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Chapter 6
The model manipulation tool -- the Developmental Soar Interface (DSI)

"Realizing programs with GPS on a computer is a major programming task. Much of our research
effort has gone into the design of programming languages (information processing languages) that
make the writing of such programs practicable.”

Newell, Shaw, & Simon, 1960

In the past, the implementation of Soar as a program has failed to fully support many of the
requirements noted in Table 6-21 as necessary for testing the sequential predictions of cognitive
models. The basic Soar interface was only a command line, and the commands were simple. Most
commands did not provide default values. A default editor, GNU-Emacs, was perhaps assumed, but
the editor was not tailored to Soar and no help was provided for manipulating productions or higher
level objects in the model. The emergent structure of the model, such as problem spaces and operators
was ephemeral, and only existed in the trace. After the goal stack exited a problem space, it did not
exist until it was entered again. The trace itself was flat, it was printed out, and that was that.

Table 6-21: Requirements supported by the Developmental Soar Interface.

Requirements for the process model’s trace
(a) Include:
(i) Unambiguous predictions for each subject information stream (external and internal actions)
(ii) Time stamps for each action.
(b) Be readable by the analyst.
(c) Provide various levels of detail.
(d) Provide aggregate measures of performance.
(e) Be detenministic even if the model is not.
Requirements for modifying the model
(a) Display the model so it can be understood.
(b) Modify the model based on the comparison.
Regquirements based on integrating the steps and supporting TBPA
with a computational environment
(a) Provide consistent representations and functionality based on the architecture.
(b) The environment must automate what it can.
To support the user for the rest of the task:
(©) Provide a uniform interface including a path to expertise.
() Provide general tools and a macro language.
() Provide tools for displaying and manipulating large amounts of data.

The Developmental Soar Interface (DSI) provides an interactive graphic and textual interface to
support the requirements shown in Table 6-21 related to using, understanding, and manipulating the
Soar model being tested. The DSI consists of three integrated yet independent pieces of software.
They are designed to provide multiple entry points for users so that users can manipulate and examine
the models in a natural and consistent way, no matter which module of the DSI they are working with.
For example, while examining the graphic display users can run Soar ahead a simulation cycle by
typing on the display, and while editing productions they also can run Soar ahead a simulation cycle
though similar commands in the editor. Novices and casual users can interact with each tool through a
menu. Experts will learn common commands from the menus because the keystroke equivalents are
displayed there. Further details will come out as how the requirements are taken up in turn.

The Developmental Soar Interface (DSI) adds several new concepts to Soar: the idea of interlocking
tools, each component can use the other tools’ representations and capabilities; problem space
statistics, keeping track of how often problem space objects are selected; a macrocycle, the ability to
run the model not in terms of decision cycles, but in terms of the architecture, such as to the next
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problem space selection or the third operator to be applied; and hooks, the ability to modify Soar’s
behavior at set points such as initialization or to trace actions, such as at the end of the elaboration
cycle.

The Soar in X (SX) graphic display. While displaying the Soar goal stack the SX graphic display
creates a representation of the model. This new representation of the running model (in itself a model)
is used to represent the problem space level objects and keep statistics on their use. This representation
allows the analyst to directly manipulate problem space level objects. Clicking on problem spaces and
their subcomponents allows their working memory components to be displayed in an examination
window. These windows can exist during a run and the model’s working memory can be monitored in
examination windows as it performs a task. An associated command interpreter and pop-up menu
provide keystroke and keyword commands to manipulate the model. A special command line
interpreter, tailored for running Soar, is also provided. A complete description of the functionality is
provided in the SX manual (Ritter & McGinnis, 1992). While the new graphic display copies little of
the code directly from previous instantiations of the DSI (Milnes, 1988; Unruh, 1986), it copies some
of their ideas, particularly that a graphical interface is doable and desirable.

A trace of the Soar model designed for use with automatic interpretation and alignment systems is also
provided, either with the SX graphic display or with Soar-mode. Its most important feature is that it
provides the models actions in an unambiguous format, putting each selected object’s name and
attributes in fixed fields. It also includes features that make it more compact to fit on a limited width
screen, and more easily read by other programs (subfields separated by tabs). The improved trace is
also more interpretable by human analysts because it indicates the goal depth of each element of the
trace with a number of dots separated by spaces instead of just with the number of spaces.

Soar-mode. The second module is a structured editor and debugger written within GNU-Emacs, called
Soar-mode. It provides an integrated, structured editor for editing, running, and debugging Soar
models on the production level. Productions are treated as first class objects. With keystroke (or
menu) commands productions can be directly loaded, examined, and queried about their current match
status. Listings of the productions that have fired or are about to fire can be automatically displayed.
Soar-mode includes and organizes, for the first time, complete on-line documentation on Soar and a
simple browser to examine this information. A complete description of the functionality is provided in
the Soar-mode manual (Ritter, et al., 1992).

TAQL-mode. The third module, TAQL-mode, is a structured editor for editing and debugging TAQL
programs written as an extension to GNU-Emacs. TAQL is a macro language for writing models in
Soar on the problem space level. By providing TAQL constructs as templates to complete rather than
as syntactic structures to be recalled, it decreases syntactic and semantic errors. After inserting
templates users can complete them in a flexible manner by filling them in completely or only partially,
escaping to the resident GNU-Emacs editor to work on something else or to edit them more directly.
This leaves general editor commands available throughout the editing session. At any point in the
process users can complete any partial expansions or add additional top level clauses, choosing from a
menu appropriate to the construct being modified. A complete description of the functionality is
provided in the TAQL-mode manual (Ritter, 1991).

6.1 Providing the model’s predictions in florl_ns useful for later comparisons and
analysis

The first set of requirements that the model manipulation tool must support is related to deriving the
sequential predictions of the model in a usable form. It must provide two versions of this, the first is
the direct predictions used to interpret the protocol data. These predictions primarily need to be
machine and human readable, but there are other requirements discussed below. The second version is
an aggregation of the predictions in order to understand the model’s general performance, and for
comparison with aggregations of the subject’s data.
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6.1.1 Providing predictions for comparison with the data

The requirements for the model’s trace are listed in Table 6-21. The improved trace, initially provided
with the graphic display and now available separately, substantially improves several of the
requirements, but several remain a problem. Aggregate measures are taken up in the next subsection.
Figure 6-24 shows how these requirements have been met. The original Soar trace is shown in
6-24(a). This version is slightly ambiguous. In decision cycle 3, the name of the problem space
(SOME-SPACE) and its traced feature (VALUEI1) are not distinct. If the problem space did not have a
name, the value would appear in the first position. The bottom of the figure lists the improvements to
the trace shown in Figure 6-24(b).

6-24(a) Original Soar 5 trace:

0 G: Gl

P: P2 (TOP-PS)

S: 84 (TOP-STATE)

O: 06 (WAIT)

==> G: G2 (OPERATOR NO-CHANGE)
P: P3 (SOME-SPACE VALUEl)
S: 86 (VALUE2)

6-24(b) Modified Soar 5 trace:

0/ G: Gl ()
1/ P: TOP-SPACE ()
2/ S: 84 ()
3/ 0: WAIT ()
4/ => G: G2 (OPERATOR NO-CHANGE)
5/ . P: SOME-SPACE (VALUEl)
6/ . 8S: 86 (VALUE2)
(tabs are indicated with a /)

AU e W

Improvements to the Soar trace for use in TBPA

¢ An unambiguous name reference is placed at the front of each line in the trace. The
object’s id is used if there is none. Now only the traced fields are in the parentheses,
which, as an option, can be removed if there are no traced fields for a given object.

