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has less operator applications.

Figures 7-43 and 7-44 show the model fit displays for the modified version of Browser-Soar next to
the original versions. These two displays show that the revised model has a denser level of support,
the lines connecting the corresponding model and subject actions are closer together, and the RMSD
and mean average deviation are lower. The rate of decision cycles to seconds ratio is also closer to the
predicted mean, and visually the fit appears to be better. The modified version has slightly worse 2,
more so when the model time unit is decision cycles (.69 versus .59) than for operator applications (.78
versus .75). The correspondence rates in decision cycles and operator applications per second for the
modified model also go down, as less is done.

It is hard to tell if these differences are important. It would perhaps become easier to tell after further
revisions of the Evaluate-current-window operator, and with a more proper regression line (Kadane et
al., 1981; Larkin et al., 1986). These results do point out that it is hard to distinguish learning on the
single problem space level at this time grain. In order to clearly distinguish these two problem space
representations we would have to look at more episodes, more subjects, or further constraints from
data. Given the lack of real difference, parsimony would argue for using the simpler, modified version
of Browser-Soar.

This analysis also calls into question the strict interpretation used. The subject must decide to move
the mouse. The operators that were removed originally represented this choice. With a different
interpretation function, these operators would have been supported and would not have been
removable. As noted in the list of comrections available when the model’s predictions mismatch the
data (Table 2-6), the interpretation function can also change. This case raises the question of how to
interpret data given Soar’s hierarchical operators and state representation. This may remain a problem
for some time.

7.5 Testing and extending the sequentiality assumptions of protocol
generation theory

As noted in their initial description, the relative processing rate displays allow the sequentiality
assumption of Ericsson and Simon’s (1984) theory of verbal protocol production to be tested. That is,
if verbalizations are produced in the order that the corresponding data structures appear in working
memory. There is another aspect to this assumption, that inputs to operators will be reported before
their outputs, but is a more specific form that will not be directly tested unless we run into problems.
A model of what appears in working memory is currently necessary to test this assumption. There are
no other ways to tell when information enters working memory, and thus that it is reported in order.
Having a model of the contents of working memory also allows use to judge if the verbalizations are
retrospective or prospective.

Browser-Soar provides predictions of the contents of working memory while using a specific on-line
help system. By examining the relationship of these predictions with the subject’s verbal utterances in
the ten Browser-Soar episodes, the sequentiality assumption can be tested.

The predictions of the external task actions (mouse movements and button presses) can also be
compared with the contents of working memory, but because getting the order of the external actions
the same for both model and subject is essential for performing the task, in a well developed model
like Browser-Soar there is not likely to be many mismatches. What will be interesting though, is using
the external actions to compute how later (or early) the verbal utterances are.

Finding that this holds will not be an iron-clad proof that this assumption holds. If it is an assumption,
then it cannot be proven, only shown that we meet it. If it is treated more as part of the theory of
verbal protocol production, then there may be similar models of browsing behavior where the
information is reported in a different order, and that the current set of verbal protocols would not match
sequentially. '
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Figure 7-42: Operator support displays for the Array episode.
The original Browser-Soar predictions are on the top, and the modified version
on the bottom.
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7.5.1 Are verbalizations generated sequentially?

Of the 220 verbal utterances in the ten episodes, 195 can be aligned with the model’s predictions. The
remaining 25 are mostly too short to compare. The remaining segments make up 210 pairs of
immediately sequential utterances that can be tested against the sequentiality assumption. This test can
be performed by eye with the displays, and the initial analyses did this because it was so easy and
direct. The final counts were taken from the data structure used to create the displays.

All 210 pairs follow the sequentiality assumption; for all the pairs, the later segment in each pair either
matches the same model trace action as the first segment matches or a later model trace action. So this
appears to be another constraint that Browser-Soar meets. ’

7.5.2 Are mouse actions generated sequentially?

In a similar way the mouse movements and mouse button actions can be tested for sequentially.
Because these actions were used as fixed points to automatically align the subject’s protocol and the
model’s trace, in order to match out of sequence they would had to have been moved by hand out of
sequence, or items that could not be automatically aligned would have had to be aligned by hand.

Of the 404 mouse actions in the ten episodes, 373 can be aligned with the model’s predictions.® These
373 actions make up 363 pairs of sequentially contiguous actions. Again, a preliminary examination
of the displays showed that none matched the model out of order, and an analysis of the data base
confirmed that.

7.5.3 Does the sequentiality assumption hold across verbalizations and mouse actions?

All the subject’s actions can be tested for sequentiality. As explained in Chapter 5, this can be done by
examining the connected correspondences in the relative processing rate displays. Starting from the
first correspondence and moving along the line of comespondences, a connecting segment with a
negative slope indicates that the second correspondence matched earlier in the model than the first
correspondence, violating the sequentiality assumption. Simply examining the displays shows that
several verbal utterances lag the mouse movements noticeably. Of the 624 total segments, 568 are
aligned with the model’s actions in the ten episodes.]® These 568 actions make up 558 pairs of
sequentially contiguous actions, and 21 pairs do not meet the sequentially assumption, that is, in these
pairs, the second subject action is a verbal utterance that matches an earlier prediction than the first
action that is a mouse action.

The lag of verbal utterances was computed by comparing the decision cycle number of the model
prediction corresponding to the verbal utterance with the decision cycle of the previously matched
mouse action. Figure 7-45 shows the distribution of these times. Across all verbal utterances in all
episodes the average lag was 9 decision cycles, or roughly 1 second. This is an acceptable number,
indicating that while some verbal utterances appear to have been produced quite late compared to the
mouse movements, overall the subject was not providing retrospective reports.

