds
Browser-Soar episode 3 :arrav M Dec 7022954 EST 1642
Dashed lines are range of th ically exp d pond rates

/

Model time in Decision Cycles

§ .
Model to data slope 6.372 dc/s
AMSD = 60.254 dc
MAD = 50.665 dc
2= 0504
o - B BE N = 96 matched behaviors
T T T T T T
0 20 40 60 80 100

Subject time in seconds
Browser-Soar episode 11 :better-array Man Daa 7023041 E5T 1902

Figure 7-43: DC time based plots for the Array episode. The original Browser-Soar
predictions are on the top, and the modified version on the bottom.

Soar/MT - 20 December 1992

146

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply) 147
§ a
[}
c
g
k-]
R
[=%
g 8
§ -
o
2
o
3
c
[
g
£ B
]
E
3
Model fo data slope 2.268
= AUSD L P e one P
MAD = 15.16 ops
o b m"2a 0782
o 4 % N = 96 matched behaviors
B B
T 1 I ¥ I
0 20 40 60 80
Subject time in seconds
Browser-Soar episode 3 :arrav e Ooe 7022822 EST 10802
3 4
- O Overt morse behavioe
X implickt mouse behevior
0 V Verbel ullemance
c
.%
¥ 8-
2 Al
[
2
©
3
[~4
[
=]
g
£ B
-]
E
3
Model to data slope 1.491
= AMSD = 11576 opsops/s
MAD = 10.179 ops
Mm2s 0.757
o - N= 96 matched behaviors

T T T T T
0 20 40 60 80

Subject time in seconds
Browser-Soar episode 11 :better-array MonDes 702260 E5T 1902

Figure 7-44: Relative processing rates displays based on operator applications
for the Array episode. The original Browser-Soar
predictions are on the top, and the modified version on the bottom.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 148

7.5.1 Are verbalizations generated sequentially?

Of the 220 verbal utterances in the ten episodes, 195 can be aligned with the model’s predictions. The
remaining 25 are mostly too short to compare. The remaining segments make up 210 pairs of
immediately sequential utterances that can be tested against the sequentiality assumption. This test can
be performed by eye with the displays, and the initial analyses did this because it was so easy and
direct. The final counts were taken from the data structure used to create the displays.

All 210 pairs follow the sequentiality assumption; for all the pairs, the later segment in each pair either
matches the same model trace action as the first segment matches or a later model trace action. So this
appears to be another constraint that Browser-Soar meets.

7.5.2 Are mouse actions generated sequentially?

In a similar way the mouse movements and mouse button actions can be tested for sequentially.
Because these actions were used as fixed points to automatically align the subject’s protocol and the
model’s trace, in order to match out of sequence they would had to have been moved by hand out of
sequence, or items that could not be automatically aligned would have had to be aligned by hand.

Of the 404 mouse actions in the ten episodes, 373 can be aligned with the model’s predictions.® These
373 actions make up 363 pairs of sequentially contiguous actions. Again, a preliminary examination
of the displays showed that none matched the model out of order, and an analysis of the data base
confirmed that.

7.5.3 Does the sequentiality assumption hold acress verbalizations and mouse actions?

All the subject’s actions can be tested for sequentiality. As explained in Chapter 5, this can be done by
examining the connected correspondences in the relative processing rate displays. Starting from the
first correspondence and moving along the line of correspondences, a connecting segment with a
negative slope indicates that the second correspondence matched earlier in the model than the first
correspondence, violating the sequentiality assumption. Simply examining the displays shows that
several verbal utterances lag the mouse movements noticeably. Of the 624 total segments, 568 are
aligned with the model’s actions in the ten episodes.!® These 568 actions make up 558 pairs of
sequentially contiguous actions, and 21 pairs do not meet the sequentially assumption, that is, in these
pairs, the second subject action is a verbal utterance that matches an earlier prediction than the first
action that is a mouse action.

The lag of verbal utterances was computed by comparing the decision cycle number of the model
prediction corresponding to the verbal utterance with the decision cycle of the previously matched
mouse action. Figure 7-45 shows the distribution of these times. Across all verbal utterances in all
episodes the average lag was 9 decision cycles, or roughly 1 second. This is an acceptable number,
indicating that while some verbal utterances appear to have been produced quite late compared to the
mouse movements, overall the subject was not providing retrospective reports.

Most of the verbal statements (144 out of 195) match the model’s predictions sequentially, not
matching earlier portions of the model than their proceeding segment. Based on their starting points
these utterances can be considered as truly concurrent protocol — it is generated as the subject doing
the task and it matched the predictions of the contents of working memory. The ends of the utterances
have not been included in these analyses, although Peck and John included this length in their data set.

9An astute reader may note that there are five more mouse movements matched by subject actions in this analysis than in
the original analysis reported by Peck and John. One of these discrepancies has been found so far, and it was a typo.

10An astute reader may again note that there are five more predictions matched by subject actions in this analysis than in
the original by Peck and John. Even with a semi-automatic tool, analysts will make mistakes.

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 149

N oo Al -

I T T T T T]
-400 -300 -200 -100 0 100 200

Length of lag in decision cycles

Figure 7-45: Histogram of the lags (in decision cycles) of the verbal utterances.

While these segments are not long generally, it is possible that their tail end ceases to be concurrent.

There are two prospective utterances, one in the axis episode, which upon inspection was an typo in
alignment. The segment was properly concurrent, but misaligned by four decision cycles in the
spreadsheet. The other utterance occurred in the Vars episode and is more interesting. It has a positive
offset of 111 decision cycles (nominally 11 seconds). It is hard to see on the relative processing rate
display because it is surrounded by several mouse movements, which is the cause of it being
interpreted as early. When the segment is examined, it turns out that the verbal utterance is not so
much prospective, but that the model’s menu reading ability falls behind the subjects at that point, and
the model has to perform an extra 100 cycles of work before it can match the verbal utterance.

