Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 151

has less operator applications.

Figures 7-43 and 7-44 show the model fit displays for the modified version of Browser-Soar next to
the original versions. These two displays show that the revised model has a denser level of support,
the lines connecting the corresponding model and subject actions are closer together, and the RMSD
and mean average deviation are lower. The rate of decision cycles to seconds ratio is also closer to the
predicted mean, and visually the fit appears to be better. The modified version has slightly worse 2,
more so when the model time unit is decision cycles (.69 versus .59) than for operator applications (.78
versus .75). The correspondence rates in decision cycles and operator applications per second for the
modified model also go down, as less is done.

It is hard to tell if these differences are important. It would perhaps become easier to tell after further
revisions of the Evaluate-current-window operator, and with a more proper regression line (Kadane et
al., 1981; Larkin et al., 1986). These results do point out that it is hard to distinguish learning on the
single problem space level at this time grain. In order to clearly distinguish these two problem space
representations we would have to look at more episodes, more subjects, or further constraints from
data. Given the lack of real difference, parsimony would argue for using the simpler, modified version
of Browser-Soar.

This analysis also calls into question the strict interpretation used. The subject must decide to move
the mouse. The operators that were removed originally represented this choice. With a different
interpretation function, these operators would have been supported and would not have been
removable. As noted in the list of comrections available when the model’s predictions mismatch the
data (Table 2-6), the interpretation function can also change. This case raises the question of how to
interpret data given Soar’s hierarchical operators and state representation. This may remain a problem
for some time.

7.5 Testing and extending the sequentiality assumptions of protocol
generation theory

As noted in their initial description, the relative processing rate displays allow the sequentiality
assumption of Ericsson and Simon’s (1984) theory of verbal protocol production to be tested. That is,
if verbalizations are produced in the order that the corresponding data structures appear in working
memory. There is another aspect to this assumption, that inputs to operators will be reported before
their outputs, but is a more specific form that will not be directly tested unless we run into problems.
A model of what appears in working memory is currently necessary to test this assumption. There are
no other ways to tell when information enters working memory, and thus that it is reported in order.
Having a model of the contents of working memory also allows use to judge if the verbalizations are
retrospective or prospective.

Browser-Soar provides predictions of the contents of working memory while using a specific on-line
help system. By examining the relationship of these predictions with the subject’s verbal utterances in
the ten Browser-Soar episodes, the sequentiality assumption can be tested.

The predictions of the external task actions (mouse movements and button presses) can also be
compared with the contents of working memory, but because getting the order of the external actions
the same for both model and subject is essential for performing the task, in a well developed model
like Browser-Soar there is not likely to be many mismatches. What will be interesting though, is using
the external actions to compute how later (or early) the verbal utterances are.

Finding that this holds will not be an iron-clad proof that this assumption holds. If it is an assumption,
then it cannot be proven, only shown that we meet it. If it is treated more as part of the theory of
verbal protocol production, then there may be similar models of browsing behavior where the
information is reported in a different order, and that the current set of verbal protocols would not match
sequentially. '

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 152

OPERATOR)
Browes B Moded sction
Find-approprete-help
Define-ssercivcit
Genomie-search-cit
Evaluste-search-crit

O« - Seheior

X Conesponding implich mouse bahavior
V' Covesponding verbel wieance

Define-evehamfion-csit
Genersie-ovahmion-cit

[T S OO VO Y Y T A T T O Y0 V0 25 T N O T I O O |
N

Browser-Soar episode 3 :array

.

Foi Doc 4214047 EST 1902

OPERATOR
Hl Modet action

o« tahand
\ X Comenparsding ivpiici mouse bahavior

V' Comeaponding verbel ullersnce

i

Focus-on-current-win

!

g

§
s

g.
| N N SN Y N O O T T N N U O [T N T O Y 0 O Y
N
<
[+] i o
,#l
X
I

NOT MATCHED

Operator applications
Browser-Soar episode 11 :better-array

FriDee 421:4942 EST 1992

Figure 7-42: Operator support displays for the Array episode.
The original Browser-Soar predictions are on the top, and the modified version
on the bottom.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 153

’ Oomun—hﬂrl
X wplicdl anme

Model time in Decision Cydles
300
]

§ .
Model to data slope 9.482 dc/s
AMSD = 81.258 dc
MAD = 60.602 dc
"2= 0.007
o 43 . N = 96 maiched behaviors
T T T T T T
[4) 20 40 60 80 100
Subject time in seconds
Browser-Soar episode 3 :arrav on Dee 702784 EST 102
Dashed ines are range of t ically exp d -p: ratee

8 4
-
2
S S
'6)
3 —
rs T
g §-
=
8_ _.
Model to data slope 6.372 dc/s
AMSD = 60.254 dc
MAD = 50.665 dc
"2a 0504
o N = 96 matched behaviors
T T T T T T
(4] 20 40 60 80 100

Subject time in seconds
Browser-Soar episode 11 :better-array Uon Des 702041 E5T 1962

Figure 7-43: DC time based plots for the Array episode. The original Browser-Soar
predictions are on the top, and the modified version on the bottom.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply
§ _
§ s
g -
|
s 3
g
g Modoltod-u_d;) ,é‘ﬁ”‘"
MAD = 15.16 ope
e 0.792
o N = 968 matched behaviors
88
I T T I T
1] 20 40 60 80
Subject time in seconds
Browser-Soar episode 3 :arrav Mon Ons 702282 65T 1902
3 4
. Q Overt mouse behavics
X mpiicil mouse behewior
n V Vabel isecuce
3
3
o
F g
5 -
g
o
K|
:
£ 37
3
£
B
'S Model to data slope 1.491 ops/s
= AMSD = 11.576 ops
MAD = 10.179 ops
2= 0.767
© N = 96 matched behaviors

{ | - 1 1 1
0 20 40 60 80
Subject time in seconds

Browser-Soar episode 11 :better-arrav o Do 1 02zm 00 ST 1982
Figure 7-44: Relative processing rates displays based on operator applications
for the Array episode. The original Browser-Soar
predictions are on the top, and the modified version on the bottom.

Soar/MT - 21 December 1992

154

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 155

7.5.1 Are verbalizations generated sequentially?

Of the 220 verbal utterances in the ten episodes, 195 can be aligned with the model’s predictions. The
remaining 25 are mostly too short to compare. The remaining segments make up 210 pairs of
immediately sequential utterances that can be tested against the sequentiality assumption. This test can
be performed by eye with the displays, and the initial analyses did this because it was so easy and
direct. The final counts were taken from the data structure used to create the displays.

All 210 pairs follow the sequentiality assumption; for all the pairs, the later segment in each pair either
matches the same model trace action as the first segment matches or a later model trace action. So this
appears to be another constraint that Browser-Soar meets. ’

7.5.2 Are mouse actions generated sequentially?

In a similar way the mouse movements and mouse button actions can be tested for sequentially.
Because these actions were used as fixed points to automatically align the subject’s protocol and the
model’s trace, in order to match out of sequence they would had to have been moved by hand out of
sequence, or items that could not be automatically aligned would have had to be aligned by hand.

Of the 404 mouse actions in the ten episodes, 373 can be aligned with the model’s predictions.® These
373 actions make up 363 pairs of sequentially contiguous actions. Again, a preliminary examination
of the displays showed that none matched the model out of order, and an analysis of the data base
confirmed that.

7.5.3 Does the sequentiality assumption hold across verbalizations and mouse actions?

All the subject’s actions can be tested for sequentiality. As explained in Chapter 5, this can be done by
examining the connected correspondences in the relative processing rate displays. Starting from the
first correspondence and moving along the line of comespondences, a connecting segment with a
negative slope indicates that the second correspondence matched earlier in the model than the first
correspondence, violating the sequentiality assumption. Simply examining the displays shows that
several verbal utterances lag the mouse movements noticeably. Of the 624 total segments, 568 are
aligned with the model’s actions in the ten episodes.]® These 568 actions make up 558 pairs of
sequentially contiguous actions, and 21 pairs do not meet the sequentially assumption, that is, in these
pairs, the second subject action is a verbal utterance that matches an earlier prediction than the first
action that is a mouse action.

The lag of verbal utterances was computed by comparing the decision cycle number of the model
prediction corresponding to the verbal utterance with the decision cycle of the previously matched
mouse action. Figure 7-45 shows the distribution of these times. Across all verbal utterances in all
episodes the average lag was 9 decision cycles, or roughly 1 second. This is an acceptable number,
indicating that while some verbal utterances appear to have been produced quite late compared to the
mouse movements, overall the subject was not providing retrospective reports.

Most of the verbal statements (144 out of 195) match the model’s predictions sequentiaily, not
matching earlier portions of the model than their proceeding segment. Based on their starting points
these utterances can be considered as truly concurrent protocol — it is generated as the subject doing
the task and it matched the predictions of the contents of working memory. The ends of the utterances
~ have not been included in these analyses, although Peck and John included this length in their data set.

9An astute reader may note that there are five more mouse movements matched by subject actions in this analysis than in
the original analysis reported by Peck and John. One of these discrepancies has been found so far, and it was a typo.

10A 1 astute reader may again note that there are five more predictions matched by subject actions in this analysis than in
the original by Peck and John. Even with a semi-automatic tool, analysts will make mistakes.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply - 156

o o Il

T T T T T T 1
-400 -300 -200 -100 0 100 200
Length of lag in decision cycles

Figure 7-45: Histogram of the lags (in decision cycles) of the verbal utterances.

While these segments are not long generally, it is possible that their tail end ceases to be concurrent.

There are two prospective utterances, one in the axis episode, which upon inspection was an typo in
alignment. The segment was properly concurrent, but misaligned by four decision cycles in the
spreadsheet. The other utterance occurred in the Vars episode and is more interesting. It has a positive
offset of 111 decision cycles (nominally 11 seconds). It is hard to see on the relative processing rate
display because it is surrounded by several mouse movements, which is the cause of it being
interpreted as early. When the segment is examined, it turns out that the verbal utterance is not so
much prospective, but that the model’s menu reading ability falls behind the subjects at that point, and
the model has to perform an extra 100 cycles of work before it can match the verbal utterance.

The remaining 49 utterances all lag their previous segment, matching an earlier prediction. When an
utterance lags, it lags on average 38 decision cycles, or roughly 4 seconds. Again this remains a
modest amount. This amount of time is consistent with the amount of time items can exist in working
memory. A very small number, three, lag over 300 decision cycles.

Characterizing the long lags Many short lags of the verbal utterances appear to be partly (but not
completely) an artifact of the Browser-Soar model. The model does not read individual words but
whole screens at a time, which leads to many of the short lags that occur late in an episode when the

subject is reading a help text. Including predictions of reading individual words would remove this
cause.

~ The three longest lags, however, are worrisome. They lag over three hundred decision cycles, and
represent a mismatch on the order of 20 to 40 seconds. The problem space of the operator they match

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 157

has long been removed from the goal stack, and several other problem spaces on that level have been
used as well. When these segments are examined they are found to be statements of the search or
evaluation criteria that occur after the search has started and numerous items have been examined.
While an operator put them on the state, at the point they are uttered, they clearly represent state
information that has been guiding the search for some time. Other operators could be refreshing them,
but if that is what lead to these utterances, then the operator used to interpret them is still the wrong
one.

Finding this lag in the literature. The actual lag of verbal protocols has not been computed in this way
to my knowledge. It requires an architecture that makes predictions about the time to perform a task,
external actions to provide fixed points of reference, and the predictions must be aligned to this detail.
We can see a lag in other data sets, however. The verbal data used to develop HI-Soar (John & Vera,
1992; John, et al., 1990) can be fixed relative to the performance of external actions. The verbal
protocols lagged behind the external actions so much that they were ignored when testing the model.

7.6 Conclusions about Browser-Soar and the TBPA methodology

Having performed these analyses, we can summarize the results into several suggested changes to
Browser-Soar, which is the point of testing a process model. In general, Browser-Soar performed very
well. The operators in the model that performed best were the ones that are essential to browsing
on-line help systems: manipulating the mouse, choosing windows, and evaluating text items. On a
higher level, testing Browser-Soar also generated some lessons for the methodology and for the
environment that should be incorporated into the environment.

This methodology was stretched in a particular direction through testing Browser-Soar. Browser-Soar
and the data used to test it have some very particular characteristics: (a) very close matches, (b) very
routine behavior and typical problem solving by the subject, (c) a highly interactive task, (d) mostly a
mental task (the perception and motor actions were routine). This example application did not deal
with every type of data. It is easy to name several data features that have not been touched: (a) very
bad matches between data and model, (b) perceptually based reasoning, (¢) how to create a model in
the first place, or drastically revise it, (d) tasks that cannot be modeled as search through or in problem
spaces, and (¢) extremely long or short protocols. Adding any of these features to the data and task is
likely to add further lessons and stretch the methodology in a new way.

7.6.1 Some conclusions about Browser-Soar

The analyses performed suggest several ways to improve Browser-Soar. Most, if not all, are known to
the authors of Browser-Soar, but the importance and location of the changes should be clearer after
these analyses. These changes are presented in Table 7-32.

Browser-Soar’s ability to predict large amounts of the data should also be clearer as well. Chapter 2
put forward the idea that analytic testing would not only point out where to improve a model, but it
also would make it more believable by presenting it more clearly. Several diagrams and tables were
created in performing these analyses that should make the model more believable. There are more
visual descriptions of the model (Figure 7-33), its performance (Figure 7-35), a rough measure of the
‘amount of knowledge in each problem space (Figure 7-36), and a picture of the calling order of its
operators (Figure 7-38). Aggregated measures of which operators and problem spaces are used and
how often have been presented (Table 7-29). The analytic displays show when operators are
supported, and by which type of data (Figure 7-38 and the Appendix to this chapter), and the relative
processing rates of the model and subject over time (Figures 7-39 and 7-40, and the appendix to this
chapter). '

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 158

Table 7-32: Suggested changes to Browser-Soar based on analyses performed.

e Operators without evidence, Scroll, Page, Drag, and Click-on-item, must be considered
for removal from the model, or be supported with non-protocol data such as aggregate
timing results.

o Fitt’s law should be included in the model of moving the mouse.
¢ A more complete Read operator for reading text that takes longer.
o A less complete Read operator for reading menus faster, more like scanning.

¢ Qverall, the model’s performance is slightly lean, but this must be reevaluated after some
other problems, most importantly the reading operator, have been improved.