* A leading tab or spaces (user selectable) is inserted after the decision cycle number, so that
trace is parsable by spreadsheet programs.

* A period (.) is placed in the indentation for each impasse level down to directly indicate
the goal level.

e The goal stack indentation width and symbol are adjustable to aid where compact
presentations are needed. The goal indicator is initially "==>", but it also can be changed
tO "=>" or "~~>ll.

¢ The generated id of the object has been moved to the back of the trace, and as an option it
can be removed entirely (except it is used as the name on nameless objects).

Figure 6-24: Original and modified Soar trace.

(ai) Be unambiguous. The new trace removes several ambiguities and retains the decision cycle
number of the original trace. The name and traced attributes of the selected object have fixed
positions. The use of the object’s ID when a name is not available may not turn out to be the best
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choice; it may be better to insert "no-name" or some other distinct marker that can be more easily
interpreted than the ID as the lack of a name.

(a.ii) Include a simulation time stamp for each action. Both the new and old trace include a time stamp
for each action in the architecture’s own terms of decision cycles. The only difference is that the time
stamp in the new trace, because it can be separated with a tab, can be read directly into spreadsheets.

(b) Be readable by the analyst. The addition of the dots for every level down in the goal hierarchy
should make the trace more readable. Besides making the trace less ambiguous for machine use,
presenting the name and traced attributes in a less ambiguous way should also make the trace more
readable for the analyst. There have been proposals for putting the traced attribute names in the trace
in addition to displaying the values. This might clutter the trace, but it should be provided as an
option.

() Provide various levels of detail. Plain Soar provides most of the necessary variations in the level of
trace detail. As noted in Figure 6-24, several additional ways to modify the trace have now been
provided. These modifications were necessary to create a narrow enough trace to fit the predictions
into the spreadsheet. There will be other ways to manipulate the trace so this task is not complete.
How to represent the environment’s responses and when to include them was not touched by this
improvement.

One specific level of detail that can be manipulated is whether operators, states, or both are included in
the trace. Newell and Simon (1972, p. 157) believe that problem spaces can be characterized by the
states that are seen or the operators that transform the states, one can be derived from the other. Both
the old and the new trace primarily display objects only at the time they are selected. Because
operators are nearly always clear if not complete at the time of their selection, both traces provide
rather complete pictures of the operators. At the time of their selection, states are almost always
empty, and undergo further transformations as operators are applied to them. Adequate depictions of
states remains a problem for both the new and old traces.

(e) Be deterministic even if the model is not. The new and old traces are only as deterministic as Soar
is. A small, clear improvement would be to design a simple way to display the alternative selections in
the trace when one item is chosen from many indifferent selections. The graphic display already
provides this for objects with examiner windows.

6.1.2 Aggregating the model’s performance

The behavior of a model can be aggregated by an external system that examines the model’s external
actions, or, in the case of computer programs, by inserting instrumentation into the system itself. The
method used in the DSI is to aggregate the behaviors with an internal system, based on the data used to
create the display.

The primary level for aggregating Soar model’s performances is the problem-space computational
model (PSCM) (Newell, et al,, 1991). Additional measures could be (and are) taken at other
theoretical levels, such as rule firings. The aggregations on the PSCM level are counts of object
selection on that level, of goals, problem-spaces, states, operators, and chunks created, although,
strictly speaking, chunks are on the symbolic level.

Figure 6-25 displays an example output of these aggregate counts. It is not clear that the way chosen is
the best way to present this information, but it serves as a starting point for discussions and further
design. After a time stamp, the initial block provides a listing of all the problem spaces found so far,
and the number of operators in each of them. In this example, the problem spaces are taken from a set
loaded into the graphic display besides those that have been selected.

The second block of information provides the complete selection counts for each PSCM level object
known, even if it has not been selected since the last restart of Soar or call of reset-PSCM-stats. On
each line is shown (a) the count of the selections, (b) the type of object, (c) its name or first selected
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ID, (d) in parentheses, the actual name or "no-name" if one was never provided. Problem spaces also
have the number of chunks that have been assigned to them. This can happen through the normal
course of learning while running, or by placing previous learned chunked (or plain productions) on the
list of chunks. The update function then assigns the productions to a problem space based on the
problem space’s name in their condition or other means (this assignment process is covered in more
detail in a later section). An indentation of a single space occurs after goals and problem spaces to
indicate a choice point. A similar level also could be created for states, but most problem spaces use
only one initial state so it has never been found necessary. Objects with the same indentation, such as
the operators in the Compare-positive-integer problem space, have all been selected for the same
context slot.

The objects in the SX graphic display are primarily identified by their name. Objects without names
are essentially identified by their relationship to the most recently selected object at the time of their
creation. This implicit naming process will break down given sufficiently complicated goal stack
constructions, but none have been observed so far.

This identification scheme raises several interesting questions about the architecture and what counts
as a unique object in it. The current counting system relies on the name attribute of objects to be
provided and on the names being unique. In this representation, if objects of the same type and
relationship to the goal stack (e.g., two operators in a given problem space) do not have names, then
they cannot be differentiated. The underlying structures are also available, so a more complete
algorithm could be used to differentiate them.

This counting scheme breaks down when keeping track of goals. The system assumes that all goals
that have the same goal type (e.g., tie or no-change), impasse object (e.g., operator), and the most
recently selected context element (e.g., the top-space problem space), are the same goal. They may be
different, for example, the number of tied operators in a tied impasse. Whether this represents a real
difference in the architecture and a problem in the representation is not clear.

The problem of tracing embedded structures is highlighted in this display. For example, it is clear that
the first less-than-or-equal operator in Figure 6-25 is testing two numbers. How the actual numbers
are represented in the operator is obfuscated by the large number of parentheses.

Implementing pscm-stats suggests that counting objects on the problem space level is not yet clear.
How many operators are there in a system? Sometimes a given name can occur in multiple problem
spaces, but it represents different operators, and sometimes the same name can occur in multiple
problem spaces and really be the same operator. Other systems avoid this problem by deciding how to
name objects and then enforcing the distinction or lack of it. A position on this has not been taken
within the Soar community. pscm-stats currently assumes that an operator cannot occur in more than
one problem space. How to reliablely represent operators that appear in more than one space remains a
problem both conceptually and in the software.

When printing out the calling tree and the counts of each problem space, pscm-stats will print out the
operators used in the space and their counts each time. If a problem space is used to solve two
different impasses (as defined by the higher level problem space and goal type), its selection count and
its operators selection count will get printed twice. When this occurs it is misleading for two reasons.
The first reason is that it implies that all of the problem space is used to resolve each impasse. This
may not be the case. The second problem is that the total number of selections printed out can easily
become two to three times the actual selection count.

