Visual, analytic measures of the predictions’ fit to the data 101

5.4 Supporting the global requirements

In addition to the direct requirements of aligning the predictions with the data and starting to interpret
their comparison, there are five global requirements that the displays and S-mode also support.

5.4.1 Providing an integrated system

The S-mode and the graphing functions are integrated with the other portions of Soar/MT
environment. The data for the displays can be dumped from the spreadsheet into text files and read
into S data structures for creating the displays. This step of transferring the data could be more
automated, but the path for passing this information is well wom and can be performed relatively
quickly. Although the interaction is on the level of files, because of the file manipulation facilities
GNU-Emacs provides, it is easier than it sounds.

The functions for creating the displays were designed using S-mode, and S-mode provides a fine
environment for routinely calling the functions to make the displays. If at some point an order of
magnitude more data is used, on the order of hundreds of subjects, it may be useful to use the batch
processing facilities of S to create these displays, where the commands are not executed interactively
but as part of a file of commands. . .

5.4.2 Automating what it can

The graphing functions have automated the display and global analysis to a great extent. What used to
take a day to display can now be performed in minutes. Once created, a display can be called with
nearly no cost to the analyst, so using many displays to understand a model is possible. S-mode
automates many of the actions necessary to create additional displays as S functions. A table similar to
Table 6-25 could be created for S-mode.

5.4.3 Providing a uniform interface including a path to expertise

The initial set of displays provided do not require any expertise beyond knowing their inputs, and this
is provided with their definitions. As a prototype, this has been an adequate level of documentation. If
more users start to use them, the documentation will have to be improved.

S-mode, like Spa-mode, provides a path to expertise similar to that provided by other components in
the Soar/MT. S-mode can be menu or keystroke driven. The keystroke bindings of the menu
commands are available to the user, and are displayed to him or her after they have been completed.

Documentation is also available as hardcopy. The S-mode manual (Smith, 1992a) and a reference card
(Smith, 1992b) are available through the S-mode menus, and obtaining on-line documentation on
functions takes only two keystrokes.

5.4.4 Providing general tools and a macro language

S and S-mode provide a very general set of capabilities for performing exploratory analyses and
creating new displays for model testing. S commands can be combined to create functions to draw
nearly any display imaginable. The creation of these displays is supported through S-mode, as well as
applying them to each data set.

Hooks are places to customize a system’s behavior by calling a user supplied function at a set point,
such as at startup, or after a file has been loaded. The standard set for GNU-Emacs modes have been
included with S-mode. The user supplied function, if any, is called when S-mode is loaded or
initialized.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 102

5.4.5 Displaying and manipulating large amounts of data

These graphic displays directly support examining a large amount of the model’s performance and
examining the relationship between the model’s predictions and the data. The displays include the
ability to examine individual data points based on their location. The displays are based on the model,
and can use their representation of the model to make clear which model objects have generated
predictions found in the data, and which have not.

Supporting_direct manipulation. The displays and S-mode directly support manipulating the main
objects of interest on this level, the data points within the displays, and the displays themselves. The
functions to create new displays (and their components) are first class objects in S-mode, and allow the
analyst to load and manipulate them directly.

On a lower level, the points on the displays are inspectable; clicking on them (after an appropriate
function call) will print out the Soar trace, the verbal utterances, their time stamps, and other
information, known about that point. Selected sets of points could even get thrown into spreadsheet
for further analyses (but currently this is not supported). These interactive displays also serve as a way
to understand large data sets by hiding irrelevant fields, but allowing them to be recalled on demand.

5.5 Summary of measures and recommendations for use

The two measures presented here (the operator support display and the relative processing rate display)
provide the analyst with ways to view the correspondences between the data and predictions with
respect to the model and the time course of the correspondences. Both types of displays provide visual
patterns indicating where to improve the model and where the model is consistent with the data.

These displays do not primarily provide local, immediate information about the comparison, but this
too are included as a separate block of text on the displays, and the local comparison is also available
in the matching tool, Spa-mode.

These displays are not the only ones possible for depicting the comparison, the model’s predictions,
the data, or various combinations of these, they are only a starting point. There are many ways the
model can fail to predict the data, and there are many facets to the relationship between models and the
data, so many different types displays will be required by an analyst wishing to improve their model.
Further displays can be created using S and the S-mode interface, and several new displays can already
be suggested as potentially useful.

Problems with these displays. There remain at least three problems that apply to both types of these
displays. When interpreting and using these displays analysts will have to keep in mind: (a) While the
architecture treats all operators the same, the modeler and model may have different sized operators
(with respect to correspondence to the subject’s actions) and different levels of theoretical commitment
to particular operators. Some operators may be represent placeholders for complicated operators, such
as read. These differences are not currently represented. The relative processing rate could vary quite
a bit when the grain size changes between operators in this way. (b) Not all analysts will be committed
to time based comparisons. They may be interested in other facets of their models, which will need
additional displays. (c) Before they are learned, Soar operators are implemented hierarchically. It is

not clear how to represent in the displays when hierarchical operators are in effect, and their calling
order.