Most of the verbal statements (144 out of 195) match the model’s predictions sequentiaily, not
matching earlier portions of the model than their proceeding segment. Based on their starting points
these utterances can be considered as truly concurrent protocol — it is generated as the subject doing
the task and it matched the predictions of the contents of working memory. The ends of the utterances
~ have not been included in these analyses, although Peck and John included this length in their data set.

9An astute reader may note that there are five more mouse movements matched by subject actions in this analysis than in
the original analysis reported by Peck and John. One of these discrepancies has been found so far, and it was a typo.

10A 1 astute reader may again note that there are five more predictions matched by subject actions in this analysis than in
the original by Peck and John. Even with a semi-automatic tool, analysts will make mistakes.
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Figure 7-45: Histogram of the lags (in decision cycles) of the verbal utterances.

While these segments are not long generally, it is possible that their tail end ceases to be concurrent.

There are two prospective utterances, one in the axis episode, which upon inspection was an typo in
alignment. The segment was properly concurrent, but misaligned by four decision cycles in the
spreadsheet. The other utterance occurred in the Vars episode and is more interesting. It has a positive
offset of 111 decision cycles (nominally 11 seconds). It is hard to see on the relative processing rate
display because it is surrounded by several mouse movements, which is the cause of it being
interpreted as early. When the segment is examined, it turns out that the verbal utterance is not so
much prospective, but that the model’s menu reading ability falls behind the subjects at that point, and
the model has to perform an extra 100 cycles of work before it can match the verbal utterance.

The remaining 49 utterances all lag their previous segment, matching an earlier prediction. When an
utterance lags, it lags on average 38 decision cycles, or roughly 4 seconds. Again this remains a
modest amount. This amount of time is consistent with the amount of time items can exist in working
memory. A very small number, three, lag over 300 decision cycles.

Characterizing the long lags Many short lags of the verbal utterances appear to be partly (but not
completely) an artifact of the Browser-Soar model. The model does not read individual words but
whole screens at a time, which leads to many of the short lags that occur late in an episode when the

subject is reading a help text. Including predictions of reading individual words would remove this
cause.

~ The three longest lags, however, are worrisome. They lag over three hundred decision cycles, and
represent a mismatch on the order of 20 to 40 seconds. The problem space of the operator they match
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has long been removed from the goal stack, and several other problem spaces on that level have been
used as well. When these segments are examined they are found to be statements of the search or
evaluation criteria that occur after the search has started and numerous items have been examined.
While an operator put them on the state, at the point they are uttered, they clearly represent state
information that has been guiding the search for some time. Other operators could be refreshing them,
but if that is what lead to these utterances, then the operator used to interpret them is still the wrong
one.

Finding this lag in the literature. The actual lag of verbal protocols has not been computed in this way
to my knowledge. It requires an architecture that makes predictions about the time to perform a task,
external actions to provide fixed points of reference, and the predictions must be aligned to this detail.
We can see a lag in other data sets, however. The verbal data used to develop HI-Soar (John & Vera,
1992; John, et al., 1990) can be fixed relative to the performance of external actions. The verbal
protocols lagged behind the external actions so much that they were ignored when testing the model.

7.6 Conclusions about Browser-Soar and the TBPA methodology

Having performed these analyses, we can summarize the results into several suggested changes to
Browser-Soar, which is the point of testing a process model. In general, Browser-Soar performed very
well. The operators in the model that performed best were the ones that are essential to browsing
on-line help systems: manipulating the mouse, choosing windows, and evaluating text items. On a
higher level, testing Browser-Soar also generated some lessons for the methodology and for the
environment that should be incorporated into the environment.

This methodology was stretched in a particular direction through testing Browser-Soar. Browser-Soar
and the data used to test it have some very particular characteristics: (a) very close matches, (b) very
routine behavior and typical problem solving by the subject, (c) a highly interactive task, (d) mostly a
mental task (the perception and motor actions were routine). This example application did not deal
with every type of data. It is easy to name several data features that have not been touched: (a) very
bad matches between data and model, (b) perceptually based reasoning, (¢) how to create a model in
the first place, or drastically revise it, (d) tasks that cannot be modeled as search through or in problem
spaces, and (¢) extremely long or short protocols. Adding any of these features to the data and task is
likely to add further lessons and stretch the methodology in a new way.

7.6.1 Some conclusions about Browser-Soar

The analyses performed suggest several ways to improve Browser-Soar. Most, if not all, are known to
the authors of Browser-Soar, but the importance and location of the changes should be clearer after
these analyses. These changes are presented in Table 7-32.

Browser-Soar’s ability to predict large amounts of the data should also be clearer as well. Chapter 2
put forward the idea that analytic testing would not only point out where to improve a model, but it
also would make it more believable by presenting it more clearly. Several diagrams and tables were
created in performing these analyses that should make the model more believable. There are more
visual descriptions of the model (Figure 7-33), its performance (Figure 7-35), a rough measure of the
‘amount of knowledge in each problem space (Figure 7-36), and a picture of the calling order of its
operators (Figure 7-38). Aggregated measures of which operators and problem spaces are used and
how often have been presented (Table 7-29). The analytic displays show when operators are
supported, and by which type of data (Figure 7-38 and the Appendix to this chapter), and the relative
processing rates of the model and subject over time (Figures 7-39 and 7-40, and the appendix to this
chapter). '
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Table 7-32: Suggested changes to Browser-Soar based on analyses performed.

e Operators without evidence, Scroll, Page, Drag, and Click-on-item, must be considered
for removal from the model, or be supported with non-protocol data such as aggregate
timing results.

o Fitt’s law should be included in the model of moving the mouse.
¢ A more complete Read operator for reading text that takes longer.
o A less complete Read operator for reading menus faster, more like scanning.

¢ Qverall, the model’s performance is slightly lean, but this must be reevaluated after some
other problems, most importantly the reading operator, have been improved.

¢ Include learning, and decrease the goal stack depth.
¢ Include state information in the trace and match to it.