The remaining 49 utterances all lag their previous segment, matching an earlier prediction. When an
utterance lags, it lags on average 38 decision cycles, or roughly 4 seconds. Again this remains a
modest amount. This amount of time is consistent with the amount of time items can exist in working
memory. A very small number, three, lag over 300 decision cycles.

Characterizing the long lags Many short lags of the verbal utterances appear to be partly (but not
completely) an artifact of the Browser-Soar model. The model does not read individual words but
whole screens at a time, which leads to many of the short lags that occur late in an episode when the
subject is reading a help text. Including predictions of reading individual words would remove this
cause.

The three longest lags, however, are worrisome. They lag over three hundred decision cycles, and
represent a mismatch on the order of 20 to 40 seconds. The problem space of the operator they match

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 150

has long been removed from the goal stack, and several other problem spaces on that level have been
used as well. When these segments are examined they are found to be statements of the search or
evaluation criteria that occur after the search has started and numerous items have been examined.
While an operator put them on the state, at the point they are uttered, they clearly represent state
information that has been guiding the search for some time. Other operators could be refreshing them,
but if that is what lead to these utterances, then the operator used to interpret them is still the wrong
one.

Finding this lag in the literature. The actual lag of verbal protocols has not been computed in this way
to my knowledge. It requires an architecture that makes predictions about the time to perform a task,
external actions to provide fixed points of reference, and the predictions must be aligned to this detail.
We can see a lag in other data sets, however. The verbal data used to develop HI-Soar (John & Vera,
1992; John, et al., 1990) can be fixed relative to the performance of external actions. The verbal
protocols lagged behind the external actions so much that they were ignored when testing the model.

7.6 Conclusions about Browser-Soar and the TBPA methodology

Having performed these analyses, we can summarize the results into several suggested changes to
Browser-Soar, which is the point of testing a process model. In general, Browser-Soar performed very
well. The operators in the model that performed best were the ones that are essential to browsing
on-line help systems: manipulating the mouse, choosing windows, and evaluating text items. On a
higher level, testing Browser-Soar also generated some lessons for the methodology and for the
environment that should be incorporated into the environment.

This methodology was stretched in a particular direction through testing Browser-Soar. Browser-Soar
and the data used to test it have some very particular characteristics: (a) very close matches, (b) very
routine behavior and typical problem solving by the subject, (c) a highly interactive task, (d) mostly a
mental task (the perception and motor actions were routine). This example application did not deal
with every type of data. It is easy to name several data features that have not been touched: (a) very
bad matches between data and model, (b) perceptually based reasoning, (c) how to create a model in
the first place, or drastically revise it, (d) tasks that cannot be modeled as search through or in problem
spaces, and (e) extremely long or short protocols. Adding any of these features to the data and task is
likely to add further lessons and stretch the methodology in a new way.

7.6.1 Some conclusions about Browser-Soar

The analyses performed suggest several ways to improve Browser-Soar. Most, if not all, are known to
the authors of Browser-Soar, but the importance and location of the changes should be clearer after
these analyses. These changes are presented in Table 7-32.

Browser-Soar’s ability to predict large amounts of the data should also be clearer as well. Chapter 2
put forward the idea that analytic testing would not only point out where to improve a model, but it
also would make it more believable by presenting it more clearly. Several diagrams and tables were
created in performing these analyses that should make the model more believable. There are more
visual descriptions of the model (Figure 7-33), its performance (Figure 7-35), a rough measure of the
amount of knowledge in each problem space (Figure 7-36), and a picture of the calling order of its
operators (Figure 7-38). Aggregated measures of which operators and problem spaces are used and
how often have been presented (Table 7-29). The analytic displays show when operators are
supported, and by which type of data (Figure 7-38 and the Appendix to this chapter), and the relative
processing rates of the model and subject over time (Figures 7-39 and 7-40, and the appendix to this
chapter).

Soar/MT - 20 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 151

Table 7-32: Suggested changes to Browser-Soar based on analyses performed.

¢ Operators without evidence, Scroll, Page, Drag, and Click-on-item, must be considered
for removal from the model, or be supported with non-protocol data such as aggregate
timing results,

e Fitt’s law should be included in the model of moving the mouse.
¢ A more complete Read operator for reading text that takes longer.
¢ A less complete Read operator for reading menus faster, more like scanning.

¢ Overall, the model’s performance is slightly lean, but this must be reevaluated after some
other problems, most importantly the reading operator, have been improved.

¢ Include leaming, and decrease the goal stack depth.

¢ Include state information in the trace and match to it.

7.6.2 Some conclusions about the methodology

Performing these analyses pointed out that it is nearly always good to have context, and sometimes it is
required. Just providing information on a single item is often not enough to understand the item. The
item’s context is also needed. In several places, particularly in examining the model fit displays, users
can now click on a data point and get a segment and a selectable amount of its context displayed.

Different grain sized operators and different commitments to operators lead to problems in the
analysis, and should be avoided if possible. Soar in particular, as a general architecture for
intelligence, provides the ability to model every action. As a unified theory of cognition it highlights
the desire to provide a complete model, covering all the data. By definition, some portions of each
model will be weaker than others.

Soar models are much finer in their grain size than Newell and Simon’s (1972) systems; more actions
occur that cannot be tested, such as goals and many problem spaces. Other items might be found, but
are not found in every episode. It may be desirable to omit these items automatically and appropriately
when performing an analysis.

While Newell and Simon (1972, p. 179) propose that states and operators are equivalent, the reanalysis
of Browser-Soar shows that they are only equivalent for information purposes. When the timing of the
correspondences is included, they are not equivalent. States, and the information they contain, last
much longer. It may be possible to continue to match verbal utterances primarily to operators, but
when this breaks down, one must match to the state. Using the state properly is not a trivial task, and
will require designing and extending the trace. It will require further mechanations in the
interpretation algorithms to find the appropriate items to support in the model when this does occur.