What do these displays have to say about comparing two models? Given these displays, comparing
how well the data fits the two models does not come down to comparing two numbers, but can now be
based on more analytical (but less straightforward) process of comparing the models’ performances in
more meaningful ways. As indicated by the displays, the models will have regularities associated with
them, places where each model’s predictions match the data more closely than the other, but only a
metric outside of the comparison can order these comparisons. The models’ proponents, however, can
now point to diagrams showing the comparison, and describe more clearly and fully how and where

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data , 103

their models match the data.

Future work. While these displays use the models and its structures to help in the analysis, the
question remains of how to extend them. It may be possible and desirable to incorporate additional
components, such as the number of rule firings, the number of matches per ruleS, and to aggregate
across subjects or episodes. It would also be desirable to incorporate measures of rule and operator
utility more directly, and to understand, display, and manipulate the degrees of freedom in the models.

6Although generally Soar models are not described on the level of rules and rule firings, but the higher level cognitive
structures, such as operators, that the rules are creating.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data

Soar/MT - 21 December 1992

104

The model manipulation tool -- the Developmental Soar Interface (DSI) 105

Chapter 6
The model manipulation tool -- the Developmental Soar Interface (DSI)

"Realizing programs with GPS on a computer is a major programming task. Much of our research
effort has gone into the design of programming languages (information processing languages) that
make the writing of such programs practicable.”

Newell, Shaw, & Simon, 1960

In the past, the implementation of Soar as a program has failed to fully support many of the
requirements noted in Table 6-21 as necessary for testing the sequential predictions of cognitive
models. The basic Soar interface was only a command line, and the commands were simple. Most
commands did not provide default values. A default editor, GNU-Emacs, was perhaps assumed, but
the editor was not tailored to Soar and no help was provided for manipulating productions or higher
level objects in the model. The emergent structure of the model, such as problem spaces and operators
was ephemeral, and only existed in the trace. After the goal stack exited a problem space, it did not
exist until it was entered again. The trace itself was flat, it was printed out, and that was that.

Table 6-21: Requirements supported by the Developmental Soar Interface.

Requirements for the process model’s trace
(a) Include: :
(i) Unambiguous predictions for each subject information stream (external and internal actions)
(ii) Time stamps for each action.
(b) Be readable by the analyst.
(c) Provide various levels of detail.
(d) Provide aggregate measures of performance.
(e) Be deterministic even if the model is not.
Requirements for modifying the model
(a) Display the model so it can be understood.
(b) Modify the model based on the comparison.
Requirements based on integrating the steps and supporting TBPA
with a computational environment
(a) Provide consistent representations and functionality based on the architecture.
(b) The environment must automate what it can.
To support the user for the rest of the task:
(¢) Provide a uniform interface including a path to expertise.
(d) Provide general tools and a macro language.
(e) Provide tools for displaying and manipulating large amounts of data.

The Developmental Soar Interface (DSI) provides an interactive graphic and textual interface to
support the requirements shown in Table 6-21 related to using, understanding, and manipulating the
Soar model being tested. The DSI consists of three integrated yet independent pieces of software.
They are designed to provide multiple entry points for users so that users can manipulate and examine
the models in a natural and consistent way, no matter which module of the DSI they are working with.
For example, while examining the graphic display users can run Soar ahead a simulation cycle by
typing on the display, and while editing productions they also can run Soar ahead a simulation cycle
though similar commands in the editor. Novices and casual users can interact with each tool through a
menu. Experts will learn common commands from the menus because the keystroke equivalents are
displayed there. Further details will come out as how the requirements are taken up in turn.

The Developmental Soar Interface (DSI) adds several new concepts to Soar: the idea of interlocking
tools, each component can use the other tools’ representations and capabilities; problem space
statistics, keeping track of how often problem space objects are selected; a macrocycle, the ability to
run the model not in terms of decision cycles, but in terms of the architecture, such as to the next

So0ar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 106

problem space selection or the third operator to be applied; and hooks, the ability to modify Soar’s
behavior at set points such as initialization or to trace actions, such as at the end of the elaboration
cycle.

The Soar in X (SX) graphic display. While displaying the Soar goal stack the SX graphic display
creates a representation of the model. This new representation of the running model (in itself a model)
is used to represent the problem space level objects and kegep statistics on their use. This representation
allows the analyst to directly manipulate problem space level objects. Clicking on problem spaces and
their subcomponents allows their working memory components to be displayed in an examination
window. These windows can exist during a run and the model’s working memory can be monitored in
examination windows as it performns a task. An associated command interpreter and pop-up menu
provide keystroke and keyword commands to manipulate the model. A special command line
interpreter, tailored for running Soar, is also provided. A complete description of the functionality is
provided in the SX manual (Ritter & McGinnis, 1992). While the new graphic display copies little of
the code directly from previous instantiations of the DSI (Milnes, 1988; Unruh, 1986), it copies some
of their ideas, particularly that a graphical interface is doable and desirable.