7.6.2 Some conclusions about the methodology

Performing these analyses pointed out that it is nearly always good to have context, and sometimes it is
required. Just providing information on a single item is often not enough to understand the item. The
item’s context is also needed. In several places, particularly in examining the model fit displays, users
can now click on a data point and get a segment and a selectable amount of its context displayed.

Different grain sized operators and different commitments to operators lead to problems in the
analysis, and should be avoided if possible. Soar in particular, as a general architecture for
intelligence, provides the ability to model every action. As a unified theory of cognition it highlights
the desire to provide a complete model, covering all the data. By definition, some portions of each
model will be weaker than others.

Soar models are much finer in their grain size than Newell and Simon’s (1972) systems; more actions
occur that cannot be tested, such as goals and many problem spaces. Other items might be found, but
are not found in every episode. It may be desirable to omit these items automatically and appropriately
when performing an analysis.

While Newell and Simon (1972, p. 179) propose that states and operators are equivalent, the reanalysis
of Browser-Soar shows that they are only equivalent for information purposes. When the timing of the
correspondences is included, they are not equivalent. States, and the information they contain, last
much longer. It may be possible to continue to match verbal utterances primarily to operators, but
when this breaks down, one must match to the state. Using the state properly is not a trivial task, and
will require designing and extending the trace. It will require further mechanations in the
interpretation algorithms to find the appropriate items to support in the model when this does occur.

No problem spaces or goals are used to interpret the subject’s behavior. Together their creation and
selection make up a substantial portion of the model’s behavior. What it would mean to match their
- prediction is not clear, problem spaces may be supported by their operators and states, goals by the
indication of a lack of knowledge in some way. If they will not be directly supported, the cognitive
modeler may desire to removal them from the trace if not the model.

Finally, we see that testing the model points out that the model is not complete without rules describing
how to interpret the data with respect to the predictions. For example, the Page, Scroll, Drag, and
Click-on-item, were considered for removal because they were not supported. A more generous
interpretation of the mouse actions might have included the decision to click (e.g., to Page) as being
supported as well.
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2 Displays of each analytical measure for each episode of Browser-Soar
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Figure 46: The operator support displays for each of the episodes.
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Figure 46: The operator support displays for each of the episodes (cont.).
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Modet time in Decision Cycles

Model time in Decision Cycles
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Chapter 8
Performance demonstration II: Use of Soar/MT components by others

While the environment is integrated, its components have been developed separately. As each
component became available, it was spun off for use by others performing subsets of the tasks
involved in model testing. The number of users of each tool, their comments, or both, provided
feedback on how the various tools help perform (Tesler, 1983) specific tasks of model testing.
Together they provides an estimate of the current and potential impact of the whole environment.

Spa-mode has had no use outside of this thesis. As noted earlier, the total environment, but for the
displays, was used by V. Peck to perform two episodes of the Browser-Soar reanalysis. The
underlying Dismal spreadsheet has had three to four additional users. It still has many problems, so a
survey probably will not point out inadequacies not already known.

A survey was conducted of Soar users to find the strengths and weaknesses of the Developmental Soar
Interface (DSI).

The other pieces of software either are not used by enough users (Spa-mode, Dismal), or they are so
widely used that undertaking a survey is a more serious proposition (S-mode) than can be undertaken
as part of this work. Portions of the DSI should no longer be considered pieces of developmental
software, for out of the 60 Soar users responding to the survey, two-thirds now use some portion of it
every time they use Soar.

8.1 Usage of the Developmental Soar Interface to develop Soar models "

The three modules of the DSI (Soar-mode, Taql-mode, and the SX graphic display), have been through
several releases. How to obtain them is explained in Appendix 1. One or more of the modules are
installed at each of the four principle Soar sites in the US, and at sites in Germany and the Netherlands,
with over 40 researchers using one or more of the modules.

In the Fall of 1992, a survey (included as an appendix to this chapter) was sent to members of the Soar
community identified through the Soar project’s mailing lists, workshop attendance lists, and
presenters at workshops, as most likely to use Soar in a routine way. In addition to the users directly
targeted, an announcement of the survey was emailed to the general Soar mailing list, and an
announcement was made at the Soar XI workshop in October, 1992.

Out of the 69 potential users identified, 63 returned a survey (a 92% response rate).. The three people
who never actually used Soar were dropped from later analyses. If users that were personally known
did not fill in an item, or misidentified a portion of the DSI, this was corrected. Of the people
responding, 50 are current members of the Soar community, and 13 are former members.

Table 8-33 shows a listing of the usage patterns. The columns list the components used, with each row
representing a single user. The rows are grouped by the sets of components used. The primary tool
used is Soar-mode, with 37 of the 60 users reporting using it. The SX graphic display has only been
used as a routine tool for debugging by its developer and two other users, but 14 people have used it to
create pictures of Soar models and to give demonstrations of their models. Taql-mode has been used
and put aside by several people as they became more familiar with the TAQL grammar.

In users’ responses of why they did not use additional modules, the largest number of responses (14)
was that they did not use TAQL, so they did not need Taql-mode. (This would not necessarily
translate into 14 users if they used TAQL.) The next largest concern (12) noted problems with
installation and not knowing how to use the tools. Speed (5) was also a concern, and this concern was
not limited just to the graphic display, a few users thought that Soar-mode and Taql-mode were slow to
load. Most potential users of the SX graphic display were put off by how much it slowed down the
system, and while only half the users reported dissatisfaction with its speed, this does not mean that
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Table 8-33: Survey responses categorized by usage pattern.
Each row represents a user. Totals do not include "tried" users.