No problem spaces or goals are used to interpret the subject’s behavior. Together their creation and
selection make up a substantial portion of the model’s behavior. What it would mean to match their
prediction is not clear, problem spaces may be supported by their operators and states, goals by the
indication of a lack of knowledge in some way. If they will not be directly supported, the cognitive
modeler may desire to removal them from the trace if not the model.

Finally, we see that testing the model points out that the model is not complete without rules describing
how to interpret the data with respect to the predictions. For example, the Page, Scroll, Drag, and
Click-on-item, were considered for removal because they were not supported. A more generous
interpretation of the mouse actions might have included the decision to click (e.g., to Page) as being
supported as well.

Soar/MT - 20 December 1992

Appendixes to Chapter 7

Appendixes to Chapter 7

1 Alignment of the Write episode of Browser-Soar

Wed Wov 25 14135:42 1992 - Dismal {0.83) report for weer ritter
Por file /afs/cs.omu.edu/user/ritter/spa/brouser/write/writes. .spa

To prist use “easoript -r -0 -@ -fCowrier7 -L66 /afs/os.con.edu/wser/ / spa/tx /write/writes. dp”

A » c -] e 7 o "1 4 K

152

vapeck 25-Sep-51 revised 13-Jan-92 -FER 3-Jun-$3 To do:
From origisal tramscriptice by dor, i16-Mar-50, aad verbel tramscriptios by s.esch, Jua-91
Transcription of the 15-Jun-8$ ¢T browser tape 2

Previoms Goal: define the ‘loop’ comstrwot that will label the x-axis

Curreat Goal: to figure out how to write the valwe of ‘BxpCondiemes’ ia
order to label the m-axis with esperimeatal cosdition mames

Windows: program wiadow out front, right side aad bottom of help win.,

] oaly the left edge of the commands wia., right side of emecution window
10 Program Windew lime & * b lime 2 “uait DraseGraph” lime 3 “gorigia 1107, 3407~
11 Ewecution Window: error box with message at the top
12 Nelp Temt Window: lime 1 “coerse 'Typimg~Paper’ Coordinates®
13 Keyword Meaw line 1 “coarse” (selected)"

14 Bierarchicl Meaw: liwe I “at Positioning a Display" {00 lines selected)
15 Commands Window: (mot used)

°
3
a
3
L] for iaf about writing the valwes of variables to the scresa.
B
L]
7
.

16 Cursor: positioned at the ead of the 'gat’ command lime within the ‘locp’ comtruct

17 Mouse; located (+x) -3/4 in. from the emd of the ’'gat’ command line

1s {mouse is curreatly & liae}

19 Ses alsc /afs/os/project/ /'t 1 /episcdes/write/01-22.write.complete.log
20 69 totael behavioxs (1]

21 11 distinct operators evidenced io behavior Loaded from:

22 /afs/ca/project / /10N ite.lisp
23 25 total verbals Loading /afs/cs.cmu.edu/wser/ritter/spa/ /ep-t. adici 1lisp.
4

as

26 last time verbal/mouse matches iaformation used by an operator.

27 21 total mouse moveseats MTYPE is type of matoh:

26 9 unsecesassy movemsats that give evidence 07 Total

29 ¢ nmecessary movemenots

30

31 234 Total momse buttom actioms 4 3 is actions before model coverage.

32 3 SHORT is too short to code.

33 TIMB is timestamp of actiom in s. 14 CONT is segment comntimued from previows lime.

34 DURATION is leagth ia me of bedhavior.

35 VERBAL is verbal protocol. a3 V is verbal coded.

36 Nouse Action is the user’'s mouse movements. . MR is mouse required (these are just movemeats).

37 T is Segment Type 11 MI is mouse inferred.

38 § is segmeat nwmber ¢ MBA is mouse button actions (necessary by default).

3% MTYPE is type of matoh

40 MDC 1is matched DC. 3 WOC is mouse wncoded.

41 OC is decision cycle in Soar model. 1 VUC is verbal Om Coded.

42 SOAR TRACE is the litezal Soar Trace

43

“ biect date hed

43 percent model matohed

4 seconds/decision cycle

o7

(1] total words 113

[1)

30 Time starts at 12400

$1 T Mouse actioms Window actioas Yerbal ST & Mype MDC DC Soar trace Comments

52 ¢ I believe v 1 short

53 »6: g1 Prom: sext, 3
34 1 P: pd (top-space Operator asmes cleamed wp by hand,
55 3 8: 85 $-july-923 FER

56 3 01 browse {}

57 4 =>8: g19 (operator av-change

58 3 Pt p2é (browsiag

59] 8: 3% ((wnkaowa) (uakmowm}

[1) 7 0: find-appropriste-help

[33] =»@: g43 (operator mo-change

2 » P: 3o (fiad-appropriate-belp

(3} 10 8: 239 {({unkaowa) (uaknown}

(1] 11 ©0: define-search-oriterics

(13 12 =>@: gé$ (opexator mo-chasge

6 13 P: p72 {define-search-oriterice

7 14 8: 879 {{unknown)

6 s write v 2 v 15 1% 0: h {{write))

L1 write v 3 v 15

70 13 write v 4 v 15

71 M{+x) (R of prog win) [7} P-Scar doesn’t model bringingup the
72 wowse lime to pointer help win.

73 16 0: evaluats-search-oriterion et gensrated ssarch criterion ‘write’ e
74 37 0: define-evaluati

ki3 10 =>@: g103 (operator mo-change

76 19 Pt pl10 {define-evaluatiom-criterion

77 a0 8: 8117 {{uakmown)

Te 14 Can I write v 5 v 21 21 L 13 luati {(val L hing))

79 15 M{sy) (top of soreen) [unmodeled (before the task) mouse movement
90 15 M{-x-y) (portiocn of help win below prog win) [}

o 16 C help wia comes forward [)