A trace of the Soar model designed for use with automatic interpretation and alignment systems is also
. provided, either with the SX graphic display or with Soar-mode. Its most important feature is that it
provides the models actions in an unambiguous format, putting each selected object’s name and
attributes in fixed fields. It also includes features that make it more compact to fit on a limited width
screen, and more easily read by other programs (subfields separated by tabs). The improved trace is
also more interpretable by human analysts because it indicates the goal depth of each element of the
trace with a number of dots separated by spaces instead of just with the number of spaces.

Soar-mode. The second module is a structured editor and debugger written within GNU-Emacs, called
Soar-mode. It provides an integrated, structured editor for editing, running, and debugging Soar
models on the production level. Productions are treated as first class objects. With keystroke (or
menu) commands productions can be directly loaded, examined, and queried about their current match
status. Listings of the productions that have fired or are about to fire can be automatically displayed.
Soar-mode includes and organizes, for the first time, complete on-line documentation on Soar and a
simple browser to examine this information. A complete description of the functionality is provided in
the Soar-mode manual (Ritter, et al., 1992).

TAQL-mode. The third module, TAQL-mode, is a structured editor for editing and debugging TAQL
programs written as an extension to GNU-Emacs. TAQL is a macro language for writing models in
Soar on the problem space level. By providing TAQL constructs as templates to complete rather than
as syntactic structures to be recalled, it decreases syntactic and semantic errors. After inserting
templates users can complete them in a flexible manner by filling them in completely or only partially,
escaping to the resident GNU-Emacs editor to work on something else or to edit them more directly.
This leaves general editor commands available throughout the editing session. At any point in the
process users can complete any partial expansions or add additional top level clauses, choosing from a
menu appropriate to the construct being modified. A complete description of the functionality is
provided in the TAQL-mode manual (Ritter, 1991).

6.1 Providing the model’s predictions in f;)rms useful for later comparisons and
analysis

The first set of requirements that the model manipulation tool must support is related to deriving the
sequential predictions of the model in a usable form. It must provide two versions of this, the first is
the direct predictions used to interpret the protocol data. These predictions primarily need to be
machine and human readable, but there are other requirements discussed below. The second version is
an aggregation of the predictions in order to understand the model’s general performance, and for
comparison with aggregations of the subject’s data.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 107

6.1.1 Providing predictions for comparison with the data

The requirements for the model’s trace are listed in Table 6-21. The improved trace, initially provided
with the graphic display and now available separately, substantially improves several of the
requirements, but several remain a problem. Aggregate measures are taken up in the next subsection.
Figure 6-24 shows how these requirements have been met. The original Soar trace is shown in
6-24(a). This version is slightly ambiguous. In decision cycle 3, the name of the problem space
(SOME-SPACE) and its traced feature (VALUE]) are not distinct. If the problem space did not have a
name, the value would appear in the first position. The bottom of the figure lists the improvements to
the trace shown in Figure 6-24(b).

6-24(a) Original Soar 5 trace:

[+] G: G1 .

‘1 P: P2 (TOP-PS)

2 8: S4 (TOP-STATE)

3 O: 06 (WAIT)

4 ==> G: G2 (OPERATOR NO-CHANGE)
5 P: P3 (SOME-SPACE VALUEl)
6 S: S6 (VALUE2)

6-24(b) Modified Soar 5 trace:

0/ G: 61 ()

1/ P: TOP-SPACE ()

2/ S: 84 ()

3/ O0: WAIT () _
4/ => G: G2 (OPERATOR NO-CHANGE)
5/ . P: SOMEB-SPACE (VALUEl)

6/ . 8: 86 (VALUE2)

(tabs are indicated with a /)

Improvements to the Soar trace for use in TBPA

¢ An unambiguous name reference is placed at the front of each line in the trace. The
object’s id is used if there is none. Now only the traced fields are in the parentheses,
which, as an option, can be removed if there are no traced fields for a given object.

¢ A leading tab or spaces (user selectable) is inserted after the decision cycle number, so that
trace is parsable by spreadsheet programs.

¢ A period (.) is placed in the indentation for each impasse level down to directly indicate
the goal level.

e The goal stack indentation width and symbol are adjustable to aid where compact

presentations are needed. The goal indicator is initially "==>", but it also can be changed
t() "=>" or "~~>".

¢ The generated id of the object has been moved to the back of the trace, and as an option it
can be removed entirely (except it is used as the name on nameless objects).