6.2 Displaying the model so that it can be understood

The SX graphic display (Ritter & McGinnis, 1992) makes visual representations of Soar models real in
a sense not available before, actual triangles get drawn for problem spaces’, circles for operators, and

TUnless the user hides them, which they can do.
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PSCM Level statistics on November 22, 1992

22 problem spaces, with a total of 11 operators.
Ops Problem space
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@ actual selection counts and calling orders:
G: gl (gl1)
.P: Johnson (johnson) (0 chunks)
. 8: 88 (no name)

(operator tie) (g372)

+P: analyse (analyse) (13 chunks)

. 8: 88 (no name)

. O: analyse-op (analyse-op)
(operator no-change) (g377)
.P: analyse (analyse) (6 chunks)
. 8: 88 (no name)

G: (state no-change) (g362)
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O:
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+ 0: less-than-or-equal(((((7) ((1)))) (({({(5) ((0)))) none))) (less-than-or-equal)

« e s e s e

0O: creat

G: (operator no-change) {(g390)

.P: compare-positive-integer (compare-positive-integer) (0 chunks)

. 8:
. O
. Ot
. O:
. O:

O:

compare-positive-integer (s8320)

move-left (move-left)

direction-right (direction-right)
less-than({((((3))) ((((2))) none})) (less-than)
equal(((((3))) ((((2))) none))) (equal)
move-right (move-right)

e-slot((J12 no)) (create-slot)

count-objects-smaller (count-objects-smaller)
memory (memory)

count-objects-greater (count-objects-greater)
(goal no-change) (g7)

Figure 6-25: PSCM level statistics for approximately 100 decision cycles of
the Sched-Soar model (which is shown in Figure 6-27).

so on. While our initial hope and many viewers’ first reaction is that this standardizes the visual
representation of Soar, this is not so. One should not view the current display as canonical, but as an
approximation. Further work and suggestions from others have and will shape it, as well as its own
inherent successes and failures. As a graphic display, it can be driven by a menu or keystrokes from its
display windows. As part of an integrated environment, it also can be driven by keystrokes in the
editors.

The graphic display can be used in two ways, as a normative display of what problem spaces may exist
in the model and their relationships to each other, and as a descriptive display of the goal stack
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contents while the model is running. Both types of information can be displayed simultaneously (the
display can get a bit complicated) to see if the model normative behavior is correct.

Garnet. The graphic display, the Soar Command Interpreter, the dialog boxes, and the pop-up menu
are built out of components provided by the Garnet user interface development environment (Myers et
al., 1990). Garnet is "a comprehensive set of tools ... for implement[ing] highly-interactive, graphical,
direct manipulation user interfaces” (Myers, Guise, Dannenberg, Vander Zanden, Kosbie, Marchal,
Pervin, Mickish, & Kolojejchick, 1991). It stands singularly above (egregious) other graphic interface
toolkits because every feature needed (or nearly every) is provided, and it is built correctly to be
extendable on the right levels. Gamet provides object-oriented, constraint-based representation that
allows graphical objects to be specified declaratively, and then maintained automatically by the
system. The iterative behavior of objects is specified separately. The Garnet group, headed by Brad
Myers and located at CMU, provides excellent support. They intend to continue extending Garmet for
the next three to five years.

It is hard to imagine building a graphical interface like the SX graphic display without a powerful and
well-supported interface design toolkit such as Garnet. It substantially contributed to the ease of
programming of this work. Its modular design allowed it to be modified to run four times faster. Its
only drawback is its size, and perhaps its speed (the problem may be with the SX code, not Garnet, or
inherent to graphical interfaces). The Soar image nearly doubles when Garnet and the graphic display
are loaded.

6.2.1 Normative displays of the model

Figure 6-26 provides an example display showing the problem spaces, their normative calling order,
and some of the chunks that are learned in MFS-Soar (Krishan et al., 1992), a system for formulating
mathematical programming models from a problem definition. The arrows indicate the nominal
calling order, and the type of relationship between the two spaces. This is often a simplification, for
often the relationships are not between two problem spaces, but between a problem space and an
operator or other objects.

Problem spaces can be placed on the screen before a run by explicitly creating them. This can be done
with functions in an initialization file or as a menu command. Problem spaces also can be placed on
the screen through running the model. The default is that problem spaces remain on the display after
they have been created. Most often it is desirable for problem spaces to stay in the same place on the
screen across and during runs. This can be done by "anchoring” them. This means that they will
appear in the same place each time they are entered. Anchored problem spaces are indicated by an
asterisk (*) on their bottom left comer. However, this can be overridden when they are created by
modifying the initialization file, or by removing the anchored indicator in an examiner window. If an
initialization file is not loaded, problem spaces appear in a series of straight lines, but can be moved
around if desired, and their configuration can be written out to a file for later reloading.

Displaying the amount of knowledge in each problem space. The SX graphic display also can depict
an approximation to the amount of knowledge in each problem space. Just as the learned productions
(chunks) can be associated and displayed with their problem spaces, so can the original productions.
By displaying the productions associated with each problem space, the graphic display is also
displaying the amount of knowledge in each space.

Figure 6-27 shows a normative display of the problem spaces and initial productions for Sched-Soar
(Nerb & Krems, 1992). It was drawn by loading in a set of previously found and arranged problem
spaces and their connections. Then Sched-Soar was loaded. All its productions were set to be chunks,
and were assigned by the system to a problem space. If a problem space did not already exist to hold,
the SX graphic display would create one. Not all problem spaces are connected. The problem spaces
shown were derived from the productions loaded. -The unconnected problem spaces are part of the
function package and are not actually used by Sched-Soar.
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Figure 6-26:
The problem space structure of MFS-Soar (picture taken by David Steier). Learned chunks
(small bricks) shown on chunk walls to right of each problem space (triangles). Lines between
problem spaces labeled "OP NC" stands for operator no-change impasses in the higher space
that are resolved by lower level spaces. The grey fill in the problem space on the right-hand
side, Output-Constraints, indicates that it has recently been selected to be moved or to have its
contents displayed in an examiner window.

Shown at the top of the display, the space Every-Space holds the productions that potentially can apply
in every space because they do not contain explicit references to any single problem space. Sched-
Soar is unusual in that it has so many. Upon inspection of the productions (by clicking on them), the
productions are found to be predominately those that support the Soar function operator package
(Rosenbloom & Lee, 1989) that Sched-Soar uses. Several problem space selection productions are
also placed here, as well as several productions that would live in the Johnson space, but appear to
have had their problem space name accidentally left out, and a few for state tracing. Most spaces
contain the productions that could apply in them. For example, Compare-positive-integer and Memory
contain a fair number of productions. The large number of Johnson problem spaces are used for
look-ahead search.

The knowledge that can be applied in each space is not always displayed. Knowledge can migrate
through learning, and this is represented by lines of connectivity, and later through chunks. Not all the
knowledge that can be used by re-entrant problem spaces is shown. Only the highest version of each
problem space is used to hold the knowledge for all of the instantiations that might be created. In some
problem spaces, when an impasse incurs, an instantiation of the original problem space may be
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Figure 6-27: Normative display of Sched-Soar showing the productions in each problem space
as chunks on the chunk wall to the right of each problem space.

instantiated and selected again as a problem space to resolve the original impasse. These are re-entrant
problem spaces. In Sched-Soar the Johnson problem space (named after the original algorithm’s
designer) is re-entrant, and several, but not all, of the concurrent instantiations that would exist during
problem solving are shown.

The knowledge in each problem space has to be measured in terms of productions. Although this
certainly appears to be an imperfect measure, there is no other coherent metric. The generality of the
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productions might be measurable through the number of clauses, but in the quest for accuracy, even
that should be adjusted for the frequency of the features tested in the environment. The number of
operators is another possible metric, but they vary even more than productions in size and generality.

Assigning chunks to problem spaces. The algorithm that assigns productions to problem spaces is a
simple one that uses heuristics to classify which problem space to place a production in. It is used
when new chunks are learned, and when both previously learned productions (chunks) and hand-
written productions are loaded at a later time and are noted for display as on the chunk wall. The SX
display first attempts to find a problem space name in their condition. If one is found, then the
chunk/production is assigned to that problem space. If one does not exist, the addition algorithm next
checks for an operator name in the conditions. If one is found, SX checks each problem space in the
order they were created. The first problem space that has an operator by the same name is used. Next,
if there is an active goal stack, then the lowest active problem space is used, which is where a learned
chunk would have placed its results. If a problem space cannot be found by any of these means, then
the production is placed in a dummy graphic problem space called Every-Space, indicating that
presumably (and this is an assumption) the production could fire in any space. In practice, the
production will often have conditions that can only be matched in a subset of the problem spaces.