Soar/MT - 20 December 1992

Appendixes to Chapter 7

51 T MNowse actions Window actioas Vezbal

153

[3]
[1]
[13
[1]
.7
(1)
(2]
0
”n
[2]
”
"
”
6
”7
”n
”
100
101
102
103
104
105
106
107
100
109
110
111
112

114
118
116
117
118
119
120
121
122
123
124
128
126
127
120
129
130
& 3Y
132
13
134
138
136
137
138
13
140
141
142

144
148
146

149
149
150
151
152
153
154
155
186
187
188
159
160
181
163
163
164
163
166
167
168
169
170
mn
172
173
174
178
17
177
178
179
180
101
182
183

T 4 Mype MDC DC Socar trace Comments
02 16 M{sxey) (R of ‘coarse’ at top of keyword mesuiss ¢ wuc
-={+x-y) {just L of keyword dowa arrow) coat
22 0 1 4 4 4 A evaluation
E2) 0: search-for-help ‘value-of-scmething’ **
24 ws@: gid7 (operator mo-change
35 ?: pl44 (search-for-belp
26 8: 8155 {{to-be-found write) (value-of-sometbing)
27 0: find-oriterioca (keyword)
a0 w@: giél (operator no-change
a9 P: pi60 (find-criterion
30 8: 8170 ((to-be-found write) (value-of-scmethiag)
31 0: focus-on-current-window
32 0: evaluate-~current-window
3 «>3: g239 (operator mo-change
EL) ?: p246 (evaluate-items-in-window
s 8: 52356 (({to-be-found write) (value-of-scmething)
36 0: read-input (coarse)
37 01 attempt-match
3 0: read-input (comment)
k1] 0: attempt-matoh
40 0: read-input {(comp_x}
41 0: attempt-match
43 0: resd-imput (compute)
L] 0: attempt-match
44 0: read-ioput (comstaamt)
48 0: attempt-match
48 0: read-input (cos_x)
47 0: sttempt-matoh
4 0: read-iaput (oursor)
48 0: attempt-matoh
so 0: read-input (datain)
1 0: attempt-matoh
53 01 change-curzest-window
3 =>¢; 9423 (operator mo-change
34 P: pe30 {1 hods - £ hang ind
38 8: 2438 {(to-be-fouad write)
56 0: scroll (keyword)
37 =>3: géS1 (operator mo-change
£} ?: péS8 (mac-method-of-scroll
11 8: 8467 {(to-be-found write)
17 M{ex) to (keyword da axrow) - 7 mr 60 60 ©: move-mouse (keyword down)
17D Reyword menu scrolls ab ¢ mba 61 61 ©: prass-button
1 keyword meau scrolls
19 keyword meou scrolls
20 keyword meau scrolls
a write v 9 v 32
29 sorolling stops mb 10 a=ba €2 €2 O: relesse-button
22 M{-x+y) (R of item3, keywd menviwrong (write imm 11 mi 6 6 0: evaluate-curreat-window
23 wroag? v 12 v 63
[»»@: g307 {operator mo-change
[13 P: pSié (evaluate-items-in-window
[{3 8: 3324 {{to-be-found write)} (value-of-something)
[1] 0: read-input (wroeg)
(1] 0: attempt-match
[1] 0: read-input {wrongv)
T0 0: attempt-match
7 0: read-input (xin)
73 0: attempt-match We are left matchiag operators
Li] 0: resd-input (mout) for we have mot states.
T4 0: attempt-matoh
7 0: read-input (zaltered)
76 ©1 attempt-matob
77 01 read-iaput (zamsont)
70 01 attempt-matod
” 01 read-imput (warrowm)
[1} 03 attempt-match
[23 01 vead-imput (temptemptemp)
(2] 0: attempt-match
(2] 0: change-curreat-window
" »>@: gé9¢ (operator ao-chaage
[23 P: p703 ¢ hods-£ thang: wind
[1] 8: 8711 ({(to-be-fouad write)}
7 ©0: scroll (keyword)
[1] =>@: ¢g734 (operator so-change
(2] P: p731 (mac-method-of-scroll
"0 8: 8740 {{to-be-found write)
23 M({ex~-y) (keyword up arrow) -n 13 mr $1 %1 01 move-mouse (keyword wp)
3D keyword meau sorolls mb 14 mba $2 92 0: press-buttos
3o scrolling stops b 15 mba 93 9 0: relsase-button
24 no v 16 v &
a4 M{-x-Y) {2nd keyword from bottom, xin) = 17 ni 34 94 0: evaluate-current-window
24 %a ba basa v 18 wuc
as write. v 1% v %
” =>@: g777 {operator mo-change
"% ?: p704 (evaluate-items-in-window
»” $: 2794 ((to-be-found write} (valuwe-of-something)
” 0: read-input (user-vars)
” O: attempt-match
100 0: read-input (vbar)
101 ©: attempt-match
103 O: read-imput (veator)
103 ©0: attempt-matoh
104 0: read-input (write)
108 01 attempt-matoh
106 O: access-itea (kKeyword)
107 w>@: g878 (operator no-change
108 P p { £ it
108 £: 2893
114 01 click-om-item (1800) i088 is an unnamed item
11 =>@: g¥99 (oparator mo-change
113 " 06 (mac-method-of-click-on-item
113 &: 8913
184 25 M(sy) (3 items up to ‘write’) - 20 ar 114 114 0t move-mouse (keyword unspecified)