Figure 6-24: Original and modified Soar trace.

(a.i) Be unambiguous. The new trace removes several ambiguities and retains the decision cycle
number of the original trace. The name and traced attributes of the selected object have fixed
positions. The use of the object’s ID when a name is not available may not turn out to be the best

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 108

choice; it may be better to insert "no-name" or some other distinct marker that can be more eésily
interpreted than the ID as the lack of a name.

(a.ii) Include a simulation time stamp for each action. Both the new and old trace include a time stamp
for each action in the architecture’s own terms of decision cycles. The only difference is that the time
stamp in the new trace, because it can be separated with a tab, can be read directly into spreadsheets.

(b) Be readable by the analyst. The addition of the dots for every level down in the goal hierarchy
should make the trace more readable. Besides making the trace less ambiguous for machine use,
presenting the name and traced attributes in a less ambiguous way should also make the trace more
readable for the analyst. There have been proposals for putting the traced attribute names in the trace
in addition to displaying the values. This might clutter the trace, but it should be provided as an
option.

(c) Provide various levels of detail. Plain Soar provides most of the necessary variations in the level of
trace detail. As noted in Figure 6-24, several additional ways to modify the trace have now been
provided. These modifications were necessary to create a narrow enough trace to fit the predictions
into the spreadsheet. There will be other ways to manipulate the trace so this task is not complete.
How to represent the environment’s responses and when to include them was not touched by this
improvement. ' |

One specific level of detail that can be manipulated is whether operators, states, or both are included in
the trace. Newell and Simon (1972, p. 157) believe that problem spaces can be characterized by the
states that are seen or the operators that transform the states, one can be derived from the other. Both
the old and the new trace primarily display objects only at the time they are selected. Because
operators are nearly always clear if not complete at the time of their selection, both traces provide
rather complete pictures of the operators. At the time of their selection, states are almost always
empty, and undergo further transformations as operators are applied to them. Adequate depictions of -
states remains a problem for both the new and old traces.

(e) Be deterministic even if the model is not. The new and old traces are only as deterministic as Soar
is. A small, clear improvement would be to design a simple way to display the alternative selections in
the trace when one item is chosen from many indifferent selections. The graphic display already
provides this for objects with examiner windows.

6.1.2 Aggregating the model’s performance

The behavior of a model can be aggregated by an external system that examines the model’s external
actions, or, in the case of computer programs, by inserting instrumentation into the system itself. The
method used in the DSI is to aggregate the behaviors with an internal system, based on the data used to
create the display.

The primary level for aggregating Soar model’s performances is the problem-space computational
model (PSCM) (Newell, et al.,, 1991). Additional measures could be (and are) taken at other
theoretical levels, such as rule firings. The aggregations on the PSCM level are counts of object
selection on that level, of goals, problem-spaces, states, operators, and chunks created, although,
strictly speaking, chunks are on the symbolic level.

Figure 6-25 displays an example output of these aggregate counts. It is not clear that the way chosen is
the best way to present this information, but it serves as a starting point for discussions and further
design. After a time stamp, the initial block provides a listing of all the problem spaces found so far,
and the number of operators in each of them. In this example, the problem spaces are taken from a set
loaded into the graphic display besides those that have been selected.

The second block of information provides the complete selection counts for each PSCM level object
known, even if it has not been selected since the last restart of Soar or call of reset-PSCM-stats. On
each line is shown (a) the count of the selections, (b) the type of object, (c) its name or first selected

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 109

ID, (d) in parentheses, the actual name or "no-name" if one was never provided. Problem spaces also
have the number of chunks that have been assigned to them. This can happen through the normal
course of learning while running, or by placing previous learned chunked (or plain productions) on the
list of chunks. The update function then assigns the productions to a problem space based on the
problem space’s name in their condition or other means (this assignment process is covered in more
detail in a later section). An indentation of a single space occurs after goals and problem spaces to
indicate a choice point. A similar level also could be created for states, but most problem spaces use
only one initial state so it has never been found necessary. Objects with the same indentation, such as
the operators in the Compare-positive-integer problem space, have all been selected for the same
context slot.

The objects in the SX graphic display are primarily identified by their name. Objects without names
are essentially identified by their relationship to the most recently selected object at the time of their
creation. This implicit naming process will break down given sufficiently complicated goal stack
constructions, but none have been observed so far.

This identification scheme raises several interesting questions about the architecture and what counts
as a unique object in it. The current counting system relies on the name attribute of objects to be
. provided and on the names being unique. In this representation, if objects of the same type and
relationship to the goal stack (e.g., two operators in a given problem space) do not have names, then
they cannot be differentiated. The underlying structures are also available, so a more complete
algorithm could be used to differentiate them.