6.2.2 Descriptive displays of the model’s performance

Although most figures in this document are normative descriptions, for most users, the SX graphic
display primarily serves as a descriptive display of the models’ behavior by graphically displaying the
goal stack and its contents. Starting with the top goal, each context level element that is selected gets
displayed as a graphic element, and they can be examined with the working memory walker described
in the next section.

Because the problem space level objects persist over time in the SX graphic display, a declarative
model of the structures in the productions is created. This can support simple discoveries about
models. Until Soar and then TAQL were run with the same graphic display, a mistake really, the
developers of TAQL and Soar did not know that they used different top level problem spaces. TAQL
uses Top-space and Soar uses Top-PS. In the graphic display, they appeared as two different problem
spaces — in a textual display this difference went unnoticed for a year.

Figure 6-28 shows Sched-Soar during a run. The problem space names and locations have been loaded
from a previously created description. If the problem spaces were not preloaded, they would appear in
several columns top to bottom starting in the upper left corner. The black lines connecting problem
space level objects in the display indicates their selection order in the stack.

Selected context item. The context element last added to the stack, such as a state or problem space, is
treated as the "selected” context element and is shaded. Clicking on a context element that is not the
latest one added (i.e., not "selected") also will select it and display its name if it is not displayed.
When Soar is running, the graphic window will scroll to make the selected context object visible if
auto-scroll is turned on. Figure 6-26 includes a selected problem space. In Figure 6-28 the selected
context item is the Less-than-or-equal operator in the Analyze problem space.

Problem spaces. Problem spaces are displayed as triangles. Their names are displayed at their upper
left hand corner. Any traced attributes are displayed after the name separated by a colon. Problem
spaces can be moved around with the mouse, and when double clicked upon, a problem space
examiner window will be created. The bold text in their examiner windows can be moused to create
further examination windows of goals, operators, and states, and of their substructures.

Goals, states and operators. Goals are displayed as large circles. Their ID is displayed by default.
Their type (impasse and attribute, e.g., operator no-change) is displayed on their creation, and it gets
smaller when a problem space is selected to make room for the problem space triangle. States are
displayed as squares. Their name is not displayed by default. Operators are displayed as small circles.
Their name is displayed by default. These types of objects, when double-clicked, will display their
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Figure 6-28:
Example descriptive display of Sched-Soar at decision cycle 27. The chunks reported as
belonging to each space are not learned chunks, but are the model’s own productions loaded as
chunks and assigned to spaces based on the algorithm presented in Chapter 6 on the graphic
display.

contents in a simple examiner window as shown in Figure 6-29.

Chunks. Chunks are displayed to the right of the problem space that the SX display believes that they
will apply in. They are displayed as a dark black box on the decision cycle that they are created and
later as a hollow box. When chunks fire, they explode visually, and, optionally, beep. They also can
be set to display their ID when they fire or are created. To make it clear which chunks fired, the
exploded chunk remains until the beginning of the next decision cycle. Similarly, newly created
chunks remain dark after their creation until the beginning of the next decision cycle. The small block
in black next to the Analyze problem space in Figure 6-28 is a newly created chunk, and the white
filled block is an old chunk.
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6.2.3 The working memory walker

Besides examining the global structure of the models, users will need to examine the structure of the
components. Table 6-22 lists the requirements that users need from this type of display to examine
working memory. This display task is similar to displaying other graph and structure examiners.
Often graphs like this are examined by displaying the whole graph on a sheet. The user can open and
close leaf nodes, and if the graph is too large to display all at once, the user is provided with a window
on the graph that can be scrolled around.

Table 6-22: Requirements for the working memory graph examiner.
¢ Click on objects to examine them.
¢ Hide objects.
¢ Do not require lots of scrolling.
¢ Examine memory all the way down.
¢ Look at multiple objects at once, perhaps from various levels.
¢ Hide sibling subtrees.
¢ Hide parent links that are not informative.
¢ Update structures as Soar runs.
¢ Run quickly enough not to significantly degrade performance.

¢ Be relatively easy to implement.

A design to meet these needs does not appear to require a single large window to display the graph.
Actually, a single window design cannot meet these requirements, so a different design was tried here.
The global display was extended so that users could click on the objects that represent the global
structure and have them open up into similar windows, all the way down. This design appears to
satisfy all the requirements in Table 6-22. Figure 6-29 provides an example display examining a tied
operator and its substructure in Rail-Soar (Altmann, 1992).

A window displaying the selected item can be created by typing "e" for examine on the display (also :e
or e in the Command Interpreter), by selecting the "Examine selected item" option on the pop-up
menu, or by double-clicking on the desired object. Items in bold text in problem space examiners and
all objects in other examiner windows can be clicked on to create further examination windows, all the
way down. If a constant value is selected to be examined, the examiner beeps when the constant is
selected to be opened. The traced attribute values that would normally be displayed in a trace are

displayed as the object’s name when it is created, and used as the window title when the object is
examined.

Since this display has been implemented, a few users but not many, have noted that it would be useful
to be able to modify Soar’s working memory directly with this tool. This has not yet been
implemented, it is not crucial for few users have noticed it, but this capability might support new
debugging methods, and should be added in the future.

The examiner windows during a run. Examination windows contents are always updated after every
macrocycle and by default after every decision cycle and elaboration cycle. They can also be updated
by calling update or up in the Soar Command Interpreter. There is no such thing as a free update, so if
a user wishes to update less often, they can do two things. For a single modeling session or part of one,
they can select that as an option from the DSI and Soar parameters dialog box. For a long term
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Figure 6-29:
Example display of examiner windows of Rail-Soar (Altmann, 1992). The Switch problem
space has been opened, and the impasse goal g115 has been opened from it. From within that
examiner window (labeled "gl115") the mI04 operator was opened, and then the desired
attribute of that, Car c32, has been opened from within the operator examiner by clicking on it.
A Soar-mode editor is on the right.

change they can modify their initialization file.

Providing a visual display of the contents of working memory while the model is running can be very
informative. For example, during a demo of NL-Soar with an examiner open on the top goal, it was
observed that the top goal had two top-level problem spaces to choose between. This was not known
to the NL-Soar implementors, and was caused by a duplicate production creating acceptable,

indifferent problem spaces.

6.2.4 A pop-up menu and dialog boxes to drive the display

Figure 6-30 shows all the dialog boxes and the pop-up menu that can be used to run and modify Soar
and the SX graphic interface. The SX graphic display is in the upper right. Moving clockwise, the
first object is the pop-up menu that the user obtains by clicking on the graphic display. By default the
menu will stay up until it is iconified or exited, but the user can set the menu to be a true pop-up only
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menu.