Frequency of usage

Soar

EVERYTHING

SX & SOAR-MODE

TAQL-MODE
SOAR- & TAQL-MODE

SOAR-MODE

NOTHING

daily
daily
daily
daily
weekly
weekly
weekly
daily
daily
daily
daily
daily
daily
weekly
weekly
daily
daily
daily
daily
daily
weekly
monthly
daily
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
weekly
weekly
monthly
monthly
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
monthly
monthly

quarterly

Totals

na
na

60

Soar-mode

daily
daily
daily
dally
weekly
weekly
weekly
daily
daily
daily
daily
daily
daily
weekly
weekly
tried
daily
daily
daily
daily
weekly
monthly
weekly
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
weekly
weekly
monthly
monthly
tried
tried

tried

38

<3 4
Weekly
special
special
daily
weekly
special
special
weekly
special
special
special
special
special
special
weekly

tried

tried

tried

15

Taql-mode Totals
daily 7

weekly

daily
special
monthly
special

daily

tried

tried
daily 1
daily 6
daily
daily
daily
weekly
monthly
17
tried

tried

tried
tried 21

tried

14 60
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they were satisfied with it. There were no underlying problems reported with the metaphor,
representations, and manipulation of the problem space level objects.

Other users had problems with the underlying systems that the tools were built on. Several users (4)
reported that they did not have a machine that could run the X window system, and some users (2) did
not know or want to learn Emacs. A few users, perhaps four or five, use a Macintosh exclusively, or
nearly exclusively, and the current environment is unavailable to them.

While only two respondents had not heard of all the software, a few were misinformed. One user did
not know that they were using Soar-mode (but loaded it in their startup files), and one did not know
that they were using Taql-mode (but when reporting useful Soar-mode features included a feature only
in Taqgl-mode).

Use in video productions. The SX graphic display has been used to make three videos of Soar and
Soar models that have been shown outside of CMU. A 20 minute tape of NTD-Soar was shown at a
NASA contractors’ meeting and as part of a research talk at Queen Mary & Westerfield College, both
in the Spring of 1992. A 2 minute video showing the basic interaction method with the DSI and how
Soar uses the Garnet toolkit has been shown four times: at the CHI *91 Garnet Special interest group
meeting, at the CHI *92 Doctoral Consortium, May 1992, and as part of research talks at the Applied
Psychology Unit in Cambridge, England and at Queen Mary & Westerfield College in the Spring of
1992.

Work is underway to create an introductory video explaining Soar (Newell, P., et al., forthcoming).
This video is a demonstration of what will be a general capability to take a graphic description of Soar
models and create high quality graphic output suitable for commercial broadcast. The initial
depictions of the Soar model were created with the SX graphic display and then sent to a commercial
computer graphics company for visual enhancement. The project is expected to be completed in the
Spring of 1993.

Impact of the DSI on the next release of Soar software: Soar6. In the next release of the Soar software,
called Soar 6, several of the features of the DSI have been incorporated or have encouraged the Soar 6
developers to include similar features. These include a very customizable trace, hooks for interacting
with Soar-mode, and a better command line interpreter. Soar 6 is still under development; given time,
we hope to migrate additional features to Soar 6, such as the ability to display the match set
continuously, and the ability to provide a display of which productions will fire on the next decision
cycle.

8.2 Usage of S-mode to create functions in S

S-mode has been distributed through three sources that make its total usage hard to compute. It
appears, however, to be one of the dominant ways of interacting with S. It was first placed in 1991 in
the GNU-Emacs archives at The Ohio State University. This makes it available via anonymous FTP.
S-mode has also been distributed via anonymous FTP from the authors’ machines. The number of
users who picked it up in these two ways cannot be known.

The second mode of distribution, through a statistics software mail server, allows an approximation of
a lower bound. Statlib, run by Dr. Michael Meyer at CMU, is a system for distributing statistical
software and datasets by electronic mail. The system keeps track of the mail requests for each plece of
software and can provide a listing of who requested each piece. Since S-mode was first placed in the
Statlib server, there has been 1,043 requests for it, including requests for updated versions (personal
communication, M. Meyer, October, 1992).

The exact size of its distribution is confounded further by the nature of GNU-Emacs’ copy protection
and the nature of S-mode’s installation. GNU-Emacs and S-mode are copylefted, which means that
users are entitled to (and indeed legally obligated to) provide others with copies upon request, although
a copying fee can be charged. How many sites have passed S-mode on would be impossible to
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compute. GNU-Emacs and its extensions are installed primarily on multi-user machines and
distributed file systems. Once installed, many users can use the same piece of software although on
different machines. For example, S-mode has been installed with GNU-Emacs on the Andrew system
at CMU (and I don’t even know who installed it). Any of the approximately 5,000 Andrew users at
CMU can use S-mode.
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Appendix to Chapter 8: Survey distributed to Soar users

Survey on the Developmental Soar Interface
Prank Ritter
12-0ct-92

I'm writing up my thesis and would like to get a better headcount of
how many people use the DSI, and how they use it. Your comments will
also be used to improve the current interface and serve as background
for future versions.

* How often do you use Soar?
Daily Weekly Monthly Quarterly Other (describe)

* Which of the following have you heard of and which have you used?

Heard of Have used
SX graphic display (triangle thingy) Y N Y N
Soar-mode Y N Y N
Taql-mode Y N ’ Y N

* For items you’ve heard of, but never used, have you considered using any?
Any specific reasons why you have not used them?

* Are there any features that you would like to see added to the Soar
interface for programming, editing, or understanding Soar models ?

If you have not used any items, you can quit here. Thank you.
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* How often you use it ? (tick one and/or write in a modifying number)
Daily Weekly Nonthly Quarterly
Tried once or twice Never

Special purpose (e.g., demos, making figures; please explain)

* If you don‘t use the SX graphic display, why don’t you use 1it?

* How do you use it? (you may tick more than one)
I‘ve only tried it.
I use it for special debugging. I use it for routine development.

I use it for demos. I use it to make presentation diagrams

* How long have you used it (e.g., 3/91 to present) ?