Soar/MT - 20 December 1992

Appendixes to Chapter 7

154

$1 T Mowse acticss Window actiocms VYexrbal 7 8 Meype MDC DC Soar trace Commeats
108 35 C mouse poister to watch mb 21 mba 115 118 0: click-buttom
106 26 ‘weite’ help temt appears 1o
187 27 ‘write’ becomes bold & moves io
108 116 ©1 evaluate-help-taxt
17 =>@: g#27 (operator mo-change
190 11s P: p934 (evaluate-help-temt
191 119 8: 8943 ({accessed write) (valwa-of-something}
192 110 0: focus-on-help-text
193 20 coaveaieat way to v 33 v 131 331 0: evaluate-curreat-window
184 29 write owt short coat
198 30 of text that loo coat
196 31 in your progrem ooat
127 32 the text command coat
198 32 M(-x-y) (3/4 da help teat scrollbar below elevem 32 mi 121
199 33 - .. v 34 short
200 33 M{-x-y) (bottom R quad of help text win} - 25 wi 121
201 3¢ show comman v 26 v 13t
202 > are wsed v 27 v 131
203 3 to display v 29 v 121
204 41 s0 thats what I ocoat
08 122 =>@: g96é (operator mo-chasge
206 123 P1 p973 (evaluate-prose~in-window
a07 12¢ 8: 8994 | write) (val £ bing)
200 135 01 read-iaput
209 1as ©: comprebend
210 127 ©0: compare-to-criteria
2311 42 M{smsy) (mid of keywd scrollbar, over slev} - 2% ww
212 43 18 show com v 3§ v 128 138 O: chang h 1 [d write)) *** changed seaxrch oriteriom ‘write’ ¢
13 *¢* ghanged search criterion ‘show’ ¢¢
a1¢ 129 0: search-for-belp
218 130 =>Q: g1028 (operator mo-~change
a1e 131 P: p1032 (search-for-help
217 132 8: 21843 ((to-be-found show) (valwe-of-something)
e bt 0: fimd-criterioca (keyword)
FRE] bt 2} =>@: gite9 {operator mo-change
220 138 P: p1oSé {fisd-oriterica
a 136 8: 81066 {(to-be-found show) {value-of-something)
222 137 0: focus-on-curreat-window
323 43 M{-x-y) (-1/2 in R of keyword ‘zaasoat’) - 31 mi 130 130 0: evaluate-curreat-wisdow goes by but doesa’t stop oa zamsomt,
224 43 - (smsy)} (keyword soroll bar, above slevator) cont
325 43 -- (+y} {above keyword wp arrow} cont
22¢ 139 =»@: gl092 (operstor ao-change micro-codable as:
227 140 P pl109% (avaluate-items-in-window 163 O: read-input (sansomt)
2ae 141 8: 81189 ((to-be-fousd show) (value-of-something)
a2 142 0: read-iaput (write)
30 143 ©1 attempt-match
233 144 ©0: read-imput (wrong)
232 148 Ot attempt-match ¢
m 146 01 read-input (wroungv)
234 147 ©O: attempt-match
a3 148 01 read-imput (xin)
23 4 ©O: attempt-matod
37 150 ©0: read-input (mout)
pi1) 151 ©O: attempt-match
239 1532 01 read-imput (valtered)
240 1353 0: attempt-matob
341 184 ©0: read-ioput (sansomt)
242 138 01 attempt-matocb
243 156 ©0: read-input (sarrowm)
244 157 ©: attempt-msatch
248 158 0: change-curreat-window
244 159 =>@: gi27¢ (operator mo-¢l
247 160 P p1283 (i £ hang indow
248 RY 38 #: 81291 ((to-be-fownd show)
249 163 0: seroll (keyword)
aso 163 ws@: g1384 (operator no-change
as1 164 P: pidil (mac-method-of-scroll
as2 168 8: 81320 {{to-be-found show)
283 44 M(-y) {keyword up arrow) - 32 ar 166 166 0: move-mowss) {keyword wp)
254 44 80 let’s ju v 33 v 12¢
285 44 D mb 3¢ mba 167 167 0: press-buttom
a5¢ keyword menu acrolls & stops
257 44 © mb 35 =ba 168 168 0: release-button
ase 169 0: evaluate-curreat-wisdow
259 170 =»@: g1358 (operator ao-change
260 mn P: p136S {evaluate-items-in-window
361 172 8: 81373 {({to-be-f d show) (val £
262 17 0: read-imput (wse)
263 174 O attempt-match
264 17 03 read-imput (wser-vars)
265 17¢ ©0: attempt-match
268 177 Ot read-imput (vber)
267 a7e 01 attempt-match
a6 179 ©0: read-iaput (vector)
a6y 100 01 attempt-match
a7o 181 01 resd-iaput (write)
a 192 01 attempt-match
172 193 ©: read-iaput (wrong}
273 i8¢ O: attempt-mateb
74 188 ©O: read-input (wrongv)
278 186 Ot attempt-matoh
a7¢ 187 Ot read-imput (xin)
277 1ss 01 attempt-matoh
a7s 189 0: change-current-window
27 1820 =>@: gi1347 {(operator no-change
as0 i P: pAS34 (i bhods - £ hang 1indow
281 192 8: #1562 {(to-be-found show)
382 193 0: soroll (keyword)
28 194 =»@: g1573 (operator mo-change
a4 198 P: p1502 (mac-method-of-scroll
285 196 8: 81591 ((to-be-fowad show)
286 44 D mb 3¢ =mba 197 197 0: press-button
287 keyword menu scrolls & stops io0

Soar/MT - 20 December 1992

Appendixes to Chapter 7

51

an
a0
%0
291
292
93
294
298
ase
297
a9
299
300
301
302

304
308
306
307
308
309
310
311
313
313
314
318
36
317
318
319
330
m
322
323
324
328
226
327
320
329
330
EX DY
332

334
338
338
7
s
339
340
341
342
343
44
348
k11
347
340
349
350
351
382
353
354
388
356
387
3ss
388
360
361
362
363