This counting scheme breaks down when keeping track of goals. The system assumes that all goals
that have the same goal type (e.g., tie or no-change), impasse object (e.g., operator), and the most
recently selected context element (e.g., the top-space problem space), are the same goal. They may be
different, for example, the number of tied operators in a tied impasse. Whether this represents a real
difference in the architecture and a problem in the representation is not clear.

The problem of tracing embedded structures is highlighted in this display. For example, it is clear that
the first less-than-or-equal operator in Figure 6-25 is testing two numbers. How the actual numbers
are represented in the operator is obfuscated by the large number of parentheses.

Implementing pscm-stats suggests that counting objects on the problem space level is not yet clear.
How many operators are there in a system? Sometimes a given name can occur in multiple problem
spaces, but it represents different operators, and sometimes the same name can occur in multiple
problem spaces and really be the same operator. Other systems avoid this problem by deciding how to
name objects and then enforcing the distinction or lack of it. A position on this has not been taken
within the Soar community. pscm-stats currently assumes that an operator cannot occur in more than
one problem space. How to reliablely represent operators that appear in more than one space remains a
problem both conceptually and in the software.

When printing out the calling tree and the counts of each problem space, pscm-stats will print out the
operators used in the space and their counts each time. If a problem space is used to solve two
different impasses (as defined by the higher level problem space and goal type), its selection count and
its operators selection count will get printed twice. When this occurs it is misleading for two reasons.
The first reason is that it implies that all of the problem space is used to resolve each impasse. This
may not be the case. The second problem is that the total number of selections printed out can easily
become two to three times the actual selection count.

6.2 Displaying the model so that it can be understood

The SX graphic display (Ritter & McGinnis, 1992) makes visual representations of Soar models real in
a sense not available before, actual triangles get drawn for problem spaces’, circles for operators, and

Unless the user hides them, which they can do.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI)

110

PSCM Level statistics on November 22, 1992

22 problem spaces, with a total of 11 operators.

AMALYSE
AMALYSE
COMPARE-POSITIVE-INTEGER

Problem space
EVERY-SPACE

STRIP-LEADING-ZRROS
CUMULATE

ﬂﬁng

.
.
.
.
.
.

R S S S S S S S
e e & o e & s s e o s » »

-

o« s e e

HWwewihhbeoaannnaN~NWwebddada

ooooooaoccoooaouocmauos

G
.P: analyse (analyse) (6 chunks)

e actual selection counts and calling orders:
G: gl (g1)
.P1 johnson (johnson) (0 chunks)

. 8: 88 (no name)
G: (operator tie) (g372)
.P: analyse (analyse) (13 chunks)
. S: 38 (no name)

(operator no-change) (g377)

« + Ot analyse-op (analyse-op)

8: 88 (no name)
G: (state no-change) (g362)
O: less-than-or-equal ({({((7) ((1)))) ((((5) ((0)))) none))) (less-than-or-equal)
G: (operator no-change) (g390)
.P: compare-positive-integer (compare-positive-integer) (0 chunks)

. 83
. Ot
. 01
. O3
. O3

O:

compare-positive-integer (s8320)

nove-left (move-left)

direction-right (direction-right)
less-than(((((3))) ({(((2))) none))) (less-than)
equal(((((3))) ((((2))) none))) (equal)
move-right (move-right)

. Ot croatn -glot((J12 no)) (create-slot)

0: count-objects-smaller (count-objects-smaller)
O: memory (memory)

. O0: count-objects-greater {(count-objects-greater)
.@t (goal no-change) (g7)

Figure 6-25: PSCM level statistics for approximately 100 decision cycles of

the Sched-Soar model (which is shown in Figure 6-27).

so on. While our initial hope and many viewers’ first reaction is that this standardizes the visual
representation of Soar, this is not so. One should not view the current display as canonical, but as an
approximation. Further work and suggestions from others have and will shape it, as well as its own
inherent successes and failures. As a graphic display, it can be driven by a menu or keystrokes from its
As part of an integrated environment, it also can be driven by keystrokes in the

display windows.

editors.

The graphic display can be used in two ways, as a normative display of what problem spaces may exist
in the model and their relationships to each other, and as a descriptive display of the goal stack

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 111

contents while the model is running. Both types of information can be displayed simultaneously (the
display can get a bit complicated) to see if the model normative behavior is correct.

Garnet. The graphic display, the Soar Command Interpreter, the dialog boxes, and the pop-up menu
are built out of components provided by the Garnet user interface development environment (Myers et
al,, 1990). Garnet is "a comprehensive set of tools ... for implement[ing] highly-interactive, graphical,
direct manipulation user interfaces” (Myers, Guise, Dannenberg, Vander Zanden, Kosbie, Marchal,
Pervin, Mickish, & Kolojejchick, 1991). It stands singularly above (egregious) other graphic interface
toolkits because every feature needed (or nearly every) is provided, and it is built correctly to be
extendable on the right levels. Garnet provides object-oriented, constraint-based representation that
allows graphical objects to be specified declaratively, and then maintained automatically by the
system. The iterative behavior of objects is specified separately. The Garnet group, headed by Brad
Myers and located at CMU, provides excellent support. They intend to continue extending Gamet for
the next three to five years.