Each item consists of a "menu label" followed by the keystroke accelerator equivalents (if any)
available for typing on the graphic window, or typing to the new Soar Command Interpreter. If
multiple commands are available, they are separated by a "I" between types and by commas within a
type. The menu support running the model in a variety of ways, including a new unit called a
macrocycle. A macrocycle is a user set-able amount that can be measured in decision cycles and in
problem space level units such as "until the 3rd operator has been selected”". This menu is also used to
access all the dialog boxes. The menu also includes some general graphic commands, such as
examining a graphic object or taking a snapshot.
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Figure 6-30:

The pop-up menu and dialog boxes within the SX graphic display. Moving clockwise, the
pop-up menu is followed by a GNU-Emacs window, which has the Soar process buffer as one
of its windows. The DSI help window is below that, partially obscured. This help window is
accessible from the pop-up menu, and provides general guidance for how to get help, mostly
through Soar-mode. At the bottom right is the static display menu that allows the user to create
static views of a model on the problem space level. To its left is a dialog box for modifying
some of the Soar parameters, and some of the graphic display’s parameters. Next to that, on
the bottom and left, is a dialog box for setting the Soar learning algorithm. Finally, there is a
dialog box for setting the macro-cycle.
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6.3 Creating and modifying the model

The analyst needs to create and modify the cognitive model by writing knowledge as productions or
TAQL constructs. The ability to informally test the models for functional performance even before
comparing it with behavior must be included in this requirement. As structured, integrated editors for
Soar and TAQL programs, Soar-mode and TAQL-mode support these needs. They are integrated with
Soar — they provide a facility to start up a Soar process and can communicate directly with it. In
particular, Soar-mode provides a command line interface that augments the Soar Command Interpreter
when it is available and replaces it when it is not. They are structured because they are designed to
treat the structures in Soar programs, productions, and the structures in TAQL programs, TAQL
constructs, like other structures within the editor. Users can move between them, cut and paste them,
directly load them, and examine these structures as they appear to the Soar process.

6.3.1 Soar-mode: An integrated, structured editor for Soar

Soar-mode (Ritter, et al., 1992) provides a set of commands to manipulate Soar objects more directly
and allows the user to start a Soar process. The user is provided menu items and keystroke commands
that can quickly pass various sized portions of Soar tasks to the connected Soar process. Table 6-23
lists the major functionalities provided by Soar-mode.

Novice users can drive Soar-mode (and TAQL-mode) with a menu. After each command is executed a
description of any equivalent keystroke accelerators is displayed to the user, providing a path to
expertise. The user can also query a menu (select the "?" item that is provided or type a space) for a
list of the keybindings of the menu items.

Soar-mode is built on top of a Lisp editing mode for GNU-Emacs called ILISP (McConnell, 1992),
which is similar to, and emulates many of the functions in the Lisp machine programming environment
(Greenblatt, Knight, Holloway, Moon, & Weinreb, 1984). The underlying functionality of that mode
and GNU-Emacs are also available.

Table 6-23: Overview of the functionality offered by Soar-mode.

e A structured editor for Soar productions and for loading productions, regions, and files
directly into a running Soar interpreter.

¢ The ability to treat Soar problem spaces and operators as levels in an outline, performing
the usual outline processing functions on them.

e Commands to test and examine productions bound to keys and mouse buttons that are
smart enough to tell which productions they are in or over.

e Complete on-line documentation for Soar, Soar-mode, the Soar default productions, and
the Soar source code.

¢ Functions to generate and maintain informative source code file headers.

e Tags file support for Soar productions (i.e., find-production-source-code) to enable fast
and easy retrieval of production’s source code.

¢ Support for running one or more Soar processes in separate buffers, and commands for
interacting with these subprocesses.

¢ Support for Common Lisp programming (this is the system underlying the current
implementation of Soar 5, and may disappear in later releases when Soar moves to C).
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6.3.2 Taqgl-mode: An integrated, structured editor for TAQL

Tagl-mode (Ritter, 1991) builds upon the basic capabilities in the GNU-Emacs editor and a template
system extension (Ardis, 1987) to provide users with the ability to enter TAQL constructs by filling in
a template. When users execute the command to insert a template, they are offered the menu of
templates shown in Figure 6-31. Figure 6-32 shows an example template as it would initially appear in
a buffer. During expansion, commands to expand the current TC are explained in the mode line (the
reverse video line at the bottom of each buffer) or the message line (the line at the very bottom of an
GNU-Emacs display). Often the user is simply queried with yes/no questions about inclusion of
optional clauses and expansion of clauses. At other times, they are presented with a menu similar to
the selection menu. The heart of the templates is entered as text. The ability to auto-complete names
upon a keystroke command, already extent in Emacs, is highlighted through display on the Taql-mode
menu, and by rebinding it to a new key. Encouraging the use of auto-completion helps keep variables
spelled the same way each time, and cuts down on the number of keystrokes to enter a TAQL
construct.

PROBLEM-SPACE-PROPOSAL-AND-INITIALIZATION:
propose-space:
propose-initial-state:
propose-task-state:

OPERATOR-PROPOSAL:
propose-task-operator:
propose-operator:

OPERATOR-SELECTION-and-EVALUATION:
prefer:
compare:
evaluate-object:
evaluation-properties:
operator-control:

OPERATOR-APPLICATION:
apply-operator:

GOAL-TESTING-and-RESULT~RETURNING:
goal-test-group:
result-superstate:
propose-superocbjects:

ELABORATION:
augment s

OTHER-TEMPLATES :
the-0SU-production-templates:
sp: ; the simple sp
TAQL-program-template: ; Yost’s outline

Figure 6-31: TAQL-mode templates menu.

6.3.3 The Soar Command Interpreter

The SX display is run with the new Soar Command Interpreter (SCI). It provides a better command
interpreter, one tailored to Soar. The prompt of the Soar Command Interpreter has three fields: a Soar
Command Interpreter title ("SCI"), characters indicating the current reader syntax, and the current lisp
package. This prompt is easily changed. The read table in Soar interprets commas as preference
syntax; Lisp normally interprets them as part of the backquote macro. In the prompt, "Is" indicates that
the Lisp interpretation is used, while "ss" indicates that the Soar syntax is used. For example, the
prompt "<SCI Is:user>" indicates that the user is running the Soar Command Interpreter, the Soar
reader is set to Lisp syntax, and the current lisp package is the user package. The SCI accepts
keywords that specify an action for the graphic display or Soar. These commands can begin with or
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(propose-space {propose-space-name}
{space-proposed)
{subspace-function-clause}
{?when-conditions}

{?copy-clauses}

{?rename-clauses)

{?new-actions-specs)
{?use-superspace-top-space-or-id-clause}

? indicates optional clauses,
! indicates mandatory expansion (usually user doesn’t see this)
plurals indicate multiple copies may appear, e.g. when-conditions.

Figure 6-32: Example TAQL-construct template.

without a colon. Table 6-24 lists the most important commands in the SCL

Table 6-24: Most important commands in the Soar Command interpreter (SCI).
¢ The ability to run ahead based on the problem space level, such as next operator.
e Short cuts for toggling the reader syntax and the lisp package.
* Pop up an examination window on the currently selected PSCM level object.

* Run ahead one macrocycle. The default value for a macrocycle is 1 decision cycle. Any
open windows on PSCM items are updated each macrocycle.

¢ Any number runs the model N macrocycles.

* Type the initial letter of any problem space level object (goal, problem space, state,
operator, chunk) to run to the next new occurrence of that object.

¢ Redo the last successful command.
¢ Take a snapshot of the display for inclusion in documents like this one.

* When the user types "help" or "?", help is provided as a listing of the keywords and their
effects. The help message is automatically generated from the commands.

¢ Anything else gets read, evaluated, and printed.

6.4 Supporting the requirements based on the whole process and its size

Besides the direct requirements of aligning the predictions with the data and starting to interpret their
comparison, the DSI supports the five global requirements based on the whole process and its size.