385
366

368
k1]
370
m
373
373
374
378
376
3
37
k2]
380
381
382
383
3se
388
308
387
388

T Mowse actiocas Wimdow actioas

155

Verbal T & Mype MDC DC Soar trece Comment s
4 v mb 37 mba 150 198 0: relsass-buttoa
48 sure I kaow how cont d from what hed 4c 129
19 01 evaluate-curreat-wisdow
200 =>@1 gl1632 (operator ao-change
123 P: p1623 (evaluste-items-in-window
202 #1 81639 ((to-be-found show} (value-of-somethiag)
203 0: zead-imput (taa)
204 ©: sktempt-satch
208 01 resd-input (temt)
286 O: attempt-match
a7 ©0: read-iapwt (towch)
s O: attempt-match
20 O1 resd-iapet (wait)
210 01 attempt-satch
a1 0 read-iaput (wse)
2132 01 sttempt-match
an 01 resd-iaput (wser-vars)
e 0: attempt-matoh
1S O read-iaput (vbar)
16 01 attempt-matobh
a7 01 read-input (vector)
aze 031 attempt-matoch
1 0: change-curreat-window
220 =>@: gl911 (operator mo-chasge
331 P pI8ls £ n window
222 8: 81826 (({to-be-found show)
o ©: scroll (keyword)
224 =>3: gi039 (operator mo-change
s P: pl6eé (mac-method-of-scroll
22¢ 8: 81058 ((to-be-found show}
43 D mb 3¢ mbe 237 227 03 press-button these scrolle, all withis 1 s ia the humas,
keyword meau scrolls & stops don’t corresposd te this aovice like wodel.
a4 0 wb 3 mbe 220 220 Ot Telease-buttoa == some of this will ohwak wp ia the hwmen.
a2 0: evaluate-curreat-wisdow
230 =>3: gl9sé {operator mo-chenge
231 P: pl893 (evalwate-items-in-window
232 81 81903 {{to-be-fousd show) (value-of-something)
23 0: read-input (string)
234 O: attempt-matoh
238 ©0: read-input (symtaxlevel)
23¢ 0: attempt-match
23 0: read-input (tan)
3. ©O: attempt-match
3 ©: read-input (text)
240 0: attempt-matoh
241 0: read-imput (towch)
242 O: atteampt-matoh
243 0: read-imput (unit)
244 0: attempt-match
243 O: read-imput (use)
246 01 attempt-match
247 ©: read-input (wser-vars)
240 ©: attempt-match
240 01 change-curreat -wisdow
aso =381 g2873 (oparator mo-change
as1 1 p2082 (£ hang: indow
FLE] 8: 82090 ((to-be-found show}
83 01 seroll (keyword)
284 =»@: g3103 (operator mo-change
ass P: p3110 (mac-method-of-scroll
ase 8: 83119 (({to-be-fouad show)
46 D wb 40 mba 357 2357 0: press-button
keyword menu scrolls & stops 1o
46 0 =b 41 abe 258 258 0: release-button
47 M{-=-y) (‘showh' 2nd £/ top of list) - 42 =i 289 239 0: evalwate-curreat-window
47 M{sxsy) (-1/4im R of ‘showb’, the 1st item} mm 43 =i 288
40 M(sx} {Just R & below keyword up arrow) - 44 ni 289 partial move to get ready to soroll
48 -~ (ex)} {up arTow} - coat again, Pits law)
49 show B show v 4% v 389
260 =>@: ga1s0 (operator no-change
261 P: p2is7 (evaluate-items-in-window
362 8: 82187 ({ be- £ d show) (val h]
263 0: read-input {showb) This is a patched in trace
26e 0: attempt-match from dc 263 to 377
268 0: read-input (showh)
266 0: attempt-match
a7 0: read-input (showo)
ass O: attempt-matoh
a6 0: read-imput {showt)
aTe ©O: attempt-satob
an 0: read-input (sign)
a7 O: attempt-matoh
273 0: resd-isput (sim)
274 01 attempt-matoh
ars ©0: read-iaput (siah)
27¢ O: attempt-matoch
an 0: vead-input (sise)
s 0: attempt-matob
ars O: change-curreat-wisdow
a0 =>@: ¢g2339 (operator ma-cl
a1 P: p2des ¢ £ hang: 4
an 8: 82354 {(to-be-fousd show)
an 01 serell (keyword)
204 =>G: ¢g2367 {oparstor mo-change
ans P p3374 (mac-method-of-scroll
ass 8t 8338 {({to-be~found show)
510 mb 4¢ mba 287 287 ©O: press-button
s1 0 mb 47 mba 208 208 ©0: releass-buttoo
a8 ©0: evaluate-curreat-wiadow
a9 »>3: g2413 (operator so-change
p il P: p2422 (evaluate-items-in-window
as 8: 82432 {{to-be-f 4 show) (val ng)
a Ot read-iaput (scalex)

Soar/MT - 20 December 1992

Appendixes to Chapter 7 156

$1 T Mowse actiomns Window actioas Vecbal ST § Mype MDC DC Soar trace Commeats
R11Y ase 01 attempt-matoch

kig] s ©0: read-input (scaley}

393 ass 0: attempt-match

394 7 ©0: read-input (set)

395 e 01 attempt-matoh

396 2 01 read-iaput (setfile)

397 300 01 attempt-match

e 301 01 read-input (show)

3 302 O: attempt-match

400 203 01 ascess-item (keyword)

401 304 =>@: 28527 (oparator ac-chaage

402 308 P: p23534 (mac-methods-for-acoess-item

40 306 81 228542

41 307 0: elick-on-item ({12537)

408 308 =>@: g254¢ (operator ao-change

40 309 P: p253S (mac-method-of-click-on-item

407 310 S: 838562

408 $2 M(-x-y) {'showb’, 3rd from bot, heywsd meau} =m 48 mr 311 311 01 move-mouse (keyword umspecified)