It is hard to imagine building a graphical interface like the SX graphic display without a powerful and
well-supported interface design toolkit such as Garnet. It substantially contributed to the ease of
programming of this work. Its modular design allowed it to be modified to run four times faster. Its
only drawback is its size, and perhaps its speed (the problem may be with the SX code, not Garnet, or
inherent to graphical interfaces). The Soar image nearly doubles when Garnet and the graphic display
are loaded.

6.2.1 Normative displays of the model

Figure 6-26 provides an example display showing the problem spaces, their normative calling order,
and some of the chunks that are learned in MFS-Soar (Krishan et al., 1992), a system for formulating
mathematical programming models from a problem definition. The arrows indicate the nominal
calling order, and the type of relationship between the two spaces. This is often a simplification, for
often the relationships are not between two problem spaces, but between a problem space and an
operator or other objects.

Problem spaces can be placed on the screen before a run by explicitly creating them. This can be done
with functions in an initialization file or as a menu command. Problem spaces also can be placed on
the screen through running the model. The default is that problem spaces remain on the display after
they have been created. Most often it is desirable for problem spaces to stay in the same place on the
screen across and during runs. This can be done by "anchoring” them. This means that they will
appear in the same place each time they are entered. Anchored problem spaces are indicated by an
asterisk (*) on their bottom left comer. However, this can be overridden when they are created by
modifying the initialization file, or by removing the anchored indicator in an examiner window. If an
initialization file is not loaded, problem spaces appear in a series of straight lines, but can be moved
around if desired, and their configuration can be written out to a file for later reloading.

Displaying the amount of knowledge in each problem space. The SX graphic display also can depict
an approximation to the amount of knowledge in each problem space. Just as the learned productions
(chunks) can be associated and displayed with their problem spaces, so can the original productions.
By displaying the productions associated with each problem space, the graphic display is also
displaying the amount of knowledge in each space.

Figure 6-27 shows a normative display of the problem spaces and initial productions for Sched-Soar
(Nerb & Krems, 1992). It was drawn by loading in a set of previously found and arranged problem
spaces and their connections. Then Sched-Soar was loaded. All its productions were set to be chunks,
and were assigned by the system to a problem space. If a problem space did not already exist to hold,
the SX graphic display would create one. Not all problem spaces are connected. The problem spaces
shown were derived from the productions loaded. The unconnected problem spaces are part of the
function package and are not actually used by Sched-Soar.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 112

Soar Graphic m.xa 2,2 8 SPIMG

Figure 6-26:
The problem space structure of MFS-Soar (picture taken by David Steier). Learned chunks
(small bricks) shown on chunk walls to right of each problem space (triangles). Lines between
problem spaces labeled "OP NC" stands for operator no-change impasses in the higher space
that are resolved by lower level spaces. The grey fill in the problem space on the right-hand
side, Output-Constraints, indicates that it has recently been selected to be moved or to have its
contents displayed in an examiner window.

Shown at the top of the display, the space Every-Space holds the productions that potentially can apply
in every space because they do not contain explicit references to any single problem space. Sched-
Soar is unusual in that it has so many. Upon inspection of the productions (by clicking on them), the
productions are found to be predominately those that support the Soar function operator package
(Rosenbloom & Lee, 1989) that Sched-Soar uses. Several problem space selection productions are
also placed here, as well as several productions that would live in the Johnson space, but appear to
have had their problem space name accidentally left out, and a few for state tracing. Most spaces
contain the productions that could apply in them. For example, Compare-positive-integer and Memory
contain a fair number of productions. The large number of Johnson problem spaces are used for
look-ahead search.

The knowledge that can be applied in each space is not always displayed. Knowledge can migrate
through learning, and this is represented by lines of connectivity, and later through chunks. Not all the
knowledge that can be used by re-entrant problem spaces is shown. Only the highest version of each
problem space is used to hold the knowledge for all of the instantiations that might be created. In some
problem spaces, when an impasse incurs, an instantiation of the original problem space may be

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 113

STRIP-LEADING-ZBROS

[=]

CUMULATE

Figure 6-27: Normative display of Sched-Soar showing the productions in each problem space
as chunks on the chunk wall to the right of each problem space.

instantiated and selected again as a problem space to resolve the original impasse. These are re-entrant
problem spaces. In Sched-Soar the Johnson problem space (named after the original algorithm’s
designer) is re-entrant, and several, but not all, of the concurrent instantiations that would exist during
problem solving are shown.