6.4.1 Providing consistent representations and functionality

In the DSI, while each of the tools can stand alone, they also know about the others, and can interact
appropriately with them. For example, commands executed from the menu on the graphic display
window can request buffers to appear in Emacs. (In the best of all possible worlds, if the other tool is
not present, something appropriate still happens.) Similarly, commands in Soar-mode can run
commands in Soar directly. In each tool and across tools, some care has been taken to provide
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multiple entry points. That is, each command is available in each tool and often in a variety of
appropriate and similar ways. For example, there are several ways to run the init-soar command; one
can type (init-soar), :init, or init to the Soar Command Interpreter, choose Init on the graphic display
menu, or type an "i" on the graphic display window. Help is provided with each tool to facilitate
learning the other entry points. For example, the graphic menu item for init-soar includes a listing of

the other expressions of this command in the other modules.

Because they can communicate, the various modules in the DSI are also able to use each others
display. Users can request objects be displayed graphically from the Soar Command Interpreter, and
the graphic display, when chunks are clicked on, can display them in Emacs buffers. As an additional
example, Soar has been augmented with a command called continuous-match-set. This command sets
up machinery so that after every elaboration cycle Soar prints out which productions will fire on the
elaboration cycle (the match set). If Soar-mode is available, they get displayed at the top of a separate,
scroll-able buffer. If Soar-mode is not available, they merely get put in the trace.

The components of the DSI also interact with Spa-mode and the measures of fit. Upon the user’s
request, Spa-mode can query the graphic display to obtain a listing of the operators in the current
model, and the trace can be inserted in the spreadsheet. Spa-mode can then use these for exploratory
coding of data. The displays of fit organize their data using the names of the operators obtained from
the graphic display as labels on the display.

6.4.2 Automating what it can: Keystroke savings

The model manipulation interface does not offer any large pieces of automation such as automatic
alignment or display creation. What it offers is a large number of small automations. Models can be
loaded more quickly, some pieces of functionality are directly accessible. The largest small
improvement has been to create functions to perform frequent tasks, and bind them to keystrokes and
command names in Soar-mode, the Soar Command Interpreter, and the SX graphic display.

The keystroke model of Card, Moran, and Newell (1981; 1983) predicts that as a first order effect, the
amount of time performing a task will be proportional to the number of keystrokes needed to perform
the task. Table 6-25 shows the savings for several common tasks that Soar-mode provides over
interacting with a plain Soar process.

The savings appear to be considerable. The measures in this table are only an approximation of the
true savings because they include many simplifying assumptions. The measures do not include the
time to plan, but it should be small for most of these actions, and the interactions with Soar-mode are
more direct and should require less planning. Some of the more complicated commands not shown in
Table 6-25, such as running the model to the next problem space, would offer further savings because
they would require many more keystrokes and would include several mental operators.

6.4.3 Providing a uniform interface including a path to expertise

The DSI has been designed to accept multiple entry points and names for commands. Many
commands can be executed in a variety of windows, with a variety of names. You can choose the way
that best suits you, and the work that you are currently doing. For example, you can init-soar by typing
to the command interpreter ":init", "init" (as long as the variable init is unbound), or (init-soar), by
selecting init-soar on the graphic display pop-up menu, by typing "i" on the graphic display window
itself, or by typing in Emacs, ESC-x init-soar.

Each command across the multiple possible entry points is consistent: they share the same name, or
when appropriate, they use (so far) single letter abbreviations. While several toolkits are used, only
one designer has integrated them, so while perhaps screwy, a method to the madness also should be
observable (Brooks, 1975).

Menu driven for novices, keystrokes for experts. Each component of the DSI (SX graphic display,
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Table 6-25: Keystroke savings for Soar-mode accelerator keys, the Soar-mode menu,
the SCI, and the SX graphic display compared with the default Soar process.
(All measures in keystrokes unless otherwise indicated.)

PLAIN SOAR PROCESS SOAR-MODE
COMMAND Keys Keys Speedup Menu Speedup
Load file 24 3 8.00 7 3.42
(using 7 char long name)
Excise production 25 3 8.33 7 3.57
Load production
with keys 14 3 4.66 7 2.00
with mouse 7 3 2.33 7 1.00
Trace production 24 4 6.00 7 3.42
Production matches? 31 4 7.75 7 4.42
Continuous match set 8 1 8.00 1 8.00
(Just look for Soar-mode)
Run Soar 1 DC 9 3 3.00 na na
Open on-line Soar manual 49 7 8.00 7 7.00
Find out reader syntax 14 9 1.55 na na
View function documentation 35 3 11.66 7 7.00
PLAIN SOAR PROCESS SCI SX Display
COMMAND Keys Keys Speedup Keys Speedup
Run model 1 decision cycle 5 2 2.50 1 5.00
Find out reader syntax 14 1 14.00 na na
(just look for SCI)
Examine an object (apr) 9 2 4.50 2 4.50
Initialize Soar 12 2 6.00 1 12.00

Soar-mode, and TAQL-mode) can be menu driven and keystroke driven. Menus lay the commands
out for the user, users need not memorize them. Each menu also displays the equivalent keystroke
shortcuts. If the user does not know how to do something, they can check the menus. The graphic
display menu is available by clicking the middle mouse button, and then selecting an item with any
mouse button. In Soar-mode and TAQL-mode, Control-C Control-M will bring up a menu of
commands and sub-menus, and in later releases of GNU-Emacs this will be saved to provide menu
functionality. Menu items can be selected by typing their first letter. Further explanations and key
binding information can be obtained by typing a "?" or a space. After the command is executed, the
keybinding is echoed in the message area.

Previously there was little documentation for Soar on-line, including the manual ("someone might take
it and improve it"!), and the documentation for individual functions were awkward to obtain; the user
had to type the cumbersome command "(documentation ’<function-desired> ’function)”. This is not
uncommon for modeling systems, Lisp often comes that way out of the box. We consider on-line
documentation to be a useful adjunct to hardcopy versions, so Soar-mode includes a uniform
documentation accessing mechanism available as a menu item. Users can now obtain the main Soar
manual and other manuals (such as the editor manuals and release notes) via the main menu.

6.4.4 Providing a set of general tools and a macro language

The DSI is designed to support a general activity, inserting knowledge into a Soar model, and is itself
general. It can be used to create any Soar model, and is designed to be able to display any Soar model.
Macro-languages and an interpreter are available for each component. Common Lisp is available with
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the graphic display, and GNU-Emacs Lisp is available with the structured editors, Soar- and TAQL-
mode. The source code is provided for each component, so what is poorly documented or not
documented in sufficient detail can be found in the source code.

Hooks are places to customize a system’s behavior by calling a user-supplied function at a set point,
such as at startup, or after a file has been loaded. Several have been added to Soar5, and the standard
set (loading and initialization) for Emacs modes have also been included. The appropriate user-
supplied functions, if any, are called after Soar is initialized, after each decision cycle, and after a
macrocycle.

6.4.5 Displaying and manipulating large amounts of information

Objects that the programmer (or Knowledge Engineer if you prefer) has in mind, such as productions,
TAQL constructs, emergent objects in Soar that appear as members of the goal stack or attached to a
subpart of it, are treated as first class objects that can be directly loaded, excised, run, and examined.

The SX graphic display uses a new, node-based algorithm for browsing the working memory
structures in the goal stack in a natural manner, and for displaying how the contents change while the
model runs. The structures inherent in a model, most notably the problem spaces (states and operators
too, but they are not shown as nicely), are examinable after a run in the graphic display, and their
names and frequency of appearance are available from the pscm-stats command. Which structures are
in the stack is graphically depicted.

The structured editors provide support for manipulating the productions and TAQL constructs directly.
Direct manipulation of Soar models on the appropriate level provides a significant drop in the number
of keystrokes required.