49 «= {sy) (’show’} coat

410 32 ¢ wb 4% mba 313 312 01 click-buttom

411 313 01 evaluate-help-text

412 314 =3@: ¢g257¢ (operator mo-change

413 s P 92583 (evaluste-help-temt

414 316 2583 { 4 show) (val : 4 hing)
413 317 Ot focus-ca-help-text

416 53 1 dom't kno v 50 v 318 318 ©1 evaluate-curreat-wisdow

417 84 show bimary, pro ocoat

416 58 show expression. ecoat

419 3¢ is an infiaite f aoat

430 56 M{-y) {middle R side of help text) - 51 wi 318

421 87 M{-y) {a little lower} - 82 mi 318

422 58 wuha. .. v $3 sbort

433 58 M{-y) {a little lower) - $4 ui 318

424 60 but I wonde v 38 v 318

425 62 M(4x-y) (Just L of dn arrow for help txt win) mm 56 e

426 63 for v 87 v 318

427 319 =>@: g261S (operator mo-chamge

418 330 P1 p2622 (evaluate-prose-in-window

42 3 8: 83633 { 4 show) (val 4 }
430 333 0: resd-iaput

(338 323 01 comprebend

432 324 0: compare-to-criteria

433 328 01 cheage-curreat -window

43¢ 326 «>@: g3658 (operator no-change

435 337 P p266S h £ hang ind
43¢ 328 81 82673 ((accessed show)

437 329 01 scroll (help-temt)

438 330 =>@: g2685 (operator mo-change

439 k210 P: p36#2 (mac-method-of-scroll

440 332 8: 82701 ((accessed show)

441 63 M{+x) {(down arrow) mm 58 =r 333 3 01 move-mouse (help-text down)

442 64 D delp text win. sorolls nb 59 mba 334 334 01 preas-button

443 €3 markers v 60 v 318

444 63 U mwb 61 mba 335 335 01 release-button

s 336 ©0: evaluate-curreat -window

444 37 =»@: g2744 (operator mo-~change

47 330 P1 p3731 (evaluate-prose-in-window

448 339 81 82762 {(accessed show) (value-of-something)
449 340 01 read-imput

450 341 01 comprebead

431 343 01 compare-to-criteria

452 343 0: chaage-curreat-wisdow

483 344 =>@: gi2707 (operator so-change

454 45 P p2794 (i hods-£ hang: indow
435 346 $: 52002 {({accessed show)

43¢ 347 0: seroll (help-text)

487 340 =>@: gisld4 (operator ac-change

450 349 P: p2921 (mac-method-of-scroll

459 350 8: 82930 ((accessed show)

460 66 D belp text win. scrolls mb 62 mba 351 2351 0: press-bmtton

461 67 0 mb 63 wsba 352 353 0: releass-buttoa

462 68 okay v 64 v 336 @ia - This had been 333, a state?
L12) 383 0: evaluate-curreat-wisdow 30-jun-22 FER
464 354 =>@: giféé¢ (operator mo-change

465 88 P: pa9?71 (evaluate-prose-ia-window

466 386 8: 82002 ¢{ sbow) {val £ t]
467 57 0: read-imput

460 380 0: comprehead

469 259 0: compare-to-criteria

470 360 0: ohasge-ourreat-wiadow

471 361 =>@: g2907 {operator ao-chaage

4 362 P p2%id (i hods - £ bang indow
473 203 8: 82922 ({accesssed show)

474 364 01 soroll (help-text)

478 365 =>@: g2934 {(operator so-change

476 366 P: pa®4l (mac-sethod-of-acroll

L1 367 8: 53958 {{accessed show)

478 68 D belp text win. scrolls b §5 mba 360 369 0: press-buttoa

479 $2 U ab §¢ mba 369 369 01 relsase-button

490 370 0: evaluate-curreat-wiadow

L1} 371 =>@: g2994 (operator ao-chamge

403 372 P: parsl {evalwate-prose-ia-window

402 7 8: 83002 {({accessed show} (velue-of-sometbing)
484 37¢ 0: read-input

405 378 0: comprehend

406 376 0: compare-to-criteria

407 377 0: change-curreat-window

408 370 a>@: g3027 (operator mo-ol

49 379 P p3034 (£ bhang 1nd
490 200 81 83042 (({accessed show)

491 Il 0: soroll (help-text)

493 302 w>@: g3084 (operator no-change

493 n P: 3061l (mac-metbod-of-scroll

Soar/MT - 20 December 1992

Appendixes to Chapter 7 157

$1 7 bMouse actions Window actioas Yerbal 8T ¢ Mype MDC DC Soar trace Comments
“e e 8: 83070 ({eccessed show)
495 70 D belp text win. scrolls ub 67 mba 305 385 0: press-button
496 72 well, I‘'1ll v 68 v 370
497 T2 © mb 69 mba 306 386 0: release-button
387 0: svaluate-current-wiadow
49 s =>@: g3104 (operator ao-change
500 s Pt p3111 (evaluste-prose-in-window
s61 390 $: 83122 | show) {val £ ng)
$03 n O: read-input
303 392 0: comprehead
504 393 0: compare-to-oriteria
ses 394 =>Q: state mo-change
506 398 =@t ¢3152 (goal mo-chamge
807 39 =>3: 93139 (goal mo-cheage
soe 97 »>9: 93166 (goal mo-change
509 i1} =>@: §3173 (gosl mo-change
10 398 =>@: g3180 (goal mo-change

Soar/MT - 20 December 1992

Appendixes to Chapter 7

2 Displays of each analytical measure for each episode of Browser-Soar

=1\ = =1 = =1 =
= =1 =1
=4 =i =i
= = =11
:fj H il :—';.:.“ ERLELR kit :_":}_‘_:- i
.—_ ”&w—sn:mxm — - :!w-fg.'.';:n:n —— - Browsar-Soar spimode 4 :precision —
=1\ = =1 = =1 =
= = =1
=i =1 =1
=i =1 =1
= = =
= e N s N
Beowser-Sons epmode 5 el — EBroweer-Soer episode 8 axis —_— Browser-Soas epiacde 7 :lbileix —
%% = =1 = =il =
= =1 =T
=141 Mo =1\ =1
=1 kil =1 L = oV
= = =1
= { u = {{{uumuuuumu = SR R R
— Browser-Som speeode 8 ‘Circke _— et = -

3 A
Browser-Soar episode 9 :vars

e
Browser-Somr epmode 10 :200mmand

Figure 46: The operator support displays for each of the episodes.