* What are the most valuable features ?

* What are the worst problema/bugs/factors stopping you from using the SX
graphic display more often?
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-t ot -

* How often you use Soar-mode ? (tick one and/or write in a modifying number)
Daily Weekly Monthly Quarterly
Tried once or twice Never
Special purpose (e.g., demos, making figures; please explain)

* How do you use Socar-mode? (you may tick more than one)

I use it for special debugging. I use it for routine development.
I use it for demos. I‘'ve only tried it.

* How long have you used soar-mode (e.g., 3/91 to present) ?

* What are the most valuable features of Soar-mode?

* What are the worst problems/bugs/factors stopping you from using
Soar-mode more often? -

* If you don’‘t use Soar-mode, why don’‘t you use it?
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How often do you use tagl-mode ? (tick one and/or write in a modifying number)
Daily : Weekly Monthly Quarterly

Tried once or twice Never

Special purpose (e.g., demos, making figures; please explain)

How do you use tagl-mode? (you may tick more than one)

I‘ve only tried it. I use it for demos.
I use it for special debugging. I use it for routine development.

How long have you used tagl-mode (e.g., 3/91 to present) ?

What are the most valuable features of tagl-mode?

What are the worst problems/bugs/factors stopping you from using
tagl-mode more often?

If you don’t use tagl-mode, why don’‘t you use 1t?

Additional on-line & hardcopy coples available from Frank Ritter@cs.cmu.edu

Please return surveys by email or hardcopy to Prank Ritter@cs.cmu.edu
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Chapter 9
Contributions and steps toward the vision of routine automatic
model testing

Compared with Chapter 1, we are not in the same place in many ways, and we are considerably further
along toward the capacity to perform routine process model testing. Progress has been made on
defining a methodology for testing the sequential predictions of process models. A computer
environment has been implemented to support this methodology, and this environment has been used
to test an actual model with actual data. Portions of the environment are used by researchers around
the world. The environment was used to test and extend the sequentiality assumption of Ericsson and
Simon’s (1984) theory of verbal protocol production. The path to an intelligent automatic modeling
system based on agent tracking is clearer. Only model testing (open analysis) has been considered in
this work, but the methodology and environment should largely be applicable to using models to
classify sequential behavior (closed analysis) for such things as cognitive-based testing (Ohlsson,
1990).

The central problem: dealing with large amounts of information. Within the methodology of TBPA
the essential problem in testing process models still appears to be one of manipulating and
understanding the large amounts of information involved: the model, its predictions, and the data used
to test it. Scientists do not decry the difficulty of model creation and manipulation as often as they
have the amount of bookkeeping required for testing the sequential predictions. The size of the data
sets prove a real problem; the amount of qualitative information used in this task is relatively large
given the analyst’s limited processing capabilities. :

Each of the steps in TBPA requires manipulating large amounts of information. This is a central
problem that runs through this work, and it is fought in every tool in the Soar/MT environment. Two
approaches have been developed for dealing with it. The first is to automate as many tasks as possible,
and to support the analyst for the remainder. The second is to design and use visual displays of
information.

Secret weapon #1: Automate and support. Automating aspects of each step reduces the work load
required of the analyst. Soar/MT assists the analyst by automatically aligning unambiguous parts of
protocols, creating model-based summary displays of the comparison, and providing many aids for
displaying and manipulating the model. Although the automatic processes fall short of the ideal speed,
and still must be speeded up through better algorithm and data structure design, they have proved
useful in their current state. The process is not so inherently large or computationally intensive that
so-called super-computing will be required.

The data set presented with Browser-Soar (Peck & John, 1992) is not the largest data set ever used to
test a model (although it is fairly large, see Table 2-2), but Soar/MT has substantially speeded up the
analysis of this data set. We can now imagine analyzing enough protocol data to achieve Ericsson and
Simon’s (1984) vision of verbal reports as data.

Supporting the analyst in performing the tasks that are not yet automated has required careful design of
the displays and manipulation tools for the large amount of information. The current maximum size of
the predictions and data, not including the model, is about 330 Kb. The analyst cannot directly
visualize and manipulate information sets the size of a small phone book (5,000 names at 60 bits per
name, or 300 Kb total). Special displays have been created to show the important trends in the data,
which is the next secret weapon. '

Secret weapon #2: Scientific visualization of qualitative information. Appropriate visual displays can
support faster processing rates and provide new insights (Larkin & Simon, 1981). Visual displays of
qualitative information have become central to quantitative data analysis in many domains and they
have lead to the major methodology of scientific visualization.
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Visual displays should now be considered essential for performing each step of protocol analysis and
process model testing. Visual displays help the analyst understand the model’s structure and
performance, relating them to each other in a single display, the SX graphic display. Tabular displays
of the model’s predictions, the data, and their correspondences show simple and directly where the
model’s predictions do and do not match the data. Other displays aggregate the correspondences in
terms of the model components and in terms of relative processing rates. These displays summarize
where the model performs well and where it performs poorly, providing clues about where and how to
improve the model’s fit to the data.

9.1 A methodology for testing the sequential predictions of process models

Trace Based Protocol Analysis (TBPA), a methodology for testing the sequential predictions of
process models with protocol data has been defined through listing its inputs, processing steps, and
their requirements. TBPA tests a model by running it to generate a trace of how the model performs
the task. This trace provides a set of theoretical predictions of what will be found in a subject’s verbal
and non-verbal protocol, and it is used to interpret the data. TBPA is designed to be an integrated and
iterative process, so a summary of where the predictions are unmatched in the protocol is then used to
modify the model, and the model is run again. The necessary inputs to TBPA, its steps, and the
processing requirements for each step to perform the testing routinely, were specified in enough detail
to create a computer environment to support this methodology.