¢ Include learning, and decrease the goal stack depth.
¢ Include state information in the trace and match to it.

7.6.2 Some conclusions about the methodology

Performing these analyses pointed out that it is nearly always good to have context, and sometimes it is
required. Just providing information on a single item is often not enough to understand the item. The
item’s context is also needed. In several places, particularly in examining the model fit displays, users
can now click on a data point and get a segment and a selectable amount of its context displayed.

Different grain sized operators and different commitments to operators lead to problems in the
analysis, and should be avoided if possible. Soar in particular, as a general architecture for
intelligence, provides the ability to model every action. As a unified theory of cognition it highlights
the desire to provide a complete model, covering all the data. By definition, some portions of each
model will be weaker than others.

Soar models are much finer in their grain size than Newell and Simon’s (1972) systems; more actions
occur that cannot be tested, such as goals and many problem spaces. Other items might be found, but
are not found in every episode. It may be desirable to omit these items automatically and appropriately
when performing an analysis.

While Newell and Simon (1972, p. 179) propose that states and operators are equivalent, the reanalysis
of Browser-Soar shows that they are only equivalent for information purposes. When the timing of the
correspondences is included, they are not equivalent. States, and the information they contain, last
much longer. It may be possible to continue to match verbal utterances primarily to operators, but
when this breaks down, one must match to the state. Using the state properly is not a trivial task, and
will require designing and extending the trace. It will require further mechanations in the
interpretation algorithms to find the appropriate items to support in the model when this does occur.

No problem spaces or goals are used to interpret the subject’s behavior. Together their creation and
selection make up a substantial portion of the model’s behavior. What it would mean to match their
- prediction is not clear, problem spaces may be supported by their operators and states, goals by the
indication of a lack of knowledge in some way. If they will not be directly supported, the cognitive
modeler may desire to removal them from the trace if not the model.

Finally, we see that testing the model points out that the model is not complete without rules describing
how to interpret the data with respect to the predictions. For example, the Page, Scroll, Drag, and
Click-on-item, were considered for removal because they were not supported. A more generous
interpretation of the mouse actions might have included the decision to click (e.g., to Page) as being
supported as well.

Soar/MT - 21 December 1992

Appendixes to Chapter 7

Appendixes to Chapter 7

159

1 Alignment of the Write episode of Browser-Soar

Wod Sov 25 14135142 1993 - Dismal (0.83) repoct for weer ritter
Poc file /afe/es.emu.odn /o9 i -ope
To prist wse “enscript ~r -¢ -@ -fCouries? 166 /afs/es.emu.edu/wsar/ritter/spa/brouses/write/writel. .dp”
A] []] L] L I J L1
4 vapesk 25-Sep-91 revised 13-Jen~932 -FER PeJun~-93 To de:
1 Prem origisal by der, 16-M and verbal trasseription by s.esch, Jun-91
3 Treascription of the 15-Jus-0# ¢f browser tage 2
3
L3 for abeut the values of varisbles te the soreea.
3 Proviows Gsal: dsfine the 'lesp’ ceantrzust that will label the x-axia
€ Onzzeat Gsal: te figure out how te write the valwe of ‘EmpCondilemss’ ia
7 oxdas to label the w-amis with aperimestal ccaditics memes
[} o window out frest, right side aad bettom of help wia.,
’ ealy the laft odge of the commands wia., right side of emeution viadew
10 Pregumaa Wadew 1iee 1 "eeeccsevees Jige 3 “wmit Draweregh® 1ine 3 “gorigia 1107, 34er”
11 Bessution Windew: error bem with mussage st the tap
12 Selp Temt Wiadew: line 1 “sserse ‘Typiag-fepec’ Ceoecdinates”
13 Ceywerd Meau lise 1 “scerse” {(selested)”
14 Riecarchiel Meam: lise I .k Pesiticning o Displey” (se lises selected)
15 Commends Window: (net wsed)
16 Cucsoe: pesitioned a2 the end of the ‘gut’ eommend lise withia the ‘loop’ ceatrwet
17 Mouge: losated (+x) -3/4 in. from the ead of the ‘gut’ command lime
1 {mouwse is ewsTeatly s lime}
19 Ses alse /afs/as/preject/. /episcdea/write/01-11 . write.complete.loy
30 §9 total bebaviors
31 11 distimct & d ia behavi Loaded from: .
2 {afs/cs, /: & /b /LOAD-vEdte.1iep
23 235 total vecbals Loadisg /afs/os.eus.edu { spasbe -p 1dep.
E L)
38
26 lest time verbal/mouse matches iaformation wsed by an opexator.
27 31 total mowse moveasats WTYPE is typa of match:
2 that give evid 87 TYotal
29 ¢ pecessary movements
30
31 24 Total msuse buttos ectiocns L} 34 is astiocas before medel coverage.
3 3 SHORT is toe ahort to sode.
33 TIME is timestanp of actioce im . 14 CONT 1is segmest coatiswed frow previocws lise.
34 DUBATION is leagth ia ms of bedavior.
3% VEBRBAL is verbal protocol. az ¥ 1is vesbal coded.
3¢ Mouwse Astica is the wsar’'s mowse Bovemeuts. 1 MR is souse required {thess are just movemeats).
37 OT is Seguest Type 11 MI is wouse inferred.
38 § {s segmnent wwmber e WA is mouse buttoa astions {(necessary by defamlt).
3% WTYPR is type of match
40 MDC ia matohed DC. 3 MC is meuse wancoded.
41 DC is decisiom cycle ia Soar model. 1 VOC is verbal Os Coded.
42 SOAML TRACE 1s the literal Soar Trace
L2]
“ 0.94 11 data bed
43 [N 1) perceat model matched
o .10 seconds/decision cyele
47
40 total wosds 113
4
30 Time starts at 12400
S1 T WMouwse actioas Wisdow actions VYexbal T 4 Mype MDC DC Soar trace Canmeats
52 e I believe v 1
53 o LTI From: rew-treced.tut, 17-Mer-93
4 1 P: pe (top-space Opereteoc namas cleaned wp by hand,
ss 2 81 o8 6-July-93 rem
58 3 01 browss (}
57 4 =>8: g19 (opavator ac-change
se 3 ?: 93¢ (browsing
L1 s 1 » {(enkoown) (waknowa}
L1 7 0: fiad-appropciate-help
[$3 1 «»@: gé3 (operetor ao-chaage
(£} » ?: 9S8 (find-sppropriate-help
(2] 16 §: 233 ((wakaowm) (wakaowa)
(1} 1 0: defime-search-criterioa
s 13 «>@: gé3 (oparator so-change
(13 13 ?c p72 (defime-search-oritexion
7 14 $: 879 ({ushwowa)
¢ write v v 1% 18 oz L {fwed)
©® 9 write v v 13 .
70 13 write v v 13
7 U({sx) (A of prog wim) [2} B-Soar doesa’t modal briogingup the
T2 msuse line to poimter healp win.
3 16 0: Auat h e d search ori 4 ‘weite’ v
¢ 17 o dafd
s 18 =>4t ¢193 (operator mo-ol
T4 1 Pr pile (defi 1
” a0 8¢ 8117 {(wnknown)
78 14 Cam I write v v a1 2 Ot 1 4 4 ({wal €. %)
79 18 M(+y} (top of sareea)} B4 wanodeled (before the taski mouse moveseat
09 1S M(-x-y)} (portiom of help wis below prog wia) [1]
o 16 C belp win comas forward e

Soar/MT - 21 December 1992

Appendixes to Chapter 7

160

$1 T Howse estions Windew actions Veghal o 4 Mype MDC OC Sear trase Commeats
22 16 H{smey) (R of ‘onarse’ ot top of hoywerd mesnlin ¢ ame
" we{sm~y) (Just L of heyword dova arzow) soat
[22 0 hind
” 3 0: search-for-help valwe-ef~soasthing’ **
L 1§ e =>8: @137 (opesatox
7 as P: pldé (search-fec-help
[1] 3¢ $: al$S ((te-ba-found write) (valwe-of-something)
1] n 0: fisd-eriterion (heyweed)
2 e *»@: g161 (opereter ne-changs
” a» #1 pise (fied-exiterion
” 30 8 8170 ((te-ba-found wxite} (valus-eof-samething)
” n 01 fosus-om-euzrent-wiadow
e 32 01 evaluate-survest-vindow
” 3 ax@: g3l (opewrsten se-shange
e k1Y 71 9344 (evaluwate-iteme-in-window
” 38 81 8286 {{te-be-found write} (velwe-of-something)
-8 36 0 zead-inpwt (ecarse)
” »” Or attempt-mated
108 3 0: read-iaget (oemment)
101 » 01 aktespt-sateh
102 4 0: read-isput (ecmp_x)
163 4@ 01 ektempt-astch
184 @ 0: read-ingut (ecmpute)
108 [t Ot attempt-ssteh
188 “ 0: read-isgut (ccmsteat)
i 43 0: attempt-matoh
189 4 Ot read-inguk (ses_x)
109 L3 ©1 aktempt-aateh
110 4 01 vead-lapet (eureec)
1 4 01 attempt-mateh
12 50 O¢ resd-laput (detain)
13 1 2% 01 akttempt-mateh
114 3 01 change-current ~wisdew
118 3 =>@: 9433 (mc l.-clu'-
116 4 P: pade { wiad
137 119 8t 9438 {(to-be-found wtto)
110 ¢ Os serell (heywesd)
119 57 «>@: @451 {opexetor ae-change
120 e P: pise (wen-methed-of-seroll
121 5 8: 2467 ((to-be-found write}
122 17 M{ex} to (hayword dn arvow} - 7 = €0 €0 01 msve-nvuse (keyword dowa}
123171 0 keywoed asau sezclls wb ¢ mba 61 61 O¢ press-button .
124 18 kaywesd meaw serells
128 19 Reyword s scrxells
126 39 kayword menn sezells
1271 21 write v s v 3
128 23 ¢ serolliag stops wh 10 aba 62 62 0: velease-betton
129 22 M(-mey) (A of itamd, keywd msau:weony {write imm 11 =l O 01 evaluate-curreat ~-wiadow
13¢ 23 wseag? v 12 v
131 «>»@: ¢g807 (opexrator so-change
132 2t 9514 (evaluate-itess-is-wisdow
133 01 a5 {(te-be-fownd write) (velwe-of-somethiag)
‘134 (1] 0t read-iaput (wroag)
138 4 ° 01 ettempt-mateh
136 [} 01 read-ingut (wroagv)
137 70 Ot attenpt-sateh
138 " 0: read-iapet (xis}
139 72 91 sttempt-satoh e are left matchiag operators
140 ™ Ot read-iapet (mowt) for we have not states.
141 T4 01 stteampt-matoh
142 78 01 tend-ingut (saltexed)
143 T¢ 0: attempt-matoh
144 7 01 resd-lapet {samsent}
148 19 01 sktemgt-matoh
146 T 01 zead-iapet (sarvowm)
147 (1) 01 attempt-mateh
140 (1Y 01 zead-inpet (Comptomptomp}
149 2 01 sttempt-matsh
180 (13 0: change~curreat ~viadow
151 [23 =>@: g696 (opexator m
152 ;s P pT83 (i hang wind
153 [1] 81 8718 ((to-be-fouad write)
154 7 01 serzell {keywocd)
158 () =»4: ¢g734 (operator wo-chbange
156 (1] ?1 9731 (mec-method-of-asroll
157 ” 81 9748 ((te-bu-found write)
130 23 M(+x=-y} (keyword wp arzow} - 13 a 91 91 01 move-scuse (keyword wp)
159 33 D ®esu serclls mb 14 wmba 97 92 Ot press-button
168 23 ¥ serclling stogpe ab 1S mba 93 9 01 release-betton
168 4 »o v 16 v &
163 34 M{-x-y) (2nd keyword from bottom, xis} - 17 mi 94 2 0: evaluate-curreat-window
183 4 Ha ha besa v I8 wvwo
164 28 write. v i v %4
168 % =>@: ¢g777 (oparator mo-chamge
166 ” P: p784 (ovaluate-items-ls-wiedew
167 »” 81 8794 ((te-be-fouad weite) {velwe-of-something)
160 ” Ot read-inpet (weer-vars)
169 ” 0t attempt-meteh
178 109 O: read-inpwt (vhar)
Y 2Y in 0: attempt-match
172 10 Ot real-inget (vestor)
173 103 Ot attempt-watoh
174 104 0: read-iagat (write)
178 198 01 attempt-astoh
176 196 01 aseese-item (keywoed)
177 107 w8t go7e (“ntot .o-chm
179 109 P: poOS (; 4
179 109 8t a89d
160 110 0: click-oca-item (1069) 1088 ie an uasemed item
161 111 wrd: gi#S (oparstor .o-.l-'-
103 112 P poes {, bod-of-alt 1t
193 113 £ o913
184 38 M{sy} (3 items wp to ‘write’) - 20 e 114 134 'Y £1ed)

Soar/MT - 21 December 1992

Appendixes to Chapter 7

161

31 T Mouse asticas Wiadew astions Vecbal T & ype WDC ODC Sear trese Camments
168 18 ¢ msuse peister te wateh ab 31 sha 118 118 0: elick-butten

106 3¢ ‘write’ help temt sppears i N

197 27 ‘weite’ bacemes bold & moves ieo

108 16 01 evaluate-help-test

109 17 =@t g937 (epaseter no-change

190 110 ?: 9934 (ovaluate-belp-tomt

11 119 6: 8943 d wecite) (wal 13

192 120 01 fecus-ca-belp-tamt

193 28 ceaveaieat way te v 12 v 131 122 Ot evaluste-eurvent -wiadow

194 29 write out shest oeat

198 3¢ of tamt thet lee eent

196 31 is your peogxen oent

197 32 the temt cemmend oont

198 32 M(-x-y} (3/4 dn bolp tamt sovellbar helew slewam 23 sl 131

199 33 o oe v 34 shest

288 33 M({-um-y] (bottom R guad of belp temt wia} == 28 ad 131

301 3 show commen v 36 v 331

202 3¢ awe used v v 131

203 39 to displey v 20 v i1

204 42 se thats what I seat

208 3122 =>8¢ g#é¢ (operator ne-change

206 123 ?s pP?Y (ovaluste-prese-ia-wiadow

ae7 134 o 8984 (4 weite) (vel 2

a0 138 0: vead-ingut

ae9 12¢ 01 cengeehend

aie 137 0: sumpare~te-eritecia

331 43 M{smey) (nid of Reywd sesollbar, over slowvl wm 2% ome

312 43 i show eem v 3¢ v 128 126 01 ehang h-erd 4 { 4 write}) *e¢ ghanged search ariterica ‘write’ *¢
213 ¢¢¢ changud searsh eriteriea ’'show’ *°
214 13 Ot seaseh-fer-help