The knowledge in each problem space has to be measured in terms of productions. Although this
certainly appears to be an imperfect measure, there is no other coherent metric. The generality of the

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 114

productions might be measurable through the number of clauses, but in- the quest for accuracy, even
that should be adjusted for the frequency of the features tested in the environment. The number of
operators is another possible metric, but they vary even more than productions in size and generality.

Assigning chunks to problem spaces. The algorithm that assigns productions to problem spaces is a
simple one that uses heuristics to classify which problem space to place a production in. It is used
when new chunks are leamned, and when both previously leamed productions (chunks) and hand-
written productions are loaded at a later time and are noted for display as on the chunk wall. The SX
display first attempts to find a problem space name in their condition. If one is found, then the
chunk/production is assigned to that problem space. If one does not exist, the addition algorithm next
checks for an operator name in the conditions. If one is found, SX checks each problem space in the
order they were created. The first problem space that has an operator by the same name is used. Next,
if there is an active goal stack, then the lowest active problem space is used, which is where a learned
chunk would have placed its results. If a problem space cannot be found by any of these means, then
the production is placed in a dummy graphic problem space called Every-Space, indicating that
presumably (and this is an assumption) the production could fire in any space. In practice, the
production will often have conditions that can only be matched in a subset of the problem spaces.

6.2.2 Descriptive displays of the model’s performance

Although most figures in this document are normative descriptions, for most users, the SX graphic
display primarily serves as a descriptive display of the models’ behavior by graphically displaying the
goal stack and its contents. Starting with the top goal, each context level element that is selected gets
displayed as a graphic element, and they can be examined with the working memory walker described
in the next section.

Because the problem space level objects persist over time in the SX graphic display, a declarative
model of the structures in the productions is created. This can support simple discoveries about
models. Until Soar and then TAQL were run with the same graphic display, a mistake really, the
developers of TAQL and Soar did not know that they used different top level problem spaces. TAQL
uses Top-space and Soar uses Top-PS. In the graphic display, they appeared as two different problem
spaces — in a textual display this difference went unnoticed for a year.

Figure 6-28 shows Sched-Soar during a run. The problem space names and locations have been loaded
from a previously created description. If the problem spaces were not preloaded, they would appear in
several columns top to bottom starting in the upper left comer. The black lines connecting problem
space level objects in the display indicates their selection order in the stack. :

Selected context item. The context element last added to the stack, such as a state or problem space, is
treated as the "selected” context element and is shaded. Clicking on a context element that is not the
latest one added (i.e., not "selected") also will select it and display its name if it is not displayed.
When Soar is running, the graphic window will scroll to make the selected context object visible if
auto-scroll is turned on. Figure 6-26 includes a selected problem space. In Figure 6-28 the selected
context item is the Less-than-or-equal operator in the Analyze problem space.

Problem spaces. Problem spaces are displayed as triangles. Their names are displayed at their upper
left hand corner. Any traced attributes are displayed after the name separated by a colon. Problem
spaces can be moved around with the mouse, and when double clicked upon, a problem space
examiner window will be created. The bold text in their examiner windows can be moused to create
further examination windows of goals, operators, and states, and of their substructures.

Goals, states and operators. Goals are displayed as large circles. Their ID is displayed by default.
Their type (impasse and attribute, e.g., operator no-change) is displayed on their creation, and it gets
smaller when a problem space is selected to make room for the problem space triangle. States are
displayed as squares. Their name is not displayed by default. Operators are displayed as small circles.
Their name is displayed by default. These types of objects, when double-clicked, will display their

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 115

SooS0ar Graphac Display 5.4 0 SARCO

TER

307 dshisarta
o+ =06 G7 (OPERATOR MO-CHANCE) €7
o o o P: CONPRRE-POSITIVE-INTEGER () P8O
1 o « o S CONPARE-POSITIVE-INTECRR O $89
14 . . . O: MOVE-LEFT (MOVE-LEFT) 090
o o 0: PIRECTION-RIGHT (BDIRECTION-RIGHT) Q31
1 o o 02 LESS-THAN L(LU(D)) ((LL5))) NOME)Y) LESS-THAN) Q92
[Butld:P101
! o o 03 LESS-THA-OR-EQUAL C(<((3) C(2)))) ({{(3) ((3)))) NOME)) LESS-THA\
GE1S (OPERATOR NO-CHAMGE) G115
COMPARE-POSITIVE-INTECER) P116
COMPARE-POSITIVE-INTEGER ¢) S117
LEFT (MOVE-LEFT) Q118

MOVE:
. « 0: BIRECTION-RIGHT (DIRECTION-RIGHT) 0119
o o o O LESS-THAN (CC{(3))) (({(3))) NONE)) LESS-THAN) Q120
. 0 BAL CCCCED D) ((((3))) NONEY) EQUAL) Q128
o o 0 MVE-RIGHT (MOVE-RIGHT) Q135
o 02 LESS-THRN C((())) ((({3))) NONE)) LESS-THAN) 0137
smuacro-oycle breakess