Clarification of the testing process. What it means to test the model became clearer from specifying
each step in the process. What are tested in any given episode are the model’s predictions. The
comparison of the predictions with the data is not just one of alignment. The model’s predictions are
used to interpret the data. With unambiguous data, such as mouse clicks on menu items, the process
appears to be one of simple alignment and it can be treated that way. When the data are verbal
protocols, then the items in the trace may provide substantial guidance for interpreting the meaning and
function of the information described verbally.

Some theories require every prediction to be matched, but the theory of verbal protocol used to
interpret the utterances (Ericsson & Simon, 1984) states that not every possible prediction will be
found: The model’s predictions are predictions of what could be found in the subject’s verbal protocol.

The need for declarative versions of models. It is necessary for model based analysis to refer to
structures of the model and to note which parts of the model did and did not apply, or were and were
not supported. It is necessary to have declarative representations of process models representing
procedural knowledge. Running the model to create the structures upon demand is not enough. There
is the simple problem that the structures will be created and then disappear as the context changes.
There is also a more complicated problem of coverage, on any given run not all the possible structures
will be created. Examining the initial implementation of the model is not adequate either, the model
might leam from its environment, and computing all the model’s structures is equivalent to running it.

At a minimum, it is necessary to create a description of the model computed by observing the model’s
performance over time, although combinations of the other methods, such as derivation from the static
structure, are a useful adjunct. Although this method is the best way to build the model, even this
model is not guaranteed to be complete.

The DSI creates a declarative representation of Soar models. While the Soar model runs, the DSI
displays and remembers which and how often the problem spaces, states, and operators have been
applied. By watching the model as it runs the DSI builds up as complete a view of the model as is
possible. The resulting description can be used by other components in the environment. The
interpretation environment can use it to initially code the data. The saved model can be used to
summarize the correspondences created though interpreting and aligning the data with respect to the
predictions. .
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9.2 Each step in the methodology was supported in a software environment

-An environment to support an analyst performing TBPA has been created based on its requirements.
The environment directly supports the main tasks of model tracing; interpreting and aligning the
model’s predictions with the data, both automatically and semi-automatically; aggregating the
comparison data in a variety of displays designed to show how to improve the model; understanding
and modifying the model based on how it does not fit.

The steps were specified and broken down to a level that they could be performed automatically, or
semi-automatically. Building, loading, and running models was supported in a semi-automatic way.
Many small tasks are supported through keystroke macros in the structured editors and smarter
interfaces. Finding the emergent properties of Soar models (listing the problem spaces and their
operators) is supported, as is counting how often they are instantiated. Unambiguous portions of the
subject data are now matched automatically. The same algorithm can be used to interpret and align the
data in an incomplete and heuristic fashion, requiring the analyst only to check and clean up the
approximate interpretation. Finally, the analytic displays can be automatically created from the
comparison data.

The environment also supports the requirements of integrating the steps, automating the tasks where
possible, and supporting the analyst for the rest. The environment and the methodology it supports
were tested by testing a process model, and in the process learning new things about the model and its
fit to the data. The tasks in TBPA that the environment support overlap with other tasks often
performed in cognitive model building and modification, data manipulation with a tabular display, and
exploratory data analysis.

Sub-portions of the environment supported other users doing the sub-tasks for different reasons, the
DSI for AI modeling, Dismal for spreadsheets, and S-mode for statistics and graphing. A survey of
users of the DSI found that over half the Soar community uses some portion of the DSI whenever they
use Soar. It would be safe to say that pieces of the environment supporting these tasks are in use by
over 500 researchers around the world.

The analyses are fast enough to be considered routine. A minute long episode of subject data
(approximately 20 verbal segments and 30 motor actions in the browsing task) can now be compared
with the model’s predictions in 2.5 hours given sufficient inputs, the process model and transcribed
data. This is almost within automating range; when it took 60 hours to perform (estimate derived from
Ohlsson, 1980), too many under specified processes were required, and automating this task was not
conceivable.

Example testing of Browser-Soar using TBPA. The methodology was demonstrated on the Browser-
Soar (Peck & John, 1992) model. A set of suggestions for improving Browser-Soar was generated,
and one of them was implemented. This lead to a slightly better fit, but more importantly, to a much
more parsimonious model. Browser-Soar and its data set did not push this methodology in all
directions, but this was good. It allowed making headway on some problems by avoiding others.

9.2.1 Interpreting and aligning the model’s predictions and the data

This thesis explored the automatic alignment of unambiguous data to model predictions. The Card
algorithm for doing this was slightly improved, and its behavior characterized more clearly.

A spreadsheet approach to the comparison process was demonstrated, and it appears to visually
support many of the necessary operations on the data that would otherwise require extensive
computation by hand. For example, areas where the predictions match the data in a denser manner is
clearly presented. The spreadsheet was also effective in supporting the analyst in easily adjusting the
alignment manually when necessary.
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9.2.2 Analyzing the results of the testing process

A lack of clarity about what measures are necessary or desirable for measuring predictions fit to the
data may have contributed to the lack of progress. The review in Chapter 2 outlined the uses and
abuses of several of these measures, and championed Grant’s (1962) approach of analytic testing, of
finding out where the model can be improved.

A display for showing the support of operators in the model was automated, and an additional family
of displays were produced for presenting and analyzing the relative processing rate of the subject with
respect to the model. These two sets of displays can be created automatically from the comparison
data. They have shown the periodicity of human browsing behavior, the types of mismatches between
model and data, and ways to improve the fit of the model. There are many ways for data to not match
the model. Additional graphs will be necessary, so an environment is provided to assist in editing and
designing these graphs.

9.2.3 Steps related to manipulating the model: Prediction generation and modification

While the model’s components are used throughout the analyses, the process model itself is directly
involved in two steps, that of generating the sequential predictions, and the final step of revising the
model based on the testing process.