218 134 w1 gl035 {eperatec ne-cheage

ns ¥ 2 P1 91032 (scaxch-fer-belp

17 133 01 21843 {({te-be-found shew) (valwe-of-samethisg)
a1 133 Ot find-eriterion (keywoed)

us 134 wrd g1049 (sperator- so-chasge

23 138 P p1e8¢é (fimd-critexiea

s 1 8¢ #1066 {{to-be-found sbow) {val £

223 137 0t foous—-an-suttest-wvindow

223 42 M{-m-y) (~1/2 1is & of heyword ‘sassent’) -m 31 ai 138 138 01 evealeate-current ~wvisdew goes by but doesa’t stop oa zamscat,
234 43 -- (emey) (heywerd servll ber, above elewator) eoat

2338 43 -- (+y) {above keyword wg arrow) ooat

226 139 «>@: ¢g1092 (opesator ao-change alcro-codable as:
227 140 P p189?9 (evaluate-items-ia-window 162 O: vead-input (sensont)
220 141 81 81109 {{to-be-found show) (valuwe-of-something)
329 143 O: read-iaput (write}

230 163 01 attempt-matah

1 144 ©1 read-isput (wroag}

232 148 01 sttampt-match

33 166 0: read-input (wroagv)

234 147 01 sktempt-aatch

a3s 148 0: read-iagut (xim)

a3 149 Ot sttempt-matoh

37 138 Ot read-inpet (wowt)

23¢ 151 01 ettemgt-mataoh

39 153 0: tead-ispet (saltered)

240 133 01 attempt-match

41 154 0: read-tapwt (samscet)

242 158 01 attempt-match

243 136 01 read-inpet (sarvowm)

4 137 01 attempt-match

348 130 0t chaage-eurveat-window

346 159 =>8: 1376 {opezator so-change

27 168 P pr383 (i hode- € hang dow
240 - 161 8t 21291 ({to-be-fouad show)

M 162 01 sorell (keywozd)

ase 163 =>@: ¢g13¢4 (oparator mo-change

a1 164 P1 91311 (mec-esthod-of-soroll

1852 168 St 81330 {(to-be-found show)

253 ¢4 M(-Yy) (Reyword wp axrow) - 32 ar 166 166 01 wove-seuss} (keyword wp)

284 44 80 lat’s Ju v 33 v 138

2585 44 O wb 34 aba 167 167 0: press-buttoa

136 keyword mewu scrolls & stops

157 44 © ab 35 =ba 166 168 01 release-button

ase 148 0: evaluste-curreat-wiadow

asy 70 81 gi1358 {(oparator wo-chaage

ase 171 P1 91363 (ovaluate-iteme-ian-window

a6t 172 $: #1378 {{to-be-found show) (valws-of-sometbing)
263 173 0: read-input (wse)

263 17¢ 01 sttempt -matoh

24 17 01 read-ingut (user-vars)

185 176 0t attempt-matoh

a6¢ 1 01 read-input (vbar)

267 170 Ot attempt-metch

68 179 0« read-ingut (vector)

269 190 01 attempt-matah

17e 101 O1 read-input (write)

an 192 01 sttempt-match

a7z 193 01 read-iaput (wroag)

a7’ 184 01 attempt-match

2174 188 01 read-iaput (wroagv)

78 106 01 aktempt-matoh

aTe 107 0: read-iaput (xis)

mn 100 01 sttempt-astch

aTe 109 01 change-curreat -window

7 190 .w>@1 g1$47 (opetator ao-ol

ass Y } Y P: 91884 ({ £ haog: wind
201 193 ‘81 #1863 ((to-be-found show|

203 193 031 sevoll (keywoecd)

303 194 «>d: giS7S (sperator ae-change

ELl) 198 #¢ pi382 (mac-method-of-soroll

2e8 196 8: 81391 ({to-bu-fouad show)

286 44 D ub 3¢ mba 197 197 0: press-buttoa

a7 keyword meau sorolls & stope 1o

Soar/MT - 21 December 1992

Appendixes to Chapter 7

s

¥ Mowse sstiens Window acticas Vecbal 4 xype MDC DC

162

Sear trave

288
289
198
.
32
£ 24
4
8
¢
297
e
k1)
300
08
302
303
204
8
306
307
300
30
310
318
a2
313
334
ns
316
17
ne
319
330
kY
323
333
334
3128
3a¢
337
330
329
336
2
332
33
34
318
336
37
330
33
340
341
342

344
345
346
347
348
349
ase
381
83
353
%4
388
356
387

ass
360
E133
362
36
364

366
367
36
369
370

“e ah 37 aba 198 190
<5 suze X kaow how sont
199
308
201
303
0
a6e
208
208
207
aee
s
e
1
312
3
314
18
1
217
21s

21e
m
32
k]
E L]
128
236
4 D s 38 =ba 337 327
Raywoed wesu serells & steps
4 9

n

e

40 40 ambe 287 187
Reyword meau scrells & stope
4 T

47 M{-n-y) (‘showh’ 2ad £/ top of liat)

47 M(emey) (~1/4ia R of ‘showb’, ths lst item}
40 ¥(+x) (Just R & Delow keyword wp arrow)

48 == (4x) (wp arrow)

4 show B show

41 mba 358 230
=i 359 239
(1] ui 239
. wi 389

 FERN TS
»
-»

<
-
-

v 289

a1

172

1.

10
310

ab 46
b 47

aba 207
uba 200

Ot selesse-butten

Coatinned frem whot matched do 120

01 svaluste-surrent -window

=>@e
L]
8
O:
O:
Ot
L 2}
o
O
L
L0
L 23
o
o
Oc
L)
O
o
o

91622 {epeceien ao-change

91629 (ovaluste-items-in-wisdow

21639 ((te-be-found show) (velws-of-somethisg)
zead-iagut (ten}

attengt-mateh

read-laget (temt)

aktesgt-asteh

read-iaget (toush)

ttengt -astsh

01 changue-surreat -windew

->8
L 23
[1}
O

1011 {opeceter ne-changs
pae1s {i hods~£4 hang
8102¢ ({te-be-found show)
serell (heyweed)

s gi839 (eperates

aeo-change
P pledé (mas-asthed-of-serell
$: 81858 ({teo-be-found show)
0: press-buttes these serolls, all withia 1 & ia the human,
doa’t soczespend to this novies like model.

0: release-bmtton «= some of this will chusk uwp ia the humas.

01 evaluste-eursent -wisdew

O
L4
o
O
-8t
"
L1
L 13

91886 {eperatar ac-change
21093 (oveluate-iteme-in-wiadow
#1903 (! £ d show} {(val £
read-iaget (striag)
sktengt -uateh
read-iagut (syutaxlevel)
gtangt-metch
coad-ingut {ten}
akteapt-matoh
read-iaget (temt)
attengt-aatoh
read-iaget (towsh)
ettenpt -aakch
zead-ingut {wait)
attemgt-match
resd-ingut (wse)
attempt -astoh
zead-iaput (wsex-vars)
attempt-satch
~wiadow
92073 {ogecator mo-chaage
pI00 (; £ b
23 {(to-be-found show)
serell (keywood)

=>@1 @g3193 (opecator mo-ahange

Pt 93119 (mac-asthod-of-seroll
8: #2119 (({to-be-fouad show)
0: press-buttos

01 release-button

0: evaluste-currest-wiadow

-
[4]
8
O
o
O
O
ot
(4]
(1]
(1]
o
o1
0
03
L2
0
oc
o

partial move to get reedy to scroll
again, Fits laeari

2150 {(opecstor no-chenge

p3157 (evaluate-items-in-wiadow

2167 (beo-found show) (val € ag)

road-lagut (showb) T™his is & patched fa trece
asttenpt -matoh from & 263 to 277
road-ingut (showh)

attengt -satch

resd-input (shews)

aktempt -match

read-inget [(showt}

attempt-sateh

read-tagut (sigm}

sttangt -astch

read-iagut
aktempt ~-sataoh

sead-input (esish)

attempt -matcoh

cond-iaget (sise)

attangt -sstch .

01 change-gurreat -window

-8
L1
8
O

93338 (operatox mo-al

IS £ chang ol ads
83384 {{to~be-Cfouwnd show!

serell (Reyword)

=»8: g3367 (opecetor ne-chaage

P: 92374 (mas-methed-of-serell
S¢ 82383 ((to-be-fouad show)
O: prese-button

0: release-buttos

01 evaluate-curreat-window

@t
L]
81
o

93418 (operator vo-change

93432 (eveluste-items-in-wiadow
#3433 {{to-be-fousd show) (val £
Toad-input (soalex)

Soar/MT - 21 December 1992

Appendixes to Chapter 7 | 163

$1 ¥ Mowse actions Wiadow actices Verbal 2 4 WMype MDC OC Sear trace Commeats
3 394 01 sktenpt-sateh
398 01 read-inget (scaley)
196 01 sktempt-matoh
a»n 0: vead-ingut (set)
290 01 sttempt-astch
99 0t read-tagut (swtfile)
00 0Ot attempt-mateh
E 118 0: read-iagut (show)
303 01 attempt-gatoh
03 01 aneess-iten (Reywecd)
304 st g3537 (epecatoc no-chenge
308 P 93534 (mm hode-£ 1
306 1 82842
07 0: ellek-ca-item (12837)
300 »>8: g3548 (epacakec ne-change
406 9 7 p3SSS (mas-asthed-ef-eslick-en-item
497 31 61 s2882
498 53 M(-m=-y) (‘showb’, drd fram Det, Reywsd meau) am 40 - 33t 311 R 01 move-mouss (Leyword wanspesified)
@ == (+y]} {‘show") ooat
410 82 ¢ wb 4% mba 312 312 03 eliek-button
411 313 0: evaluste-help-temt
413 34 «r@: gI576 (epetetsr so-shange
413 318 Pt p2583 (evaluate-help-temt
414 e 8: 22593 { show) (wal £ 3
“s 317 0: fosus-en-balp-temt
416 53 I dem’t kne v 50 v 318 330 0: svaluate-eurzent -wiandow
417 Se show bisary, pro eont
410 88 sheow spressiea. eoat
419 s¢ is an infinite £ aeemt
438 36 NM(-y) (middle R side of help temt) L2 ad 310
431 57 M{-y) (a little lower) - $3 ai 310
422 s¢ wha. .. v 53 shert
423 58 M{-y) {a little lowsr) - e ai 28
424 €8 bt I wonds v 53 v 318
438 63 M{sm-y) {jwst L of dn arrew for help tut wia) un 56 mme
426 &3 for v 3y v 3
437 318 =>81 g3613 (epecstor ae-chenge
438 320 #1 p2623 (evaluate-prose-ia-visdow
429 m 81 52633 (show) (val £ {]
438 322 01 resd-iagut
431 333 0 comprebead
433 . 324 0: campare-te-griterias
433 318 ©0: abasge-currest-viadow
a3 3¢ >@1 g3658 (operator So-cheage
o8 337 P pA6ES ds-foc-chane wind
@ 328 8t 93673 ((eceessed show)
437 328 0: screll (help-teamt)
438 330 =81 g3688 (opecator mo-chaage
439 m " 93 (mec-asthod-of-seroll
448 332 81 82701 {{accessed show)
441 63 K(+x]} (dowm arTow} am S¢ - 333 333 0: move-wouse (help-text dowa)
442 &4 D help text wia. scrolls ab S$ aba 336 334 Ot press-buttos
443 68 markers v 0 v 3
4“e 65 0 mb §1 w=ba 333 338 0: release-buttoa
443 3¢ 0: evaluate-curreat -window
37 =>31 gi744 (opecator ao-chaage
38 P1 2751 {evaluate-prose-in-window
33 81 83762 { 4 show) (val £
340 01 read-fapet
341 0: comprehand
342 0: campare-to-eriteria
343 01 change-gutrreat -wisdow
344 =>@: §2787 {operetor so-change
348 . P: paTRE | ds- £ chaag: window
346 8t 23082 ((avcessed show)
347 Ot soroll {help-taemt)
340 =>8: ¢g301¢ (operator no-change
49 P1 p3t2l (mas-method-of-scroll
358 8: 52838 ((eccassed show)
66 D help temt win. serolls b 63 mba 351 331 0s prese-buttoa
7T ab 63 aba 352 383 01 zelease-button
(1] okay v 64 v 334 @i - This had beea 332, a etataer
383 01 evaluate~curreat ~wisndow 30-jua-92 PER
384 =8t 42064 (opecator ne-change
k133 P: p2871 {evaluwate-prose-is-window
386 81 a3803 (show) (val £
387 0: read-iaput
358 01 cemgeehend
359 01 sompare-to-oritecia
L1 - 0t chaagu-curreat -window
36 «->81 g2 {opesator 20—l
2 362 Pt 92914 {; hode- £ hang window
473 363 81 83932 ({accessed show)
474 384 0: soroll (help-temt)
473 348 =>@1 g2934 (epexator mc-change
476 386 P: p2s4l (mec-method-of-ecroll
77 367 81 82980 ({accessed show)
478 68 D help temt win. sorolls ub ¢ mba 368 348 O press-button
479 ¢ O nb &6 mba 369 369 01 release-button
400) 378 01 evaluate-curreat -wisdow
401 m =»8t g3984 (epacator no-change
492 372 P: 92991 (evaluate-prose-ia-wiadow
48 373 L H d show} (val £ hi
484 374 0:
485 378 or
486 376 0: compare-to-ariteria
467 L 01 cheaage-curreat -wisdow
408 370 =>@: ¢3927 (operator aoc-change
ey 3719 1 pIede ¢ b € hang: wiadow
490 300 %1 83042 ((anceased show)
4 p 133 0: seroll {help-temt}
493 30 >t g3054 {(eperator mo-change
493 3 #: 93061 (mac-method-of-saroll

Soar/MT - 21 December 1992

Appendixes to Chapter 7

164

351 7 Wouse ssticas Wiadew estiems Vesbal 2 ¢ Mype MDC DC Seas trece Comments
494 04 $1 83070 ((acecssed show)

43 70 O belp temt wia. serells ub 67 sha 308 388 01 press-bukton

496 72 well, I°11 ¥ 68 v 370

T2V ab 69 =ha 366 306 01 release-buttea

L Y 01 evaluste-surrent-window

499 300 w»@: g3184 (opexater mo-eheage

] . #: pi1il (evaluate-prese-is-wisdow
se1 390 8: #3133 { show) (val -
383 nm 01 read-ingut

50 392 01 cemprehend

304 Rz 01 eompare-te-eriteria

ses 34 =381 state so-sheage

seé s w81 gii1s3 {geal ne-change

se7 396 =81 ¢3189 (gval mo-change

see 397 «>@: ¢3166 (goal ao-change

09 e ar@s @317 (geal ac~shange

sie 399 o>z g3100 (goal mo-change

Soar/MT - 21 December 1992

Appendixes to Chapter 7

165

2 Displays of each analytical measure for each episode of Browser-Soar

L

Il

e

I

I

L]

!!lll kit

I
o
(s

B
o

|

N
[

i

o

T e

.
!

i

\ \ \ =
\ \
03 i
) m B
{1

o1

fo™|
=

'f“‘"“

I

b
formtt—1

f

Y e e

w

TH

et e e

2
St
Browees-Soar egisode 8 cacle

HEtieLast! ““{mlllll

et

Figure 46: The operator support displays for each of the episodes.