6.5 Lessons learned from the DSI

In addition to providing an environment to support manipulating the model, its initial use unrelated to
testing process models provided several lessons about the usability of Soar software and the behavior
of Soar models in general.

6.5.1 The relatively large size of the TAQL grammar

Codifying and supporting the creation of TAQL constructs in a structured, template driven editor
required enumerating them in a formal grammar. Table 6-26 displays the sizes of each version of the
TAQL grammar with respect to several other languages that template-mode provides. Included for
comparison purposes are set of templates used at The Ohio State as part of Taql-mode. These
templates are based on the problem space level operation templates that were included in the Soar 5.2
manual (Laird et al., 1990) as plain text. From left to right, the columns display the raw size of the
templates, the total number of nodes in the grammar, and the number of grammar nodes automatically
expanded for the user as the templates were completed, and the size of each set of templates in nodes
relative to the smallest template set, excluding any auto-expanded nodes.

This table shows the relatively large size of the TAQL grammar. It is quite possible that the coding of
the TAQL grammar is more thorough than the coding of the other grammars, and an examination of
the grammar for Emacs Lisp confirms that it is missing perhaps half of the special forms. However,
the TAQL 3.1.4 grammar itself is not complete, with approximately 90% of its constructs represented
in the templates. The size of its grammar may have impeded TAQL’s acceptability and learnability.

6.5.2 Behavior in Soar models is not just search in problem spaces

Models of human behavior in Soar have often been described exclusively as search in problem spaces.
Table 6-27 lists several places where the behavior of Soar models have been described this way (and
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Table 6-26: The size of the TAQL grammars within TAQL-mode and the
programming languages supplied with the underlying template-mode.

Raw size Relative size Total Auto-expand Relative size
in char. to elisp Nodes Nodes to elisp
(in chars) ’ (in nodes)
TAQL (3.1.2) 29.40 k 10.50 238 99 5.34
TAQL (3.1.3) 31.10 k 11.10 287 93 7.46
TAQL (3.1.4) 35.80 k 12.78 306 98 8.00
Soar (SPs) 11.60 k 4.14 31 0 1.19
c 2.70 k 0.96 34 0 1.30
Pascal 3.40 k 1.21 44 0 1.69
Elisp 2.80 k 1.00 26 0 1.00

yet there are other descriptions where the relationships between problem spaces and search in Soar
models includes other alternative formulations, e.g., Yost & Newell, 1989; Newell, 1991; Waldrop,
1988). Even the cover of Unified theories of cognition (Newell, 1990) presents a schematic of this
type of search. If the behavior of the models is viewed this way by their authors, it will color their
thinking, and percolate out to other audiences, as indicated by the last quotation.

Table 6-27: Descriptions of Soar and Soar model’s behavior as search in problem spaces,
presented in chronological order except for the final quote (All italics in original).

* "Soar is organized around the Problem Space Hypothesis (Newell, 1980b), that all goal-
oriented behavior is based on search in problem spaces.” Rosenbloom, Laird, & Newell,
1988, p. 229

¢ "The Soar architecture is based on formulating all goal-directed behavior as search in
problem spaces."” (The Soar group, 1990)

¢ "The search through the [problem] space can be made in any fashion", Newell, 1990, p.
98.

* "Soar formulates all tasks in problem spaces, in which operators are selectively applied to
the current state to attain desired states." Lewis, Huffman, John, Laird, Lehman, Newell,
Rosenbloom, Simon, & Tessler, 1990, p. 1035.

* "All tasks are formulated in Soar as search in problem spaces, where operators are applied
to states”, Simon, Newell & Klahr 1991, p. 435.

* "One of the most unique characteristics of Soar is its view of all goal-directed cognitive
behavior as search in problem spaces. Each problem space consists of a set of states and a
number of operators to move from state to state. Given a goal to achieve, Soar first selects
an appropriate problem space, then selects an initial state, and then selects an operator that
it applies to that state to get a new state. This process continues until a state that satisfies
the goal is reached." Ward, 1991, p. 13.

¢ "The basic premises [of Soar] are these: ... 4: That all intelligent activity can be
characterized as search through a problem space;" (Norman, 1990)

What is search in a problem space? Search in Soar would appear to describe primarily two types of
behavior. The first is the application of numerous operators in a single space. Backup, when
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necessary, would be performed by other operators to modify the state. Soar4 models often used this
technique when they performed search. These operators could also use other knowledge sources
through impasses to other problem spaces. If the operators were all indifferent, there would not have
to be a conflict leading to a tie between operators and the associated impasse. Search in this instance
would have a large number of operators applied per problem space, and a large number of states.

The other way that search could be performed would be to have several available operators in a
problem space, but not have them indifferent to each other. An impasse would arise of which operator
to apply, and a goal stack of problem spaces used in look ahead search would be created, like the one
in Sched-Soar shown in Figure 6-27. This type of behavior would also result in numerous operators in
the lookahead space, and a large number of instantiations of the lookahead space.

Types of behavior that are probably not best described as search in problem spaces are situations where
there is a series of operators applied, and each operator is the only possible operator and where the
operator is readily available. That is, where there is no uncertainty involved in the creation, selection,
and application of the operator. That is not to say that such situations will not arise in problem spaces,
or that it cannot be represented in terms of the problem spaces, just that these are not situations best
characterized as search in problem spaces.

Visual displays of search. With the graphic display having provided dynamic pictures of several
model’s goal stacks and counts of how many operators the models use and how many operators are
used in each problem space, we can now make the argument that search within a single problem space
does occur, but it is not the only mode of activity and is too weak of a description of how current
models in Soar use knowledge. The graphic display’s representation of the goal stack shows that the
models are not just performing search in a problem space. Observing the goal stack for Browser-Soar
(Peck & John, 1992), Seibel-Soar (Ritter, 1988), Sched-Soar (Nerb & Krems, 1992), MFS-Soar
(Krishan et al., 1992), NTD-Soar (John, et al., 1991), NL-Soar (Lehman, Lewis, & Newell, 1991) and
Rail-Soar (Altmann, 1992; Newell, P., Lehman, Altmann, Ritter, & McGinnis, forthcoming) indicates
that most of the time these models do not apply many operators in a row before subgoaling, and
instantiate nearly as many problem spaces as they do operators. After much worry and concern about
how what happens when operators walk out the rear of problem spaces, it does not seem to happen all
that often. Indeed, only two systems (Red-Soar: (Johnson & Smith, 1991), Able-Soar, Jr.: (Levy,
1991; Ritter, 1992)) have seriously overrun the current limitation of being able to display four or five
operators in a problem space before they are no longer graphically in the triangle.

Several models do perform explicit search as part of their behavior. Sched-Soar, Rail-Soar, NL-Soar,
and Groundworld, at least, sometimes do it. For example, part of the structure of Sched-Soar’s search
can be seen in Table 6-25 and Figure 6-27. Other models do not perform any search on the problem
space level. If the operator support displays for Browser-Soar are examined (the Appendix to Chapter
7), one can conclude that Browser-Soar’s behavior is routine (and this is indeed what Peck and John
intended and claim). The operators are applied in a very orderly way. A system that was performing
search that depended on the information it found would presumably be less regular.

Table 6-28 presents other possible measures for characterizing behavior as search: the number of
operators, the number problem spaces, and instantiations of operators and problem spaces over a
typical task episode (as defined by their authors) for several Soar models. In each case, the number of
different operator types in each problem space is relatively small (the largest average ratio is
approximately 4 operators per problem space in Red-Soar), and the average number of instantiated
operators per instantiated problem space is small too.