Soar/MT - 20 December 1992

158

Appendixes to Chapter 7 159

OPERATOR .
Browse — 1 Model acton

Find-appropriate-heip - O Cormesponang overt mouse behavior
Define-search-crit — X Corresponding impiiolt mouse behavior
Generate-search-crit -t
¥V Conesponding verbal ulerance
Evaluate-search-crit —
Define-evaluation-crit -

NOT MATCHED - l;Z'l

Operator applications
Browser-Soar episode 3 :array

’

FriDec 4 21:48:47 EST 1982

OPERATOR _
Browse I Model acon
Find-appropriate-help O Correspondng overt mouse behavior
Define-search-crit X Conesponding impiicit mouse behavior

Generate-search-cri
-ert V' Canespondng verbal ullerance
Evaluste-search-crit

Define-evaluation-crit
Generate-evaluation-crit
Evaluste-evaluation-crit

Change-ssarch-crit

Modify-search-crit

Search-for-help
Find-crit

Focus-on-curment-win

Evaluate-heip-text

Focus-on-help-text
Evaluate-current-win
Change-curment-win

Access-item

Scroll

Page

Drag

Click-on-item

Double-click-on-tem
Move-mouse
Press-button
Release-button
Note-saw-crit
Click-button
Double-click-button

| I N T T O T 1 1 T I B |

NOT MATCHED

i 1 1 1 1 L i i 1 1 i 1 i 1 1 1 Al 1 1 1 1 1

Operator applications
Browser-Soar episode 11 :better-array

FriDec 421:4942 EST 1062

Figure 46: The operator support displays for each of the episodes (cont.).

Soar/MT - 20 December 1992

Appendixes to Chapter 7

s s e ey et et we

T e 1 g etaty et s

160

L [pe— L [— O
= » =
® — — "
g P .
; : ; : g
| | g
i g i Y i
4 1
weinan i an $ o an e 190 —on -
e TS e
. N . s . e e = Z e
T T T T v T T — 3 T v T
° » 0 © © o ° » w0 - © o ° » - © © -
Sudiant o it Sbiaetiva s sananch
Browser-Soar scisode 1 write —em—— Erowser-Soar somode 2 10t e rm———— Evowser-Soar enisade 4 :Drecision —ne——
i T s s i g oy s st e e — e]
[y — L I Py —"
x » x
@ v—— » —— ¥ ——
IR g{" -
i i 3
&
j § 4 3 g1 i
s i s
i) i) 5
$4 84
e aparas o e tat ——ivanmpstomen
o ame R R
° il PREREE 3= - SNOSY ° - e @ mmll e o e 2 S v
o M M M M B . ® - M M PA . M M M 4 pa
St vre St i s kit v in semandy
Browser-Sosr soisode 5 marker s rma—— Exowser-Soar eo0de 6 a0y hmasuind Browser-Soar enisode 7 iabeix - ras—
e
H
oo
¥ ———
g4 "
i L]
s
i)
84
7
-
iy
o e @ it e
¥ T T v T T T
° » - L) "= . » - © [ww
Dt rva v oo Wit v in soventh
Browser-Sowr soisode 8 oircle bnglammend Browser-Sow eonode 9 vers handanaated

Figure 47: The relative processing rates displays based on decision cycles for each of the

episodes.

Soar/MT - 20 December 1992

Appendixes to Chapter 7

Dashed lines are range of th ically d d rates

§ T o] ommnobm/ """"""
X ipiich mouse behevr
YV Verbal uiemance /
§ . B Unmaiched ;
3
3
§ § | /
£ /
=
§ .
Model to data siope 9.482 dc/s
RMSD = 81.258 dc
MAD = 69.692 dc
"2 = 0687
o . N = 96 matched behaviors
T T T T T T
0 20 40 60 80 100
Subject time in seconds
Browser-Soar episode 3 :arrav M Do 7022054 G5 12
Dashed lines are range of th ically expected pond rates
8 4
<
3
5
5 -
K} §
3
[=]
£
b
E &1
K]
3
=
8_ .
.
° . 8 TT a8 N = 96 matched behaviors
T T T T T T
0 20 40 60 80 100
Subject time in seconds

Browser-Soar episode 11 :better-arrav

Man Dec 702:30:41 EST 1082

Figure 47:The relative processing rate displays based on decision

cycles for of the episodes (cont.).

Soar/MT - 20 December 1992

161

Appendixes to Chapter 7

162

Badjact e in sepate
Erowser-Soar e0isode 4 :Drecision

™

[
N

Mxtel ve & somuontial opemor apslcativre
° w0
a —

Ul

Subinot tome i smerds
Browser-Soar evisode 10 zoommand —r——

Figure 48: The relative processing rates displays based on operator applications for

each of the episodes.

Soar/MT - 20 December 1992

Appendixes to Chapter 7

§ -
(1]
S
8
2
s 8]
§ >~
o
&
g
=
=
c
2
o
2 o |
e w
@
E
=
°
3 Model to data slope 2.268 ops/s
= RMSD = 17.16 ops

MAD = 15.16 ops
= 0.782
o - N = 96 matched behaviors
T T T T
0 20 40 60
Subject time in seconds
Browser-Soar episode 3 :arrav Mon Doo 702202 65T 142

o

m —

- O Overt mouse behavior

X impiick mouss behavior

2 V Verbat ullerance
(<)
=
8
g

[=

° -
§ -~
i
o
=
c
2
g
g B7
£
§ Model to data sl 1.491 o
= AMSD = 11°576 ops pele

MAD = 10.179 ops
"= 0757
o N = 96 matched behaviors

T T T T
0 20 40 60

Subject time in seconds

Browser-Soar episode 11 :better-arrav M Dao 7022000 E5T 18z
Figure 48: The relative processing rates displays based on operator applications for

each of the episodes (cont.).

Soar/MT - 20 December 1992

163