Covmr—
Browsar-Soar episods § -var

Soar/MT - 21 December 1992

Appendixes to Chapter 7

OPERATOR .

Browse I Model acon

QO Conesponding overt mouse behavior
X ¢ nplicit mouse

V' Corresponding verbal ullerance

ot

Click-button

N T Y AU N S 5 T 2 25 [N O I IO O
S/
-

NOT MATCHED]
A 1 A 'y L ' '] L 1 1 1 1 L i A il 1 1 1 1 i 1

Operator appiications
Browser-Soar episode 3 :array

’

Fri Deo 421.40:47 EST 1982

OPERATOR
Browss ’ B Model acton
Find-appropriate-help O Conespondng overt mouse behavior
i X Comespanding impat maouse behavior
V' Comespondng verbat utierancs

|

L {
Ll bbb bttt b ittt
—
h 4
2 [
——¢
ral
—x

|

!

Evaluate-help-text

R

Evaluate-current-win
Change-current-win
Access-tern
Scroll
Page
Drag
Click-on-item
Double-ciick-on-tem
Move-mouse
Press-button
Reisase-button
Note-eaw-crit
Click-button
Double-click-button

NOT MATCHED

| SRS U I SV S EURY T T T S MR NN S W SN RS DU TS TUN SR SN W SR S NI SHN S S N !

Operator applications
Browser-Soar episode 11 :better-array

FnDeo 421:49:42 EST 1992

Figure 46: The operator support displays for each of the episodes (cont.).

Soar/MT - 21 December-1992

166

Appendixes to Chapter 7

167

o [-
= L1
L e
${= .
1
s
i "
34
23 - L3 --
-—ase i
. AN . g —— PR =)
T T v T v r
L] » - - » . » - - - -
Sdieviny b emandy
Erowess-Soar anisode 4 :recision ——
Sttt ot sttty wpts eatsnts o marinss 2 sy vt w——
. LAt L]
- -
¥ m—— ¥ e
- 1=
"
L
i . -
$4
Lonan e
=T =TT
= e
- S o . e cmtv——.
. - - - - . = - - - -
Sttt b st St o 4 st
Erowser-Soar episode § s ——— Browser-Soer ecisode 7 jabeix e r—

-
"

et e b Damioion Oynibe
£ d

it e & et
Browser Soar ecisode § ol

Figure 47: The relative processing rates displays based on decision cycles for each of the

Sutiont v smerats
Browssr-Sos ecinode § vers

episodes.

Soar/MT - 21 December 1992

Dot s i et
Browser-Soar ecisode 10 Zoommand

Appendixes to Chapter 7

Modet time in Decision Cycles

Model time in Decision Cycles

100
1

Model to data slope 9.482 de/s
RMSD = 81.258 dc
MAD = 69.602 dc

"2 0007
N = 96 maiched behaviors

0 20 40 60 80 100
Subject time in seconds
Browser-Soar episode 3 :arrav o Dew 7082084 657 1000
Dashed lines are range of th ity expected pond: rates

200
1

100
1

Model! to data slope 6.372 dc/s
AMSD = 60.254 dc

Subject time in seconds
Browser-Soar episode 11 :better-arrav Mon Goo 7020041 EST 102
Figure 47:The relative processing rate displays based on decision
cycles for of the episodes (cont.).

Soar/MT - 21 December 1992

168

Appendixes to Chapter 7

169

el S 17 sl apeter sppliren
. -

@ aaan @ —
fa— X —
W — ¥ mo———

B st [Tras——

g e T
=Es =E2
" e
0@ o @ St
. - - - -
- - ; - » - - - » - - -
Sujt v &0 omasnhs Sndjmt tivn b cmvunt St e b emments:
acipade 1 we ——— Browser-Goar snisade 2 ur#t ——— Browner-Soar evivade 4 ‘Brecision ——————

W= o
B
¥
=g |1 EEr

et e i o
Browser-Sow svisode § vers

Figure 48: The relative processing rates displays based on operator applications for

each of the episodes.

Soar/MT - 21 December 1992

Appendixes to Chapter 7
§ -
3 &0
&
o 8 _
g -
&
g
3
[=4
2
g
e 27
g
§ Model to data 2.268
= H&SDS 17.16 Optopd.
MAD = 15.16 ops
"a 0.7802
o - N = 96 matched behaviors
[] . N o]
T T T L T
0 20 40 60 80
Subject time in seconds
Browser-Soar episode 3 :arrav Man Ovo 7022832 ST 102
[~
n -
- Q Overt mouse behavior
X tvplich mouse behaviar
g V' Varbel ulierance
=
g
§ 3
3 <
9
=
=
[=4
:
e B
2
=
§ Model to data A9
= n‘a‘u’so:‘ﬁ".’&s o;sopd‘
MAD = 10.179 ops
2w 0.757
o - N = 96 matched behaviors
EE]

T T T T T
0 20 40 60 80

Subject time in seconds
Browser-Soar ebisode 11 :better-arrav
Figure 48: The relative processing rates displays based on operator applications for
each of the episodes (cont.).

Ma Deo 7 022900 €ST 1922

Soar/MT - 21 December 1992

170

Performance demonstration IT: Use of Soar/MT components by others 171

Chapter 8
Performance demonstration II: Use of Soar/MT components by others

While the environment is integrated, its components have been developed separately. As each
component became available, it was spun off for use by others performing subsets of the tasks
involved in model testing. The number of users of each tool, their comments, or both, provided
feedback on how the various tools help perform (Tesler, 1983) specific tasks of model testing.
Together they provides an estimate of the current and potential impact of the whole environment.

Spa-mode has had no use outside of this thesis. As noted earlier, the total environment, but for the
displays, was used by V. Peck to perform two episodes of the Browser-Soar reanalysis. The
underlying Dismal spreadsheet has had three to four additional users. It still has many problems, so a
survey probably will not point out inadequacies not already known.

A survey was conducted of Soar users to find the strengths and weaknesses of the Developmental Soar
Interface (DSI).

The other pieces of software either are not used by enough users (Spa-mode, Dismal), or they are so
widely used that undertaking a survey is a more serious proposition (S-mode) than can be undertaken
as part of this work. Portions of the DSI should no longer be considered pieces of developmental
software, for out of the 60 Soar users responding to the survey, two-thirds now use some portion of it
every time they use Soar.

8.1 Usage of the Developmental Soar Interface to develop Soar models "

The three modules of the DSI (Soar-mode, Taql-mode, and the SX graphic display), have been through
several releases. How to obtain them is explained in Appendix 1. One or more of the modules are
installed at each of the four principle Soar sites in the US, and at sites in Germany and the Netherlands,
with over 40 researchers using one or more of the modules.

In the Fall of 1992, a survey (included as an appendix to this chapter) was sent to members of the Soar
community identified through the Soar project’s mailing lists, workshop attendance lists, and
presenters at workshops, as most likely to use Soar in a routine way. In addition to the users directly
targeted, an announcement of the survey was emailed to the general Soar mailing list, and an
announcement was made at the Soar XI workshop in October, 1992.

Out of the 69 potential users identified, 63 returned a survey (a 92% response rate).. The three people
who never actually used Soar were dropped from later analyses. If users that were personally known
did not fill in an item, or misidentified a portion of the DSI, this was corrected. Of the people
responding, 50 are current members of the Soar community, and 13 are former members.

Table 8-33 shows a listing of the usage patterns. The columns list the components used, with each row
representing a single user. The rows are grouped by the sets of components used. The primary tool
used is Soar-mode, with 37 of the 60 users reporting using it. The SX graphic display has only been
used as a routine tool for debugging by its developer and two other users, but 14 people have used it to
create pictures of Soar models and to give demonstrations of their models. Taql-mode has been used
and put aside by several people as they became more familiar with the TAQL grammar.

In users’ responses of why they did not use additional modules, the largest number of responses (14)
was that they did not use TAQL, so they did not need Taql-mode. (This would not necessarily
translate into 14 users if they used TAQL.) The next largest concern (12) noted problems with
installation and not knowing how to use the tools. Speed (5) was also a concern, and this concern was
not limited just to the graphic display, a few users thought that Soar-mode and Taql-mode were slow to
load. Most potential users of the SX graphic display were put off by how much it slowed down the
system, and while only half the users reported dissatisfaction with its speed, this does not mean that

Soar/MT - 21 December 1992 -

Performance demonstration II: Use of Soar/MT components by others

Components used

172

Table 8-33: Survey responses categorized by usage pattern.
Each row represents a user. Totals do not include "tried" users.

Frequency of usage

Soar

EVERYTHING

SX & SOAR-MODE

TAQL-MODE
SOAR- & TAQL-MODE

SOAR-MODE

NOTHING

daily
daily
daily
daily
weekly
weekly
weekly
daily
daily
daily
daily
daily
daily
weekly
weekly
daily
daily
daily
daily
daily
weekly
monthly
daily
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
weekly
weekly
monthly
monthly
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
monthly
monthly

quarterly

Totals

na
na

60

Soar-mode

daily
daily
daily
dally
weekly
weekly
weekly
daily
daily
daily
daily
daily
daily
weekly
weekly
tried
daily
daily
daily
daily
weekly
monthly
weekly
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
weekly
weekly
monthly
monthly
tried
tried

tried

38

<3 4
Weekly
special
special
daily
weekly
special
special
weekly
special
special
special
special
special
special
weekly

tried

tried

tried

15

Taql-mode Totals
daily 7

weekly

daily
special
monthly
special

daily

tried

tried
daily 1
daily 6
daily
daily
daily
weekly
monthly
17
tried

tried

tried
tried 21

tried

14 60

Soar/MT - 21 December 1992

Performance demonstration II: Use of Soar/MT components by others 173

they were satisfied with it. There were no underlying problems reported with the metaphor,
representations, and manipulation of the problem space level objects.

Other users had problems with the underlying systems that the tools were built on. Several users (4)
reported that they did not have a machine that could run the X window system, and some users (2) did
not know or want to learn Emacs. A few users, perhaps four or five, use a Macintosh exclusively, or
nearly exclusively, and the current environment is unavailable to them.

While only two respondents had not heard of all the software, a few were misinformed. One user did
not know that they were using Soar-mode (but loaded it in their startup files), and one did not know
that they were using Taql-mode (but when reporting useful Soar-mode features included a feature only
in Taqgl-mode).

Use in video productions. The SX graphic display has been used to make three videos of Soar and
Soar models that have been shown outside of CMU. A 20 minute tape of NTD-Soar was shown at a
NASA contractors’ meeting and as part of a research talk at Queen Mary & Westerfield College, both
in the Spring of 1992. A 2 minute video showing the basic interaction method with the DSI and how
Soar uses the Garnet toolkit has been shown four times: at the CHI *91 Garnet Special interest group
meeting, at the CHI *92 Doctoral Consortium, May 1992, and as part of research talks at the Applied
Psychology Unit in Cambridge, England and at Queen Mary & Westerfield College in the Spring of
1992.

Work is underway to create an introductory video explaining Soar (Newell, P., et al., forthcoming).
This video is a demonstration of what will be a general capability to take a graphic description of Soar
models and create high quality graphic output suitable for commercial broadcast. The initial
depictions of the Soar model were created with the SX graphic display and then sent to a commercial
computer graphics company for visual enhancement. The project is expected to be completed in the
Spring of 1993.

Impact of the DSI on the next release of Soar software: Soar6. In the next release of the Soar software,
called Soar 6, several of the features of the DSI have been incorporated or have encouraged the Soar 6
developers to include similar features. These include a very customizable trace, hooks for interacting
with Soar-mode, and a better command line interpreter. Soar 6 is still under development; given time,
we hope to migrate additional features to Soar 6, such as the ability to display the match set
continuously, and the ability to provide a display of which productions will fire on the next decision
cycle.

8.2 Usage of S-mode to create functions in S

S-mode has been distributed through three sources that make its total usage hard to compute. It
appears, however, to be one of the dominant ways of interacting with S. It was first placed in 1991 in
the GNU-Emacs archives at The Ohio State University. This makes it available via anonymous FTP.
S-mode has also been distributed via anonymous FTP from the authors’ machines. The number of
users who picked it up in these two ways cannot be known.

The second mode of distribution, through a statistics software mail server, allows an approximation of
a lower bound. Statlib, run by Dr. Michael Meyer at CMU, is a system for distributing statistical
software and datasets by electronic mail. The system keeps track of the mail requests for each plece of
software and can provide a listing of who requested each piece. Since S-mode was first placed in the
Statlib server, there has been 1,043 requests for it, including requests for updated versions (personal
communication, M. Meyer, October, 1992).

The exact size of its distribution is confounded further by the nature of GNU-Emacs’ copy protection
and the nature of S-mode’s installation. GNU-Emacs and S-mode are copylefted, which means that
users are entitled to (and indeed legally obligated to) provide others with copies upon request, although
a copying fee can be charged. How many sites have passed S-mode on would be impossible to

Soar/MT - 21 December 1992

Performance demonstration II: Use of Soar/MT components by others 174

compute. GNU-Emacs and its extensions are installed primarily on multi-user machines and
distributed file systems. Once installed, many users can use the same piece of software although on
different machines. For example, S-mode has been installed with GNU-Emacs on the Andrew system
at CMU (and I don’t even know who installed it). Any of the approximately 5,000 Andrew users at
CMU can use S-mode.