Generating the predictions. Generating the model’s predictions in a way that they can be used for
automnatic alignment has required extending infrastructure from the model (in this case, a Soar model)
out further toward the data. This has resulted in a better trace — one that is less ambiguous and more
readable by humans. Based on the example analysis, we also found that a problem space model must
provide state traces in addition to operator traces.

The improved trace lead to an unexpected benefit. We found that deriving aggregate measures in the
trace was useful for comparing models and describing their behavior in general terms.

Manipulating and creating models. The Developmental Soar Interface demonstrates the feasibility and

utility of several design principles. Across the environment it was possible to meet the design shown
in Table 9-34,

Table 9-34: The ease of use and learnability design features met by each tool in the environment.

¢ Provide a path to expertise through:
* Menus to drive the interface.

* Keystroke accelerators available and automatically placed on menus for users to
leamn.

* Help provided for each command on request.
* Hardcopy manuals also available on-line through the menu.
* Treat structures on the theoretical level as first class objects.

¢ Provide a general tool with macro facilities.

These features make the task of inserting the model’s knowledge into Soar easier. Keystroke level
models can be presented as evidence for this, as well as the fact that approximately two-thirds of the
Soar community now use some portion of the DSI in their daily work.

Node based graph display. Many structure display algorithms draw the complete structure, forcing the
user to scroll a window pane across it. Presenting Soar’s working memory contents is such a structure
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display task. The set of tasks users need to perform when examining the structures within working
memory have been identified, and a display meeting these requirements has been designed and
implemented. The task analysis lead to a different design than a big scrollable window — a node-
based design that allows users to open up individually selected nodes in working memory, close their
parents, and so on. The users seem pleased, and it provides a much faster display.

General results about Soar. The visual and structural representations in the Developmental Soar
Interface highlighted several features of Soar models and the TAQL macro language. For TAQL, the
templates within the structured editor provided a measure of the cumbersome size of the TAQL syntax.

For several specific models we were able to display how their behavior is not best characterized as just
search in problem spaces. Behavior within many models now includes routine behavior, search
through problem spaces, migration of knowledge between problem spaces, and composition of
knowledge.

Within Soar models in general, displaying their behavior graphically pointed out how ephemeral
problem spaces and their structures are. In many ways the application and interactions of objects on
the problem space level should be considered as emergent behavior. The structure of the model is only
available from repeated viewing; the model itself has no representation of itself, and cannot conjure up
all the problem spaces and operators that are possible. ' ’

9.2.4 The synergy from integration

The environment receives much of its power from integration. The model, its behavior, the subject
data, and the comparison of the model and the data all exist in the same environment. This supports
several analyses that would be difficult without the integration and. it allows them to be much more
fluid. Integration allows: (a) direct, preliminary coding of the protocols based on the model’s
components; (b) appropriate mixed (text and symbolic graphics) presentation of data in the DSI; (c)
appropriate mixed (text and symbolic graphics) presentation of data in the analyses; and (d) the
portions of the trace that were well aligned and not well aligned could be directly compared with the-
model’s structures. .

9.3 Validated and extended the sequentiality assumption of protocol
generation theory

Using the TBPA methodology and the Soar/MT environment, the Browser-Soar model and data of
Peck & John (1992) were re-examined. Besides providing a test-bed for the methodology and
environment, this effort yielded the following new scientific result.

The verbal protocol production theory of Ericsson and Simon (1984) assumes that working memory
structures are reported in the order that they enter working memory. This assumption can be tested
with a model that predicts when objects enter working memory. The Soar/MT display of the relative
processing rates of the Browser-Soar model and the subject provided a direct visual test of this
assumption. The underlying data structures were then directly queried to confirm and count the
number of sequential and non-sequential pairs of events there were. In every episode of the Browser-
Soar, the sequentiality assumption was found to hold for the verbal protocol. An examination of the
non-verbal protocol segments found that they too were always performed in the same order as the
model, both for overt task actions, and for actions that were not directly related to the task, such as
moving the mouse pointer over words being read on the screen.

The two data streams appeared to be presented in a non-sequential order. Verbal utterances typically
lagged 10 to 30 simulation cycles (approximately 1 to 3 s) behind the overt actions; and rarely (3/300)
they lagged up to 400 simulation cycles (approximately 40 s).

~ The shorter lags were probably reports of working memory delayed by workload associated with the
task, and minor inconsistencies in the model. Examination of the correspondences showed that the
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primary cause of the long lags was probably an artifact of the interpretation process. The verbal
utterances in the analysis were matched to-operators rather than to the state information created by the
operators. This approximation simplified the analysis considerably, and it should remain available —
it is a valuable technique. But it must be seen as only an approximation; one that will sometimes lead
to inconsistencies in the comparison. Any operator that sets up long lasting state information can
cause this problem.

As a result of these analyses it is proposed that the sequentiality assumption holds for both verbal
utteranances and task actions. Including motor task actions as part of the protocol provides reference
points for fixing the correspondences between the predictions and subject’s actions, and allows the lag
of the verbal utterances to be measured.

9.4 Progress toward the vision of routine applied theoretically
guided protocol analysis

This work has made appreciable progress toward the vision of autormatic modeling. All the parts of
Soar/MT are part of a grand vision of what an integrated modeling and data analysis system would
need to do, and could do. The major steps and inputs have been identified as the parts of TBPA, and a
prototype environment has been created that an automatic modeling system would need. The next
steps will be to create initial models, and to provide a more intelligent process for interpreting
ambiguous data with respect to the model’s predictions.

Because this environment is based on an architecture for general intelligence, it is conceptually
possible to add knowledge to the architecture of how to perform parts or all of the analysis. To do this
completely would require incorporating a complete model of the analyst. However, the architecture
used in this environment, Soar, also learns. So perhaps an easier, but less direct way to automate this
task might be through having a Soar-based agent learn to perform the analyses by watching a series of
analyses. As it watched a series of routine analyses over similar episodes be performed, it could
follow along, learning how to run the analyses, and then driving the analyses programs itself.