The proportion of goals that are operator no-changes are shown for each of the programs in Table 6-28.
Several of these programs do use lookahead search, but the ratio of operator no-change impasses
suggests that these programs are not spending a substantial amount of their effort performing
lookahead search.

There are also some unusual, very non-search-line behaviors exhibited by the models in Table 6-28.
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Table 6-28: The number of operators, problem spaces, and instantiations of these
per run for several Soar models.

Descriptive Instantiations
Nodel Oops Spaces Ratio OP nc Ops Spaces Ratio Max
(opa/ps) goal (ops/ps) (ops/ps) Space
ratio
Browser-Soar 31 18 1.72 0.87 238 52 4.57 7.22 Evaluate-items-in-window
Groundworld 33 15 2.20 0.92 531 74 7.17 179.50 Wait-external
Liver-Soar 55 20 2.75 0.72 208 44 4.72 15.66 Check-features
MFS-Soar 69 23 3.00 0.96 347 92 3.77 6.33 Input-variable
NL-Soar 18 8 2.25 0.56 122 52 2.34 6.33 Check-constraints
all learned 18 8 2.25 0.50 38 2 19.00 37.00 Comprehension
NTD-Soar 42 11 3.81 0.93 779 73 10.67 24.40 sSqagr
Rail-Soar 25 13 1.92 0.73 233 48 4.85 8.00 Eval-state
Red-Soar
plain episode 107 27 3.96 0.94 1258 130 9.67 154.00 Rule-out
*Searchy" episode 109 29 3.75 0.86 923 126 7.32 81.50 Match-hyp-to-antigram
Sched-Socar 11 4 2.75 0.69 866 187 4.63 3.25 Analyze

Red-Soar uses 154 operators in the rule-out space to check constraints when typing blood. The goal
stack and pscm-stats in the SX graphic display indicate that Groundworld (108b, 1992) performs one
9-step look ahead search, and then waits for approximately 270 operators. It is a program designed for
a continued existence, and can keep running after its initial task is finished. NL-Soar, after it has
learned a sentence, performs rather differently from its initial behavior. The "expert" behavior has no
search whatsoever, and directly applies a series of 37 operators to understand the 10 words used in the
example sentence.

Examination of the visual displays of these models suggests that they can best be characterized as a set
of behaviors, including search through problem spaces, hierarchical decomposition of problem solving,
as migrating and combining knowledge sources, and as search within a single problem space. In a
fully learned Soar model, actions just happen automatically in the top space, which is not a search
space at all then. The problem spaces used for search have disappeared. Search may remain on other
levels. There may be the results of previous searches guiding behavior that can be seen as degenerate
search; there may be search going in the external environment; there may be search being performed in
the Rete net to find which productions to fire. But in many cases there is not search being performed
on the problem space level. These other searches are not wrong, but they must be included in the
explanation of behavior of Soar models.

6.5.3 Soar models do not have explicit operators

Problem spaces and their objects, such as operators, do not exist in Soar models in an explicit sense.
Within a running Soar model, neither the model nor the modeler can obtain a list of all the problem
spaces and operators that exist. They are only available to an observer (including the model itself) by
watching the system perform over time, and a history of their appearance and use is not saved
automatically (except by the SX graphic display).

The "operators” (or any problem space level object) that are selected for application are not Operators
(capital 0). A chain of the same operator in the graphic display, all in a row, illustrates that the
Operator is not being applied, but instantiations of it are being created and applied. If the same
operator was being applied, then a chain would not be an appropriate metaphor, but a moving dot
would be. Operator preferences may really be preferences for a given operator, but perhaps they
should be seen as operator instantiation preferences. Or how else could you prefer add(3 4) over add(5
6)? Both appear to be the add operator.
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What is selected then? The objects selected are instantiations of a semantic object, or object instances
generated by an implicit generator. Both the semantic operator and the operator generator are not
available for inspection on the symbol level. They are knowledge level objects, and can only be
manipulated on that level. The symbol level, which the Soar architecture provides, can only
approximate them, and can only obtain them through effort and observation.

This difference between operators and operator instantiations may seem small, but it is necessary to
disambiguate these differences for automatic model testing. When aggregating the results of testing
the model the objects that are supported must first be identified, and represented across runs of the
model. The instantiations are not the theoretical level objects they are often mistaken to be, and cannot
aggregate support. Identifying architectural objects is also necessary to display them.

6.6 Summary

The Developmental Soar Interface supports creating models in Soar by treating model building more
like an Al programming task. Users can load and run code more directly, manipulating productions as
productions, rather than as portions of plain text. By integrating a Soar process within the editor, the
textual representation of productions can be quickly augmented with features found only in the
process, such as how well a production matches the current goal stack and its contents.

The DSI has added several key ideas to building models in Soar. The first is that the theoretical
constructs of Soar models should be displayed. The SX graphic display provides a visual description
of the model’s structure and behavior over time, and the improved trace provides a better linear
description. By aggregating the ephemeral trace over time, the SX graphic display can infer the
structure of the problem spaces.

The second is that the user should be able to directly manipulate the theoretical structures. The two
structured, integrated editors provide commands for creating, evaluating, and examining models in
various ways on the production or TAQL construct level. The SX graphic display provides the ability
to examine objects on the PSCM level, but not the ability to create them.

Implementing and using the DSI has provided some lessons on Soar programming languages on the
behavior of Soar models. Implementing an aid for TAQL programming pointed out the relatively large
size of the TAQL language. Using the graphic display has pointed out two features of Soar models
that are more accessible with a graphic display of Soar model’s behavior. First, that Soar models
include other types of behavior than just search in problem spaces. Second, that within a Soar model,
its basic structures, problem spaces level objects, do not exist in an explicit form. Users and systems
that want to manipulate Soar models will have to create their own representations of them.

Remaining problems with the DSI. The main components of the DSI represented different levels of
support for the user and had different levels of success. The two editors, Soar-mode and TAQL-mode,
are well received, and will continue to be used by a large part of the community given normal software
maintenance. The current version of the graphic display of the model’s behavior and structure has
several problems that will have to be fixed for it (or by future systems) to truly useful.

States remain essentially untraced. This is a problem both for testing predictions against protocols and
for basic model building. What the necessary information is, how to let the user represent it, and how
to provide it succinctly, remains a high priority design issue. Implementing the trace once it has been
designed is probably straightforward.

Users have requested several extensions to SX display. These include the ability to remove working
memory elements and to show how a single production matches over time, but the largest problem
with the SX graphic display has been speed. This is the largest acceptability issue that the graphic
display has faced. People who do not use it, do not use it because it unacceptably slows down Soar. It
has only been truly acceptable where speed is not an issue, such as for teaching novices and for demos,
but the lack of later acceptability has even encouraged some novices to not start to use it. As the Soar
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architecture gets implemented in C, this system should get duplicated in C, but it is unclear that the
relative slow down will not also occur there. Any display, but particularly graphic ones, may always
offer at best a two-to-one slow down compared with the underlying application (Myers & Rossen,
1992).

Several graphic design issues remain. The dynamic structures of Soar in the goal stack are all
represented fairly well. How to represent several of the static structures remains a problem, for
example, how to nicely display the operators in a space; we use a simple way for chunks, can we find a
similar one for operators? Representing the states that exist in a problem space suffers from a similar
problem.

Finally, can we tie creating and editing productions to the graphic display? The ability to click on
chunks and examine them has proved useful in exploring the types of chunks that end being assigned
to Every-Space. Being able to go between a graphic and textual representation is appealing.
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