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 175

Appendix to Chapter 8: Survey distributed to Soar users

Survey on the Developmental Soar Interface
Prank Ritter
12-0ct-92

I'm writing up my thesis and would like to get a better headcount of
how many people use the DSI, and how they use it. Your comments will
also be used to improve the current interface and serve as background
for future versions.

* How often do you use Soar?
Daily Weekly Monthly Quarterly Other (describe)

* Which of the following have you heard of and which have you used?

Heard of Have used
SX graphic display (triangle thingy) Y N Y N
Soar-mode Y N Y N
Taql-mode Y N ’ Y N

* For items you’ve heard of, but never used, have you considered using any?
Any specific reasons why you have not used them?

* Are there any features that you would like to see added to the Soar
interface for programming, editing, or understanding Soar models ?

If you have not used any items, you can quit here. Thank you.

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 176

* How often you use it ? (tick one and/or write in a modifying number)
Daily Weekly Nonthly Quarterly
Tried once or twice Never

Special purpose (e.g., demos, making figures; please explain)

* If you don‘t use the SX graphic display, why don’t you use 1it?

* How do you use it? (you may tick more than one)
I‘ve only tried it.
I use it for special debugging. I use it for routine development.

I use it for demos. I use it to make presentation diagrams

* How long have you used it (e.g., 3/91 to present) ?

* What are the most valuable features ?

* What are the worst problema/bugs/factors stopping you from using the SX
graphic display more often?

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 177

-t ot -

* How often you use Soar-mode ? (tick one and/or write in a modifying number)
Daily Weekly Monthly Quarterly
Tried once or twice Never
Special purpose (e.g., demos, making figures; please explain)

* How do you use Socar-mode? (you may tick more than one)

I use it for special debugging. I use it for routine development.
I use it for demos. I‘'ve only tried it.

* How long have you used soar-mode (e.g., 3/91 to present) ?

* What are the most valuable features of Soar-mode?

* What are the worst problems/bugs/factors stopping you from using
Soar-mode more often? -

* If you don’‘t use Soar-mode, why don’‘t you use it?

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 178

How often do you use tagl-mode ? (tick one and/or write in a modifying number)
Daily : Weekly Monthly Quarterly

Tried once or twice Never

Special purpose (e.g., demos, making figures; please explain)

How do you use tagl-mode? (you may tick more than one)

I‘ve only tried it. I use it for demos.
I use it for special debugging. I use it for routine development.

How long have you used tagl-mode (e.g., 3/91 to present) ?

What are the most valuable features of tagl-mode?

What are the worst problems/bugs/factors stopping you from using
tagl-mode more often?

If you don’t use tagl-mode, why don’‘t you use 1t?

Additional on-line & hardcopy coples available from Frank Ritter@cs.cmu.edu

Please return surveys by email or hardcopy to Prank Ritter@cs.cmu.edu

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic

model testing 179
Chapter 9
Contributions and steps toward the vision of routine automatic
model testing

Compared with Chapter 1, we are not in the same place in many ways, and we are considerably further
along toward the capacity to perform routine process model testing. Progress has been made on
defining a methodology for testing the sequential predictions of process models. A computer
environment has been implemented to support this methodology, and this environment has been used
to test an actual model with actual data. Portions of the environment are used by researchers around
the world. The environment was used to test and extend the sequentiality assumption of Ericsson and
Simon’s (1984) theory of verbal protocol production. The path to an intelligent automatic modeling
system based on agent tracking is clearer. Only model testing (open analysis) has been considered in
this work, but the methodology and environment should largely be applicable to using models to
classify sequential behavior (closed analysis) for such things as cognitive-based testing (Ohlsson,
1990).

The central problem: dealing with large amounts of information. Within the methodology of TBPA
the essential problem in testing process models still appears to be one of manipulating and
understanding the large amounts of information involved: the model, its predictions, and the data used
to test it. Scientists do not decry the difficulty of model creation and manipulation as often as they
have the amount of bookkeeping required for testing the sequential predictions. The size of the data
sets prove a real problem; the amount of qualitative information used in this task is relatively large
given the analyst’s limited processing capabilities. :

Each of the steps in TBPA requires manipulating large amounts of information. This is a central
problem that runs through this work, and it is fought in every tool in the Soar/MT environment. Two
approaches have been developed for dealing with it. The first is to automate as many tasks as possible,
and to support the analyst for the remainder. The second is to design and use visual displays of
information.

Secret weapon #1: Automate and support. Automating aspects of each step reduces the work load
required of the analyst. Soar/MT assists the analyst by automatically aligning unambiguous parts of
protocols, creating model-based summary displays of the comparison, and providing many aids for
displaying and manipulating the model. Although the automatic processes fall short of the ideal speed,
and still must be speeded up through better algorithm and data structure design, they have proved
useful in their current state. The process is not so inherently large or computationally intensive that
so-called super-computing will be required.

The data set presented with Browser-Soar (Peck & John, 1992) is not the largest data set ever used to
test a model (although it is fairly large, see Table 2-2), but Soar/MT has substantially speeded up the
analysis of this data set. We can now imagine analyzing enough protocol data to achieve Ericsson and
Simon’s (1984) vision of verbal reports as data.

Supporting the analyst in performing the tasks that are not yet automated has required careful design of
the displays and manipulation tools for the large amount of information. The current maximum size of
the predictions and data, not including the model, is about 330 Kb. The analyst cannot directly
visualize and manipulate information sets the size of a small phone book (5,000 names at 60 bits per
name, or 300 Kb total). Special displays have been created to show the important trends in the data,
which is the next secret weapon. '

Secret weapon #2: Scientific visualization of qualitative information. Appropriate visual displays can
support faster processing rates and provide new insights (Larkin & Simon, 1981). Visual displays of
qualitative information have become central to quantitative data analysis in many domains and they
have lead to the major methodology of scientific visualization.

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 180

Visual displays should now be considered essential for performing each step of protocol analysis and
process model testing. Visual displays help the analyst understand the model’s structure and
performance, relating them to each other in a single display, the SX graphic display. Tabular displays
of the model’s predictions, the data, and their correspondences show simple and directly where the
model’s predictions do and do not match the data. Other displays aggregate the correspondences in
terms of the model components and in terms of relative processing rates. These displays summarize
where the model performs well and where it performs poorly, providing clues about where and how to
improve the model’s fit to the data.

9.1 A methodology for testing the sequential predictions of process models

Trace Based Protocol Analysis (TBPA), a methodology for testing the sequential predictions of
process models with protocol data has been defined through listing its inputs, processing steps, and
their requirements. TBPA tests a model by running it to generate a trace of how the model performs
the task. This trace provides a set of theoretical predictions of what will be found in a subject’s verbal
and non-verbal protocol, and it is used to interpret the data. TBPA is designed to be an integrated and
iterative process, so a summary of where the predictions are unmatched in the protocol is then used to
modify the model, and the model is run again. The necessary inputs to TBPA, its steps, and the
processing requirements for each step to perform the testing routinely, were specified in enough detail
to create a computer environment to support this methodology.

Clarification of the testing process. What it means to test the model became clearer from specifying
each step in the process. What are tested in any given episode are the model’s predictions. The
comparison of the predictions with the data is not just one of alignment. The model’s predictions are
used to interpret the data. With unambiguous data, such as mouse clicks on menu items, the process
appears to be one of simple alignment and it can be treated that way. When the data are verbal
protocols, then the items in the trace may provide substantial guidance for interpreting the meaning and
function of the information described verbally.

Some theories require every prediction to be matched, but the theory of verbal protocol used to
interpret the utterances (Ericsson & Simon, 1984) states that not every possible prediction will be
found: The model’s predictions are predictions of what could be found in the subject’s verbal protocol.

The need for declarative versions of models. It is necessary for model based analysis to refer to
structures of the model and to note which parts of the model did and did not apply, or were and were
not supported. It is necessary to have declarative representations of process models representing
procedural knowledge. Running the model to create the structures upon demand is not enough. There
is the simple problem that the structures will be created and then disappear as the context changes.
There is also a more complicated problem of coverage, on any given run not all the possible structures
will be created. Examining the initial implementation of the model is not adequate either, the model
might leam from its environment, and computing all the model’s structures is equivalent to running it.

At a minimum, it is necessary to create a description of the model computed by observing the model’s
performance over time, although combinations of the other methods, such as derivation from the static
structure, are a useful adjunct. Although this method is the best way to build the model, even this
model is not guaranteed to be complete.

The DSI creates a declarative representation of Soar models. While the Soar model runs, the DSI
displays and remembers which and how often the problem spaces, states, and operators have been
applied. By watching the model as it runs the DSI builds up as complete a view of the model as is
possible. The resulting description can be used by other components in the environment. The
interpretation environment can use it to initially code the data. The saved model can be used to
summarize the correspondences created though interpreting and aligning the data with respect to the
predictions. .

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 181

9.2 Each step in the methodology was supported in a software environment

-An environment to support an analyst performing TBPA has been created based on its requirements.
The environment directly supports the main tasks of model tracing; interpreting and aligning the
model’s predictions with the data, both automatically and semi-automatically; aggregating the
comparison data in a variety of displays designed to show how to improve the model; understanding
and modifying the model based on how it does not fit.

The steps were specified and broken down to a level that they could be performed automatically, or
semi-automatically. Building, loading, and running models was supported in a semi-automatic way.
Many small tasks are supported through keystroke macros in the structured editors and smarter
interfaces. Finding the emergent properties of Soar models (listing the problem spaces and their
operators) is supported, as is counting how often they are instantiated. Unambiguous portions of the
subject data are now matched automatically. The same algorithm can be used to interpret and align the
data in an incomplete and heuristic fashion, requiring the analyst only to check and clean up the
approximate interpretation. Finally, the analytic displays can be automatically created from the
comparison data.

The environment also supports the requirements of integrating the steps, automating the tasks where
possible, and supporting the analyst for the rest. The environment and the methodology it supports
were tested by testing a process model, and in the process learning new things about the model and its
fit to the data. The tasks in TBPA that the environment support overlap with other tasks often
performed in cognitive model building and modification, data manipulation with a tabular display, and
exploratory data analysis.

Sub-portions of the environment supported other users doing the sub-tasks for different reasons, the
DSI for AI modeling, Dismal for spreadsheets, and S-mode for statistics and graphing. A survey of
users of the DSI found that over half the Soar community uses some portion of the DSI whenever they
use Soar. It would be safe to say that pieces of the environment supporting these tasks are in use by
over 500 researchers around the world.

The analyses are fast enough to be considered routine. A minute long episode of subject data
(approximately 20 verbal segments and 30 motor actions in the browsing task) can now be compared
with the model’s predictions in 2.5 hours given sufficient inputs, the process model and transcribed
data. This is almost within automating range; when it took 60 hours to perform (estimate derived from
Ohlsson, 1980), too many under specified processes were required, and automating this task was not
conceivable.

Example testing of Browser-Soar using TBPA. The methodology was demonstrated on the Browser-
Soar (Peck & John, 1992) model. A set of suggestions for improving Browser-Soar was generated,
and one of them was implemented. This lead to a slightly better fit, but more importantly, to a much
more parsimonious model. Browser-Soar and its data set did not push this methodology in all
directions, but this was good. It allowed making headway on some problems by avoiding others.

9.2.1 Interpreting and aligning the model’s predictions and the data

This thesis explored the automatic alignment of unambiguous data to model predictions. The Card
algorithm for doing this was slightly improved, and its behavior characterized more clearly.

A spreadsheet approach to the comparison process was demonstrated, and it appears to visually
support many of the necessary operations on the data that would otherwise require extensive
computation by hand. For example, areas where the predictions match the data in a denser manner is
clearly presented. The spreadsheet was also effective in supporting the analyst in easily adjusting the
alignment manually when necessary.

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 182

9.2.2 Analyzing the results of the testing process

A lack of clarity about what measures are necessary or desirable for measuring predictions fit to the
data may have contributed to the lack of progress. The review in Chapter 2 outlined the uses and
abuses of several of these measures, and championed Grant’s (1962) approach of analytic testing, of
finding out where the model can be improved.

A display for showing the support of operators in the model was automated, and an additional family
of displays were produced for presenting and analyzing the relative processing rate of the subject with
respect to the model. These two sets of displays can be created automatically from the comparison
data. They have shown the periodicity of human browsing behavior, the types of mismatches between
model and data, and ways to improve the fit of the model. There are many ways for data to not match
the model. Additional graphs will be necessary, so an environment is provided to assist in editing and
designing these graphs.

9.2.3 Steps related to manipulating the model: Prediction generation and modification

While the model’s components are used throughout the analyses, the process model itself is directly
involved in two steps, that of generating the sequential predictions, and the final step of revising the
model based on the testing process.

Generating the predictions. Generating the model’s predictions in a way that they can be used for
automnatic alignment has required extending infrastructure from the model (in this case, a Soar model)
out further toward the data. This has resulted in a better trace — one that is less ambiguous and more
readable by humans. Based on the example analysis, we also found that a problem space model must
provide state traces in addition to operator traces.

The improved trace lead to an unexpected benefit. We found that deriving aggregate measures in the
trace was useful for comparing models and describing their behavior in general terms.

Manipulating and creating models. The Developmental Soar Interface demonstrates the feasibility and

utility of several design principles. Across the environment it was possible to meet the design shown
in Table 9-34,

Table 9-34: The ease of use and learnability design features met by each tool in the environment.

¢ Provide a path to expertise through:
* Menus to drive the interface.

* Keystroke accelerators available and automatically placed on menus for users to
leamn.

* Help provided for each command on request.
* Hardcopy manuals also available on-line through the menu.
* Treat structures on the theoretical level as first class objects.

¢ Provide a general tool with macro facilities.

These features make the task of inserting the model’s knowledge into Soar easier. Keystroke level
models can be presented as evidence for this, as well as the fact that approximately two-thirds of the
Soar community now use some portion of the DSI in their daily work.