Not that we are there, but we can now see further down the path toward completely automatic
modeling. If NL-Soar (a Soar system for interpreting natural language) were to be incorporated, then
Soar/MT might take in instructions for different experiments, and use the models that NL-Soar creates
from reading the instructions as initial models to predict the behavior of subjects for each experiment
(Lewis, Newell & Polk, 1989; Newell, 1991). The alignment also could be automated. The non-
verbal overt actions can be compared directly; the verbal utterances would have data structures, the
predictions, laying around that are designed to be sufficient to parse them. NL-Soar (Lehman et al.,
1991) is available as a potential parser designed to use these predictions.

This style of protocol analysis requires further computer science and Al work: performing the
alignment of predictions to natural language, running the models more quickly, and gathering better
statistics. But it remains a task within psychology: the real use is for comparing protocols against
models’ predictions.

Remaining problems. Many problems remained in this methodology and environment. I would like to
note a few here to admit its deficiencies, to warn potential users of the current specificity of the tasks
Soar/MT can address, and to suggest directions for future work.

How to aggregate support from the predictions to the model structures is not always as straightforward
as it appeared in the sample analysis of Browser-Soar. There is a problem of specifying how the
predictions are used to interpret the data. There is also a problem in specifying how to aggregate
support for model components. Across episodes, the structures in the model that generated the
predictions remain and summarize the behavior over time. The current model implemented its
operators rather directly and in the same manner each time. This need not be the case. Consider an
Add operator such as Siegler uses in his work modeling children’s arithmetic knowledge (Siegler,
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1988; Siegler & Shrager, 1984). Different operands result in different reaction times and error
patterns.  Assigning support to an operator in this case must be differentiated by the operator’s
arguments, and a representation for this must be developed. So there is an additional step to TBPA,
not yet made explicit, of translating the support that individual predictions receive from the data back
to the structures in the model that generated them.

The analyst is currently left with an abduction task of improving the fit with indications of where the
model does not fit and with tools for understanding and modifying the model. There are some simple
rules that would apply in specific circumstances, and these were noted in the chapter describing the
graphical measures of model fit. The possibility of finding a more complete and algorithmic
description, like Heise (1987, 1989; Corsaro & Heise, 1990; Heise & Lewis, 1991) provides for his
models, should be explored.

Speed, always and everywhere — the analyst always desires a faster system that performs more
complicated analyses automatically. Partial views of the data and model are included in this. The
recent translation of Soar to the C language offers a speedup in the basic architecture. Taking
advantage of this may require translating the DSI into C.

Directions for future work. The way to improve this methodology is the same way to improve a
model, by testing and using it on additional models and data sets. Some preliminary discussions have
taken place with other researchers about using Soar/MT to test their process models, usually models
implemented in Soar.

The software environment could be automated further, and as noted in Chapter 3, the next direct step
toward automatic agent modeling would be to represent the knowledge to perform a single step as a
Soar model. This would provide further automation. One of the potential places for doing this would
be to have NL-Soar parse the verbal utterances, another would be to further automate the generation of
the analytical diagrams.

9.5 Concluding remarks

We build our theories, test them, then modify them, iterating through a loop. This loop was described
briefly and perhaps for the first time with respect to process models and protocol analysis by Feldman
(1962, p. 342). But not surprisingly, it is like all theory testing in science. Models are not primarily
tested to be rejected (as the popularization of Popper’s (1959) views goes), or tested simply with a
significance test to determine their value, but models are tested in order to improve them (Grant, 1962;
Newell, 1990, p. 14). By using protocols to test these models, we are not attempting to code a segment
so that it is coded, but we are using the data to build a model (e.g., a simulation process model). That
is, to test whether subjects perform the same actions in the same order as the model predicts.

Because they will allow us to see new things, new analyses and tools are also science (Hall, 1992;
Laird & Rosenbloom, 1992; Newell, 1991; Ohlsson, 1990; Simon, 1991). New scientific problems are
found this way (Toulmin, 1972). Indeed, much of what science consists of — what is passed on from
generation to generation of scientists — is just technique (Ohlsson, 1990; Toulmin, 1972).

Because of the difficulties associated with creating process models and of manipulating protocol data,
sometimes analysts have lost sight of this fundamental nature of protocol analysis. The technique of
testing process models’ predictions of sequential behavior has been nudged forward just a bit.
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How to obtain the software described in this ;h&sis 202

statistics. S-mode is built on top of comint (the general-command interpreter mode written by Olin
Shivers), as an interface to S.

The latest version of S-mode is available from the Statlib email statistical software server by sending a
blank message with subject "send index from S" to statlib@stat.cmu.edu, and following the directions
from there. Comint is probably already available at your site, and already in your load path. If it is
not, you can get it from archive.cis.ohio-state.edu (login name is anonymous, password is your real id)
in directory /pub/gnu/emacs/elisp-archive/as-is/comint.el.Z. This version has been tested and works
with (at least) comint-version 2.03. You probably have copies of comint.el on your system. Copies of
comint are also available from ritter@cs.cmu.edu, and shivers@cs.cmu.edu.

S-mode is also available for anonymous FTP from attunga.stats.adelaide.edu.au in the directory pub/S-
mode, and from the Emacs-lisp archive on archive.cis.ohio-state.edu.

The simple menu package

Updated versions (if any) of the simple-menu package used to provide the menus in S-mode, Soar-
mode, and Tagl-mode are available from the author or via FTP: from the elisp archive on
archive.cis.ohio-state.edu as file pub/gnu/emacs/elisp-archive/interfaces/simple-menu<version>.el.Z.
Iff you post me mail that you use it, I'll post you updates when they come out.
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