Node based graph display. Many structure display algorithms draw the complete structure, forcing the
user to scroll a window pane across it. Presenting Soar’s working memory contents is such a structure

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing _ : 183

display task. The set of tasks users need to perform when examining the structures within working
memory have been identified, and a display meeting these requirements has been designed and
implemented. The task analysis lead to a different design than a big scrollable window — a node-
based design that allows users to open up individually selected nodes in working memory, close their
parents, and so on. The users seem pleased, and it provides a much faster display.

General results about Soar. The visual and structural representations in the Developmental Soar
Interface highlighted several features of Soar models and the TAQL macro language. For TAQL, the
templates within the structured editor provided a measure of the cumbersome size of the TAQL syntax.

For several specific models we were able to display how their behavior is not best characterized as just
search in problem spaces. Behavior within many models now includes routine behavior, search
through problem spaces, migration of knowledge between problem spaces, and composition of
knowledge.

Within Soar models in general, displaying their behavior graphically pointed out how ephemeral
problem spaces and their structures are. In many ways the application and interactions of objects on
the problem space level should be considered as emergent behavior. The structure of the model is only
available from repeated viewing; the model itself has no representation of itself, and cannot conjure up
all the problem spaces and operators that are possible. ' ’

9.2.4 The synergy from integration

The environment receives much of its power from integration. The model, its behavior, the subject
data, and the comparison of the model and the data all exist in the same environment. This supports
several analyses that would be difficult without the integration and. it allows them to be much more
fluid. Integration allows: (a) direct, preliminary coding of the protocols based on the model’s
components; (b) appropriate mixed (text and symbolic graphics) presentation of data in the DSI; (c)
appropriate mixed (text and symbolic graphics) presentation of data in the analyses; and (d) the
portions of the trace that were well aligned and not well aligned could be directly compared with the-
model’s structures. .

9.3 Validated and extended the sequentiality assumption of protocol
generation theory

Using the TBPA methodology and the Soar/MT environment, the Browser-Soar model and data of
Peck & John (1992) were re-examined. Besides providing a test-bed for the methodology and
environment, this effort yielded the following new scientific result.

The verbal protocol production theory of Ericsson and Simon (1984) assumes that working memory
structures are reported in the order that they enter working memory. This assumption can be tested
with a model that predicts when objects enter working memory. The Soar/MT display of the relative
processing rates of the Browser-Soar model and the subject provided a direct visual test of this
assumption. The underlying data structures were then directly queried to confirm and count the
number of sequential and non-sequential pairs of events there were. In every episode of the Browser-
Soar, the sequentiality assumption was found to hold for the verbal protocol. An examination of the
non-verbal protocol segments found that they too were always performed in the same order as the
model, both for overt task actions, and for actions that were not directly related to the task, such as
moving the mouse pointer over words being read on the screen.

The two data streams appeared to be presented in a non-sequential order. Verbal utterances typically
lagged 10 to 30 simulation cycles (approximately 1 to 3 s) behind the overt actions; and rarely (3/300)
they lagged up to 400 simulation cycles (approximately 40 s).

~ The shorter lags were probably reports of working memory delayed by workload associated with the
task, and minor inconsistencies in the model. Examination of the correspondences showed that the

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing : 184

primary cause of the long lags was probably an artifact of the interpretation process. The verbal
utterances in the analysis were matched to-operators rather than to the state information created by the
operators. This approximation simplified the analysis considerably, and it should remain available —
it is a valuable technique. But it must be seen as only an approximation; one that will sometimes lead
to inconsistencies in the comparison. Any operator that sets up long lasting state information can
cause this problem.

As a result of these analyses it is proposed that the sequentiality assumption holds for both verbal
utteranances and task actions. Including motor task actions as part of the protocol provides reference
points for fixing the correspondences between the predictions and subject’s actions, and allows the lag
of the verbal utterances to be measured.

9.4 Progress toward the vision of routine applied theoretically
guided protocol analysis

This work has made appreciable progress toward the vision of autormatic modeling. All the parts of
Soar/MT are part of a grand vision of what an integrated modeling and data analysis system would
need to do, and could do. The major steps and inputs have been identified as the parts of TBPA, and a
prototype environment has been created that an automatic modeling system would need. The next
steps will be to create initial models, and to provide a more intelligent process for interpreting
ambiguous data with respect to the model’s predictions.

Because this environment is based on an architecture for general intelligence, it is conceptually
possible to add knowledge to the architecture of how to perform parts or all of the analysis. To do this
completely would require incorporating a complete model of the analyst. However, the architecture
used in this environment, Soar, also learns. So perhaps an easier, but less direct way to automate this
task might be through having a Soar-based agent learn to perform the analyses by watching a series of
analyses. As it watched a series of routine analyses over similar episodes be performed, it could
follow along, learning how to run the analyses, and then driving the analyses programs itself.

Not that we are there, but we can now see further down the path toward completely automatic
modeling. If NL-Soar (a Soar system for interpreting natural language) were to be incorporated, then
Soar/MT might take in instructions for different experiments, and use the models that NL-Soar creates
from reading the instructions as initial models to predict the behavior of subjects for each experiment
(Lewis, Newell & Polk, 1989; Newell, 1991). The alignment also could be automated. The non-
verbal overt actions can be compared directly; the verbal utterances would have data structures, the
predictions, laying around that are designed to be sufficient to parse them. NL-Soar (Lehman et al.,
1991) is available as a potential parser designed to use these predictions.

This style of protocol analysis requires further computer science and Al work: performing the
alignment of predictions to natural language, running the models more quickly, and gathering better
statistics. But it remains a task within psychology: the real use is for comparing protocols against
models’ predictions.

Remaining problems. Many problems remained in this methodology and environment. I would like to
note a few here to admit its deficiencies, to warn potential users of the current specificity of the tasks
Soar/MT can address, and to suggest directions for future work.

How to aggregate support from the predictions to the model structures is not always as straightforward
as it appeared in the sample analysis of Browser-Soar. There is a problem of specifying how the
predictions are used to interpret the data. There is also a problem in specifying how to aggregate
support for model components. Across episodes, the structures in the model that generated the
predictions remain and summarize the behavior over time. The current model implemented its
operators rather directly and in the same manner each time. This need not be the case. Consider an
Add operator such as Siegler uses in his work modeling children’s arithmetic knowledge (Siegler,

Soar™MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 185

1988; Siegler & Shrager, 1984). Different operands result in different reaction times and error
patterns. Assigning support to an operator in this case must be differentiated by the operator’s
arguments, and a representation for this must be developed. So there is an additional step to TBPA,
not yet made explicit, of translating the support that individual predictions receive from the data back
to the structures in the model that generated them.

The analyst is currently left with an abduction task of improving the fit with indications of where the
model does not fit and with tools for understanding and modifying the model. There are some simple
rules that would apply in specific circumstances, and these were noted in the chapter describing the
graphical measures of model fit. The possibility of finding a more complete and algorithmic
description, like Heise (1987, 1989; Corsaro & Heise, 1990; Heise & Lewis, 1991) provides for his
models, should be explored.

Speed, always and everywhere — the analyst always desires a faster system that performs more
complicated analyses automatically. Partial views of the data and model are included in this. The
recent translation of Soar to the C language offers a speedup in the basic architecture. Taking
advantage of this may require translating the DSI into C.

Directions for future work. The way to improve this methodology is the same way to improve a
model, by testing and using it on additional models and data sets. Some preliminary discussions have
taken place with other researchers about using Soar/MT to test their process models, usually models
implemented in Soar.

The software environment could be automated further, and as noted in Chapter 3, the next direct step
toward automatic agent modeling would be to represent the knowledge to perform a single step as a
Soar model. This would provide further automation. One of the potential places for doing this would
be to have NL-Soar parse the verbal utterances, another would be to further automate the generation of
the analytical diagrams.

9.5 Concluding remarks

We build our theories, test them, then modify them, iterating through a loop. This loop was described
briefly and perhaps for the first time with respect to process models and protocol analysis by Feldman
(1962, p. 342). But not surprisingly, it is like all theory testing in science. Models are not primarily
tested to be rejected (as the popularization of Popper’s (1959) views goes), or tested simply with a
significance test to determine their value, but models are tested in order to improve them (Grant, 1962;
Newell, 1990, p. 14). By using protocols to test these models, we are not attempting to code a segment
so that it is coded, but we are using the data to build a model (e.g., a simulation process model). That
is, to test whether subjects perform the same actions in the same order as the model predicts.

Because they will allow us to see new things, new analyses and tools are also science (Hall, 1992;
Laird & Rosenbloom, 1992; Newell, 1991; Ohlsson, 1990; Simon, 1991). New scientific problems are
found this way (Toulmin, 1972). Indeed, much of what science consists of — what is passed on from
generation to generation of scientists — is just technique (Ohlsson, 1990; Toulmin, 1972).

Because of the difficulties associated with creating process models and of manipulating protocol data,
sometimes analysts have lost sight of this fundamental nature of protocol analysis. The technique of
testing process models’ predictions of sequential behavior has been nudged forward just a bit.

Soar/MT - 21 December 1992

References

Soar/MT - 21 December 1992

186

References 187

References

Afifi, A., & Clark, V. (1984). Computer-aided Multivariate Analysis. New York: Van
Nostrand Reinhold Company.

Altmann, E. (February, 1992). Toward Human-scale task performance: Preliminaries. Talk
presented at the Soar X workshop.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, Massachusetts: Harvard
University Press.

Anderson, J. R. (in press). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Hillsdale, NJ: Lawrence
Erlbaum Associates. Third revised printing 1979.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor.
Cognitive Science, 13(4), 467-505. ‘

Anderson, J. R, Farrell, R, & Sauers, R. (1981). Learning to program in Lisp. Cognitive
Science, 8, 87-129.

Anderson, J. R, Greeno, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of problem-
solving skill. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Anjewierden, A., Wielemaker, J., & Toussaint, C. (1990). Shelley — Computer aided
knowledge engineering. In Wielinga, B., Boose, J. H., Gaines, B. R., Schreiber, G, & van
Someren, M. (Eds.), Current trends in Knowledge acquisition (Proceedings of the 4rth
European workshop on knowledge acquisition, EKAW-90, Amsterdam. Amsterdam: [0S Press.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86,
124-140.

Ardis, M. A. (1987). Template-Mode for GNU Emacs. Available from The Ohio State
University elisp archives on archive.cis.ohio-state.edu as file
pub/gnu/emacs/elisp-archive/modes/templatemode.tar.Z.

Atwood, M. E., & Poulson, P. G. (1976). A process model for water jug problems. Cognitive
Psychology, 8, 191-216.

Bates, D., Kademan, E., & Ritter, F. E. (Fall 1990, revised Fall 1991). S-mode for GNU Emacs.
Available from the Statlib software archive (S is a statistics package, Statlib is
statlib@lib.stat.cmu.edu).

Becker, R.A., Chambers, J M., & Wilks, A.R. (1988). The New S Language. Pacific Grove,
CA: Wadsworth and Brooks/Cole.

Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual
Review of Psychology, 31, 419-456.

Bhaskar, R. (1978). Problem solving in semantically rich domains. Doctoral dissertation,
Carnegie-Mellon University.

Bhaskar, R., & Simon, H. A. (1977). Problem solving in semantically rich domains: An
example from engineering thermodynamics. Cognitive Science, 1, 193-215.

Soar/MT - 21 December 1992

References 188

Bree, D. S. (1968). The understanding process as seen in geometry theorems. Doctoral
dissertation, Camegie Mellon University.

Brooks, F. P. (1975). The mythical man-month: Essays on software engineering. Reading, MA:
Addison-Wesley Pub. Co.

Brown, C. R. (1986). The verbal protocol analysis tool (VPA): Some formal methods for
describing expert behavior. In Proceedings 2nd Symposium on Human Interface, Oct. 29-30,
Tokyo, Japan, 561-567.

Brown, J. S., & Burton, R. B. (1980). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 155-192.

Brueker, J., & Wielinga, B. (1989). Models of expertise in knowledge acquisition. In Guida, G.,
& Tasso, C. (Eds.), Topics in expert system design. North Holland: Elsevier Science Publishers
B.V.

Card, S. K, Moran, T. P,, & Newell, A. (1980). The keystroke-level model for user
performance time with interactive systems. Communications of the ACM, Vol. 23(7).

Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Carley, K. (1988). Formalizing the social expert’s knowledge. Sociological methods and
research, 17(2), 165-232.

Carpenter, P. A, Just, M. A,, & Shell, P. (1990). Cognitive coordinate systems: Accounts of
mental rotation and individual differences in spatial ability. Psychological Review, 92, 137-172.

Chambers, J. M., & Hastie, T.J., eds. (1992). Statistical Models in S. Pacific Grove, CA:
Wadsworth and Brooks/Cole.

Cohen, M. S, Payne, D. G, & Pastore, R. E. (1991). Computerized task analysis. SIGCHI
Bulletin, 23(4), 57-58.

Corsaro, W. A, & Heise, D. R. (1990). Event structure models from ethnographic data. In
Clogg, C. (Ed.), Sociological methodology: 1990. Cambridge, MA: Basil Blackwell.

Dansereau, D. (1969). An information processing model of mental multiplication. Doctoral
dissertation, Department of Psychology, Carnegie-Mellon University.

Diederich, J., Ruhmann, I, & May, M. (1987). KRITON: A knowledge-acquisition tool for
expert systems. International Journal of Man-Machine Studies, 26, 29-40.

Dillard, J. F., Bhaskar, R., & Stephens, R. G. (1982). Using first-order cognitive analysis to
understand problem solving behavior: An example from accounting. Instructional Science,
11(1), 71-92.

Doorenbos, R., Tambe, M., & Newell, A. (1992). Learning 10,000 chunks: What’s it like out
there? Proceedings of the Tenth National Conference on Artificial Intelligence. AAAL

Dukes, N. F. (1968). N=1. Psychological Bulletin, 64(1), 74-79.

Embretson, S. E. (1992). Computerized adaptive testing: Its potential substantive contributions

to psychological research and assessment. Current directions in psychological science, 1(4),
129-131.

Ericsson, K. A.,, & Simon, H. A. (1980). Protocol analysis: Verbal reports as data.
Psychological Review, 87, 215-251.

Soar/MT - 21 December 1992

References 189

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge,
MA: The MIT Press.

Feigenbaum, E. A, & Simon, H. S. (1984). EPAM-like models of recognition and learning.
Cognitive Science, 8, 305-336.

Feldman, J. (1962). Computer simulation of cognitive processes. In Borko, H. (Ed.), Computer
applications in the behavioral sciences. Englewood cliffs, NJ: Prentice-Hall.

Feldman, J., Tonge, F. M., & Kanter, H. (1991). Empirical explorations of a hypothesis-testing
model of binary choice behavior. Hoggatt, A. C., & Balderston, F. E. (Eds.), Symposium on
simulation models. Cincinnati, OH, South-Western Publishing Company.

Fielding, N. G., & Lee, R. M. (Eds.). (1991). Using computers in qualitative research. London
& Beverly Hills, CA: Sage.

Finlay, J., & Harrison, M. (1990). Pattern recognition and interaction models. Diaper, D., et al.
(Eds.), Human-computer interaction — INTERACT ’90. IFIP, Elsevier Science Publishers B. V.

Fisher, C. (1987). Advancing the study of programming with computer-aided protocol analysis.
In Olson, G., Soloway, E., & Sheppard, S. (Eds.), Empirical studies of programmers: Second
workshop. Norwood, NJ: Ablex.

Fisher, C. (1991). Protocol Analyst’s Workbench: Design and evaluation of computer-aided
protocol analysis. Doctoral dissertation, Department of Psychology, Carnegie-Mellon
University.

Forgy, C. L. (1981). OPS5 user’s manual (Tech. Rep)CMU-CS -81-135. Department of
Computer Science, Carnegie-Mellon University.

Free Software Foundation. (1988). GNU Emacs. Boston: Free Software Foundation.
Directions for obtaining GNU-Emacs are available by FTPing file /pub/gnu/GNUinfo/FTP on
prep.ai.mit.edu, using the anonymous FTP protocol.

Garey, M. R, & Johnson, D. S. (1979). Computers and intractability: A guide to the théory of
NP-Completeness. New York, New York: W. H. Freeman and Company.

Garlick, S. & VanLehn, K. (1987). CIRRUS: An automated protocol analysis tool (Tech.
Rep.) 6. Department of Psychology, Carnegie-Mellon University.

Gascon, J. (1976). Computerized protocol analysis of the behavior of children on a weight
seriation task. Doctoral dissertation, Departement de Psychologie, Université de Montréal.

Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavioral researchers.
Cambridge, UK: Cambridge University Press.

Grant, D. A. (1962). Testing the null hypothesis and the strategy and tactics of investigating
theoretical models. Psychological Review, 69, 54-61.

Greenblatt, R. D., Knight, T. F. Jr., Holloway, J., Moon, D. A., & Weinreb, D. L. (1984). The
LISP machine. In Barstow, D. R., Shrobe, H. E., & Sandewall, E. (Eds.), Interactive
programming environments. New York, NY: McGraw-Hill.

Greeno, J. G., and Simon, H. A. (1984). Problem solving and reasoning. In Atkinson, R. C.,
Hermnstein, G., Lindzey, G., and Luce, R. D. (Eds.), Stevens’ handbook of experimental
psychology, 2nd edition, Volume II. New York, NY: John Wiley & Sons. Also available as tech
report UPITT/LRDC/ONR/APS-14.

Gregg, L. W., & Simon, H. S. (1967). An information-processing explanation of one-trial and

Soar/MT - 21 December 1992

References 190

. incremental learning. Journal of Verbal Learning and Verbal Behavior, 6, 780-787.
Hall, S. (1992). How technique is changing science. Science, 257, 344-349.

Hansen, J. P. (1991). The use of eye mark recordings to support verbal retrospection in
software testing. Acta Psychologica, 76, 31-49.

Hegarty, M. (1988). Comprehension of diagrams accompanied by text. Doctoral dissertation,
Department of Psychology, Carnegie-Mellon University.

Heise, D. R. (August 1987). Computer assisted analysis of qualitative field data, Didactic
seminar, Session 176, American Sociological Association, Chicago.

Heise, D. R. (1989). Modeling event structures. Journal of Mathematical Sociology, 14(2-3),
139-169.

Heise, D. R. (1991). Event structure analysis: A qualitative model of quantitative research. In
Fielding, N. G., & Lee, R. M. (Eds.), Using computers in qualitative research. London: Sage.

Heise, D., & Lewis, E. (1991). Introduction to ETHNO. Dubuque, Iowa Wm. C. Brown
Publishers.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann Machines. In
Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1:
Foundations. Cambridge, Massachusetts: The MIT Press.

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(6), 341-343.

James, J. M., Sanderson, P. M., & Seidler, K. S. (1990). SHAPA Version 2.0: Instruction
manual and reference (Tech. Rep.) EPRL-90-16/M. Engineering Psychology Research
Laboratory.

Jefferys, W. H., & Berger, J. O. (1992). Ockham’s Razor and Bayesian Analysis. American
Scientist, 80(January-February), 64-72.

John, B. E. (1988). Contributions to engineering models human-computer interactions, Volume
1. Doctoral dissertation, Department of Psychology, Carnegie-Mellon University.

John, B. E. (1990). Applying cognitive theory to the evaluation and design of human-computer
interfaces. Final report to US West sponsored research program.

John, B. E., & Vera, A. H. (May 1992). A GOMS analysis of a graphic, machine-paced, highly
interactive task. CHI’92 Proceedings of the Conference on Human Factors and Computmg
Systems. NewYork: SIGCHI, ACM Press.

John, B. E., Vera, A. H., & Newell, A. (December 1990). Toward Real-Time GOMS (Tech.
Rep.) CMU-CS-90-195. School of Computer Science, Camegie-Mellon University.

John, B.E., Remington, RW. & Steier, DM. (May 1991). An Analysis of Space Shuttle
Countdown Activities: Preliminaries to a Computational Model of the NASA Test Director
(Tech. Rep.) CMU-CS-91-138. School of Computer Science, Carnegie-Mellon University.

Johnson, T. R., & Smith, J. W. (1991). A Framework for Opportunistic Abductive Strategies.
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale,
New Jersey: Cognitive Science Society, Lawrence Erlbaum Associates.

Johnson, P. E., Dura’n, A. S., Hassebrock, F., Moller, J., Prietula, M., Feltovich, P. J., Swanson,
D. B. (1981). Expertise and error in diagnostic reasoning. Cognitive Science, 5, 235-283.

Soar/MT - 21 December 1992

References 191

Just, M. A, & Carpenter, P. A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87(4), 329-354.

Just, M. A, & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental
rotation and individual differences in spatial ability. Psychological Review, 92(2), 137-172.

Just, M. A., & Carpenter, P. A. (1987). The psychology of reading and language
comprehension. Newton, MA: Allyn & Bacon.

Just, M. A, & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual
differences in working memory. Psychological Review, 99, 122-149. -

Just, M. A., & Thibadeau, R. A. (1984). Developing a computer model of reading times. In
Kieras, D. E., & Just, M. A. (Eds.), New methods in reading comprehension research. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Kadane, J. B,, Larkin, J. H., & Mayer, R. H. (1981). A moving average model for sequenced
reaction-time data. Journal of Mathematical Psychology, 23(2), 115-133.

Kaplan, C. (1987). Computer simulation: Separating fact from fiction. Published as Technical
report #498 in the C. L P. Series, Department of Psychology, Carnegie-Mellon University.

Karat, J. (1968). A model of problem solving with incomplete constraint knowledge. Cognitive
Psychology, 14, 538-559.

Kennedy, S. (1989). Using video in the BNR usability lab. SIGCHI Bulletin, 21(2), 92-95.
Kiearas, D. (May 1992). Personal communication.

Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive
Science, 12(1), 1-48.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks:
Elements of expertise in geometry. Cognitive Science, 14(4), 511-550.

Kolen, 1. F., & Pollack, J. B. (1988). Scenes from exclusive-or: Back propagation is sensitive to
initial conditions. Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society. Cognitive Science, LEA.

Kowalski, B., & VanLehn, K. (1988). Cirrus: Inducing subject models from protocol data.

Proceedings of the Tenth Annual Conference of the Cognitive Science Society. Cognitive
Science, LEA.

Krishnan, R., Li, X., & Steier, D. M. (September 1992). Development of a knowledge-based
mathematical model formulation system. Communications of the ACM, 35(9), 138-146.

Kulkami, D., & Simon, H. A. (1988). The process of scientific discovery: The strategy of
experimentation. Cognitive Science, 12, 139-176.

Laird, J. E., & Rosenbloom, P. S. (1992). In pursuit of mind: The research of Allen Newell. To
appear in Al Magazine.

Laird, J.E., Congdon, C.B., Altmann, E. & Swedlow, K. (October 1990). Soar User’s Manual:
Version 5.2 (Tech. Rep.) CSE-TR-72-90. Electrical Engineering and Computer Science
Department, University of Michigan. Also available from The Soar Project, School of Computer
Science, Carnegie-Mellon University, as technical report CMU-CS-90-179.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. Artificial Intelligence, 33(1), 1-64.

Soar/MT - 21 December 1992

References 192

Langley, P., & Ohlsson, S. (1989). Automated cognitive modeling. Proceedings of AAAI-84.
Los Altos, CA, Morgan Kaufman.

Langley, P., Bradshaw, G. L., & Simon, H. A. (1983). Rediscoven'ng chemistry with the Bacon
system. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning, an
artificial intelligence approach. Palo Alto, CA: Tioga.

Larkin, J. H. (1981). Enriching formal knowledge: A model for leaming to solve textbook
physics problems. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Larkin, J. H., & Simon, H. A. (1981). Learning through growth of skill in mental modeling. In
Proceedings of the Third annual conference of the Cognitive Science Society. Cognitive Science
Society, Lawrence Erlbaum Associates.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11, 65-99. '

Larkin, J. H., Mayer, R. H., & Kadane, J. B. (1986). An information-processing model based
on reaction times in solving linear equations. Journal of Mathematical Psychology, 23(2),
115-133.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in
solving physics problems. Cognitive Science, 4, 317-345.

Lehman, J. F., Lewis, R. L., & Newell, A. (1991). Integrating knowledge sources in language
comprehension. Proceedings of the Thirteenth Annual Conference of the Cognitive Science
Society. .

Levy, B. (Fall 1991). Able Soar Jr: A model for learning to solve kinematic problems. Final
project for PSY 85-711: Cognitive processes and problem solving.

Lewis, R. L., Huffman, S. B., John, B. E., Laird, J. E., Lehman, J. F., Newell, A., Rosenbloom,
P. S., Simon, T, & Tessler, S. G. (July 1990). Soar as a Unified Theory of Cognition: Spring
1990. Proceedings of the Twelfth Annual Conference of the Cognitive Science Society.
Cambridge, MA.

Lewis, R. L., Newell, A., & Polk, T. A. (1989). Toward a Soar theory of taking instructions for
immediate reasoning tasks. Proceedings of the Annual Conference of the Cognitive Science
Society. Hillsdale, New Jersey: Cognitive Science Society, Lawrence Erlbaum Associates.

Lueke, E., Pagerey, P. D., & Brown, C. R. (1987). User requirements gathering through verbal
protocol analysis. In Salvendy, G. (Ed.), Cognitive Engineering in the Design of Human-
Computer Interaction and Expert Systems. Amsterdam: Elsevier Science Publishers.

Luger, G. F. (1981). Mathematical model building in the solution of mechanics problems:
Human protocols and the MECHO trace. Cognitive Science, 5, 55-71.

Mackay, W. (1989). EVA: An experimental video annotator for symbolic analyses of video
data. SIGCHI Bulletin, 21(2), 68-71.

MacWhinney, B. (1991). The CHILDES project: Tools for analyzing talk. Hillsdale, NJ:
Lawrence Erlbaum Associates.

MacWhinney, B., & Snow, C. (1990). The Child Language Data Exchange System: An update.
Journal of Child Language, 17, 457-472.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing:
A handbook of models, programs, and exercises. Cambridge, Massachusetts: The MIT Press.

Soar/MT - 21 December 1992

References ‘ 193

McClelland, J. L., Rumelhart, D. E., & the PDP research group. (1986). Parallel distributed -
processing: Explorations in the microstructure of cognition. Volume 2: Psychological and
biological models. Cambridge, Massachusetts: The MIT Press.

McConnell, C. (Spring 1992). llisp: Fancy LISP interface for GNU Emacs that supports multiple
dialects (Version 4.12). Available from The Ohio State University elisp archives on
archive.cis.ohio-state.edu as file pub/gnu/emacs/elisp-archive/packages/ilisp.tar.Z, and from
katmandu.mt.cs.cmu.edu:/pub/ilisp/ilisp.tar.Z.

Miller, C. S., & Laird, J. E. (1991). A Constraint-Motivated Model of Lexical Acquisition.
Proceedings of the thirteenth annual conference of the Cognitive Science Society. Cognitive
Science, Lawrence Erlbaum Associates.

Milnes, B. G. (1988). The Soar Graphic Interface. Talk and demo presented at the Soar V
Workshop.

Miwa, K., & Simon, H. A. (1992). Measuring individual differences by modifying production
systems. Submitted for publication.

Motta, E., Eisenstadt M., Pitman, K., & West, M. (1988). Support for knowledge acquisition in
the Knowledge Engineer’s Assistant (KEATS). Expert Systems, 5, 6-28.

Myers, B. A, & Rossen, M. B. (May 1992). Survey on user interface programming. CHI’92
Proceedings of the Conference on Human Factors and Computing Systems. NewYork, ACM
Press, Also available as Camegie-Mellon School of Computer Science technical report CMU-
CS-92-113.

Myers, B. A,, Giuse, D. A., Dannenberg, R. B., Vander Zanden, V., Kosbie, D. S., Pervin, E.,
Mickish, A., & Marchal, P. (November 1990). Gamet: Comprehensive Support for Graphical, -
Highly-Interactive User Interfaces. IEEE Computer, 23(11), 71-85.

Myers, B. A,, Guise, D., Dannenberg, R. B., Vander Zanden, B., Kosbie, D., Marchal, P., Pervin,
E., Mickish, A., Kolojejchick, J. A. (1991). The Garnet toolkit reference manuals, revised for
Version 1.4 (Tech. Rep.) CMU-CS-90-117-R. School of Computer Science, Carnegie-Mellon
University.

Neches, R. (1982). A process model for water jug problems. Behavior research methods &
instrumentation, 14(2), 77-91.

Neches, R., Langley, P., & Klahr, D. (1987). Learning, development, and production systems.
In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and
development. Cambridge, MA: Massachusetts Institute of Technology.

Nelson, T. O. (1984). A comparison of current measures of the accuracy of feeling-of-knowing
predictions. Psychological Bulletin, 95(1), 109-133.

Nerb, J. & Krems, J. (1992). Kompetenzerwerb beim Loesen von Planungsproblemen:
experimentelle Befunde und ein SOAR-Model (Skill acquisition in solving scheduling problems:
Experimental results and a Soar model). FORWISS-Report FR-1992-001, Muenchen
(Germany).

Neter, J., Wasserman, W., & Kutner, M. H. (1985). Applied linear statistical models.
Homewood, IL: Irwin.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R., & Morris, J. H. (1990). Issues in the design of
computer support for co-authoring and commenting. In Proceedings of the Third Conference on
Computer Supported Cooperative Work (CSCW’90). Computer supported cooperative work,
Association for Computing Machinery.

Soar/MT - 21 December 1992

References , 194

Newell, A. (1968). On the analysis of human problem solving protocols. In Gardin, J. C., &
Jaulin, B. (Eds.), Calcul et formalisation dans les sciences de I’'homme. Paris: Centre National
de la Recherche Scientifique. Excerpt published in Johnson-Laird, P. J., & Wason, P. C. (1977)
(Eds.), "On the analysis of human problem solving protocols”, Thinking: Readings in cognitive
science, 46-61, Bath (UK): The Pitman Press.

Newell, A. (1972). A theoretical exploration of mechanisms for coding the stimulus. In Melton,
A. W., & Martin, E. (Eds.), Coding processes in human memory. Washington, DC:
V. H. Winstor.

Newell, A. (1973). You can’t play 20 questions with nature and win. In Chase, W. G. (Ed.),
Visual information processing. New York, NY: Academic Press.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

Newell, A. (1990). Unified theories of cognition. Cambridge, Massachusetts: Harvard
University Press.

Newell, A. (1991). Desires and diversions. School of Computer Science Distinguished Lecture,
Carnegie-Mellon University. December 4rth.

Newell, A. (1992). Unified theories of cognition and the role of Soar. In Michon, J. A, &
Akyurek, A. (Eds.), Soar: A cognitive architecture in perspective. Dordrecht (the Netherlands):
Kluwer Academic Publishers.

Newell, A. (1980a). Perception and production of fluent Speech. In Cole, R. (Ed.), Harpy,
production systems, and human cognition. Hillsdale, NJ: Lawrence Erlbaum Associates. Also
. available as CMU tech. report CMU-CS-78-140.

Newell, A. (1980b). Reasoning, problem solving and decision processes: The problem space as
a fundamental category. In Nickerson, R. (Ed.), Attention and performance VIII. Hillsdale, NJ:
Lawrence Erlbaum Associates. Also available as a Department of Computer Science, Carnegie-
Mellon University tech report.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of
practice. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition. Hillsdale, NIJ:
Lawrence Erlbaum Associates.

Newell, A., & Simon, H. A. (1961). The simulation of human thought. In Current trends in
psychological theory. Pittsburgh, PA: University of Pittsburgh Press. Also available as RAND
tech. reports P-1734 and RM-2506.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-
Hall, Inc. ’

Newell, A., & Steier, D. (1992). Intelligent Control of External Software Systems. Al in
Engineering, Vol. in press. Also available as Technical Report EDRC 05-55-91, Engineering
Design Research Center, Camegie Mellon University, April, 1991.

Newell, A., Shaw, J. C.,, & Simon, H. A. (1958). Elements of a theory of human problem
solving. Psychological Review, 65, 151-166.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving program
for a computer. Information processing: Proceedings of the international conference on
information processing. Paris, UNESCO, Also available as Rand tech. report P-1584; reprinted
in Computers and Automation, July 1959..

Newell, A,, Yost, G. R., Laird, J. E., Rosenbloom, P. S. & Altmann, E. (1991). Formulating the

Soar/MT - 21 December 1992

References 195

problem space computational model. In Rashid, R.F. (Ed.), Carnegie Mellon Computer Science:
A 25-Year Commemorative. Reading, PA: ACM-Press: Addison-Wesley.

Newell, P., Lehman; J., Altmann, E., Ritter, F., & McGinnis, T. (1992). The Soar video.
forthcoming.

Norman, D. A. (1990). Approaches to the study of intelligence. Artificial Intelligence, Vol. 26.
Also to be published in Kirsh, D. (Ed.) (in preparation). Foundations of artificial intelligence.
Cambridge, MA: MIT Press.

O'Reilly, R. C. (1991). X3DNet: An X-Based Neural Network Simulation Environment.
Available from oreilly@cmu.edu, or via anonymous FTP from hydra.psy.cmu.edu as file
pub/x3dnet/x3dnet.tar.Z.

Ohlsson, S. (1980). Competence and strategy in reasoning with common spatial concepts: A
study of problem solving in a semantically rich domain. Doctoral dissertation, U. of Stockholm.
Also published as #6 in the Working papers from the Cognitive seminar, Department of
Psychology, U. of Stockholm.

Ohlsson, S. (1990). Trace analysis and spatial reasoning: An example of intensive cognitive
diagnosis and its implications for testing. In Frederiksen, N., Glaser, R., Lesgold, A., & Shafto,
M. G. (Eds.), Diagnostic monitoring of skill and knowledge acquisition. Hillsdale, NIJ:
Lawrence Erlbaum Associates.

Ohlsson, S. (October 1992). Personal communication.

Olson, J. S., Olson, G. M., Storrosten, M., & Carter, M. (1992). How a group-editor changes the
character of a design meeting as well as its outcome. Paper presented at the HCI Consortium
meeting, February 1992.

Peck, V. A. (November 1992). Personal communication.

Peck, V. A., & John, B. E. (May 1992). Browser-Soar: A computational model of a highly
interactive task. CHI’92 Proceedings of the Conference on Human Factors and Computing
Systems. NewYork, ACM Press.

Pitman, K. M. (1985). Cref: An editing facility for managing structured text (Tech. Rep.) A.L
Memo No. 829. Massachusetts Institute of Technology, Artificial Intelligence Laboratory.

Platt, J. R. (1964). Strong Inference. Science, 146(3642), 347-353.

Polk, T. A. (August 1992). Verbal reasoning. Doctoral dissertation, School of Computer
Science, Carnegie-Mellon University.

Poltrock, S. E., & Nasr, M. G. (1989). Protocol analysis: A tool for analyzing human-computer
interactions (Tech. Rep.) ACT-HI-186-89. Microelectronics and Computer Technology
Corporation.

Popper, K. R. (1959). The logic of scientific discovery. New York, NY: Basic Books.

Priest, A. G., & Young, R. M. (1988). Methods for evaluating micro-theory systems. In Self,
J. (Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction.
London: Chapman and Hall.

Qin, Y., & Simon, H. A. (1990). Laboratory replication of scientific discovery processes.
Cognitive Science, 14(2), 281-312.

Quinlan, R. (1983). Learning efficient classification procedures and their application to chess
end games. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning:

Soar/MT - 21 December 1992

References 196

An artificial intelligence approach. Palo Alto, CA: Tioga.

Reiser, B. J., Anderson, J. R, & Farrell, R. G. (1985). Dynamic student modeling in an
intelligent tutor for LISP programming. Proceedings of the International Joint Conference on
Artificial Intelligence - 85. Los Angeles: International Joint Conference on Artificial
Intelligence.

Reynolds, H. T. (1984). Analysis of nominal data (Tech. Rep.) 07-001. London & Beverly
Hills, CA: Sage university paper series on quantitative application in the social sciences.

Ritter, F. E. (September, 1988). "Extending the Seibel-Soar Model". Presented at the Soar V
Workshop held at CMU.

Ritter, F. E. (1989). Transparencies from Soar Meeting, May, 1989. FOKIBOFIT-Soar: A Soar
model of the effect of problem-part frequency on feeling-of-knowing, Department of
Psychology, Carnegie-Mellon University, Unpublished. Also presented as part of the
Understand Seminar, PSY 85-811.

Ritter, F. E. (1991). TAQL-mode Manual. The Soar Project, School of Computer Science,
Carnegie-Mellon University.

Ritter, F. E. (February, 1992). "Bruno Levy’s Able-Soar, Jr. model”. Presented at the Soar X
Workshop held at The University of Michigan.

Ritter, F. E., & Fox, D. (1992). Dismal: A spreadsheet for GNU-Emacs. The Soar Project,
School of Computer Science, Camegie-Mellon University.

Ritter, F. E., & McGinnis, T. F. (1992). Manual for SX: A graphical display and interface for
Soar in X windows. The Soar Project, School of Computer Science, Carnegie-Mellon
University.

Ritter, F. E., Hucka, M., & McGinnis, T. F. (1992). Soar-mode Manual (Tech.
Rep.) CMU-CS-92-205. School of Computer Science, Camegie-Mellon University.

Rosenbloom, P. S. & Lee, S. (1989). Soar arithmetic and functional 'capability. Software
provided with the Soar 5 distribution.

Rosenbloom, P. S., & Newell, A. (September 1982). Learning by chunking, a production system
model of practice (Tech. Rep.) CMU-CS-82-135. Department of Computer Science, Carnegie-
Mellon University.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1987). Meta-levels in Soar. In Maes, P., &
Nardi, D. (Eds.), Meta-Level Architectures and Reflection. Amsterdam: North Holland
Publishing Company.

Rumelhart, D. E., McClelland, J. L., & the PDP research group. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition. Volume 1: Foundations.
Cambridge, MA: The MIT Press.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on acoustics, speech, and signal processing, 26(1), 43-49.

Samual, A. L. (July 1959). Some studies in machine learning using the game of checkers. IBM
J. of Research and Development, 3, 210-229.

Sanderson, P. M. (1990). Verbal protocol analysis in three experimental domains using SHAPA.
Proceedings of the Human Factors Society 34th Annual Meeting. Human Factors Society.

Sanderson, P., James, J., Watanabe, L., & Holden, J. (1990). Human operator behavior in

Soar/MT - 21 December 1992

References _ 197‘

complex worlds: Rendering sequential records analytically tractable. Proceedings of the 9th
Annual Conference on Human Decision Making and Manual Control. Varese, Italy, Also
available from the Engineering Psychology Research Laboratory, Department of Mechanical and
Industrial Engineering, U. of Illinois, as technical report EPRL-90-12.

Sanderson, P. M., Verhage, A. G., & Fuld, R. B. (1989). State-space and verbal protocol
methods for studying the human operator in process control. Ergonomics, 32(11), 1343-1372.

Schank, R. C. (1982). Dynamic memory. Cambridge, UK: Cambridge University Press.
Schroeder, D. (November 1992). Personal communication.

Shadbolt, N. R., & Wielinga, B. (1990). Knowledge-based knowledge acquisition: the next
generation of support tools. In Wielinga, B., Boose, J. H., Gaines, B. R., Schreiber, G., & van
Someren, M. (Eds.), Current trends in Knowledge acquisition (Proceedings of the 4th European
workshop on knowledge acquisition, EKAW-90, Amsterdam. Amsterdam: 10S Press.

Sherwood, B. A., & Sherwood, J. N. (1984). The cT language and its uses: A modern
programming tool. In Redish, E. F., & Risley, J. S. (Eds.), The Conference on Computers in
Physics Instruction Proceedings. Redwood City, CA: Addison-Wesley. Also available as tech
report UPITT/LRDC/ONR/APS-14.

Sherwood, B. A., & Sherwood, J. N. (1992). The cT Language Manual. Wentworth, NH:
Falcon Software. The cT programming language is distributed by Falcon Software, Inc., P.O.
Box 200, Wentworth, NH 03282; phone 603-764-5788, fax 603-764-9051. A site license is
available for users at CMU.

Shrager, J., Hogg, T., & Huberman, B. A. (1988). A dynamical theory of the power-law of
learning in problem-solving. Draft paper submitted to AAAI-88.

Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill.
Journal of Experimental Psychology: General, 117(3), 258-275.

Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do
children know what to do? In Sophian, C. (Ed.), Origins of cognitive skills. Hillsdale, NJ:
Lawrence Erlbaum Associates.

ACM Special interest group on Artificial Intelligence. (April 1989). Special issue on:
Knowledge Acquisition, Sigart Newsletter (108). ’

Special interest group on Artificial Intelligence. (1991). Special section on integrated cognitive
architectures Sigart Bulletin, 2(4),

Special interest group on Computer-Human Interaction. (1989). Special issue on protocol
analysis tools and methods, SigChi Bulletin, 21(2),

Simon, H. A. (1979). Models of Thought. New Haven, CT: Yale University Press.
Simon, H. A. (1989). Models of Thought, Volume II. New Haven, CT: Yale University Press.
Simon, H. S. (1990). Invarants of human behavior. Annual Review of Psychology, 41, 1-19.

Simon, H. A. (October 1991). Setting up research programs. Talk presented as part of the
Graduate student professional seminar series: Interfacing the science and the profession,
Department of Psychology, Carnegie-Mellon University.

Simon, H. A., & Newell, A. (1956). Models: Their uses and limitations. In White, L. D. (Ed.),
The state of the social sciences. Chicago: University of Chicago Press.

Soar/MT - 21 December 1992

How to obtain the software described in this ;h&sis 202

statistics. S-mode is built on top of comint (the general-command interpreter mode written by Olin
Shivers), as an interface to S.

The latest version of S-mode is available from the Statlib email statistical software server by sending a
blank message with subject "send index from S" to statlib@stat.cmu.edu, and following the directions
from there. Comint is probably already available at your site, and already in your load path. If it is
not, you can get it from archive.cis.ohio-state.edu (login name is anonymous, password is your real id)
in directory /pub/gnu/emacs/elisp-archive/as-is/comint.el.Z. This version has been tested and works
with (at least) comint-version 2.03. You probably have copies of comint.el on your system. Copies of
comint are also available from ritter@cs.cmu.edu, and shivers@cs.cmu.edu.

S-mode is also available for anonymous FTP from attunga.stats.adelaide.edu.au in the directory pub/S-
mode, and from the Emacs-lisp archive on archive.cis.ohio-state.edu.

The simple menu package

Updated versions (if any) of the simple-menu package used to provide the menus in S-mode, Soar-
mode, and Tagl-mode are available from the author or via FTP: from the elisp archive on
archive.cis.ohio-state.edu as file pub/gnu/emacs/elisp-archive/interfaces/simple-menu<version>.el.Z.
Iff you post me mail that you use it, I'll post you updates when they come out.

Soar/MT - 21 December 1992