L]

.

o ANALYSE
less-than—or—aqual (({{(3) ((22,)))

- <

COMPARE-POSITIVE-INTECERyS

A (b Lk Tcomr o nE I

[27 SARCO: > anapshot ~/spassched-soer/sched-soer . xps

2 Jafs/cs.cmu. edu/user/ritter/spa/eched-soar/sched-sosr . xps nonexistent
]

g

uc: 1 Decision (S demax)

Figure 6-28:
Example descriptive display of Sched-Soar at decision cycle 27. The chunks reported as
belonging to each space are not learned chunks, but are the model’s own productions loaded as
chunks and assigned to spaces based on the algorithm presented in Chapter 6 on the graphic
display. .

contents in a simple examiner window as shown in Figure 6-29.

Chunks. Chunks are displayed to the right of the problem space that the SX display believes that they
will apply in. They are displayed as a dark black box on the decision cycle that they are created and
later as a hollow box. When chunks fire, they explode visually, and, optionally, beep. They also can
be set to display their ID when they fire or are created. To make it clear which chunks fired, the
exploded chunk remains until the beginning of the next decision cycle. Similarly, newly created
chunks remain dark after their creation until the beginning of the next decision cycle. The small block
in black next to the Analyze problem space in Figure 6-28 is a newly created chunk, and the white
filled block is an old chunk.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) A 118

menu.

Each item consists of a "menu label” followed by the keystroke accelerator equivalents (if any)
available for typing on the graphic window, or typing to the new Soar Command Interpreter. If
multiple commands are available, they are separated by a "I" between types and by commas within a
type. The menu support running the model in a variety of ways, including a new unit called a
macrocycle. A macrocycle is a user set-able amount thai can be measured in decision cycles and in
problem space level units such as "until the 3rd operator has been selected”. This menu is also used to
access all the dialog boxes. The menu also includes some general graphic commands, such as
examining a graphic object or taking a snapshot.

SHU: Yanepshot “/rx/newnetes/graphica/al 1-the-vindovs.o8
2 Jefs/cs.comiaduAmar/rittar/sx/newnotes/or aphice/el 1-the-windowe .pe nonexi\

) you heipt

W types/MC: MC type:

HAIDE Qmeacin

% ror help on the scarX display, see the manual available as
hardcopy, or on-line (see below).

% For help on soar-mode,

Mex dc/MC: Ow-r-m type "C-h m" in soar-mode buffers in Emacs.

G Osae help on taql-mode,

de” in taql-mode buffers in Emacs.

Use BT0 fonte Y draphic dieplay?
Sour syntax Show Ide of:
Ooal
Problen-Space
State

Opagator

Chnk

Shew static Lirks
Shov static text
Merme be static

manuals are available in Emacs in
rs under the menu "C-c Ca",
on”, or "TAQL Documentation” sub-mer

n or type CR to continue)

E N o) Build Static Henss

Create & preblan space

@ print @ all-gosls @ trace
Ouptinf. Obott-—q On.ntxuo

© full-print Q full-trace Alvays wpdate windows Tie tve spaces teguthec
Ramwvs & cevmecter
dute acroll
Wite a fils of Pliis out
[Abect] Put amey sewm

Figure 6-30: _

The pop-up menu and dialog boxes within the SX graphic display. Moving clockwise, the
pop-up menu is followed by a GNU-Emacs window, which has the Soar process buffer as one
of its windows. The DSI help window is below that, partially obscured. This help window is
accessible from the pop-up menu, and provides general guidance for how to get help, mostly
through Soar-mode. At the bottom right is the static display menu that allows the user to create
static views of a model on the problem space level. To its left is a dialog box for modifying
some of the Soar parameters, and some of the graphic display’s parameters. Next to that, on
the bottom and left, is a dialog box for setting the Soar leaming algorithm. Finally, there is a
dialog box for setting the macro-cycle.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 119

6.3 Creating and modifying the model

The analyst needs to create and modify the cognitive model by writing knowledge as productions or
TAQL constructs. The ability to informally test the models for functional performance even before
comparing it with behavior must be included in this requirement. As structured, integrated editors for
Soar and TAQL programs, Soar-mode and TAQL-mode support these needs. They are integrated with
Soar — they provide a facility to start up a Soar process and can communicate directly with it. In
particular, Soar-mode provides a command line interface that augments the Soar Command Interpreter
when it is available and replaces it when it is not. They are structured because they are designed to
treat the structures in Soar programs, productions, and the structures in TAQL programs, TAQL
constructs, like other structures within the editor. Users can move between them, cut and paste them,
directly load them, and examine these structures as they appear to the Soar process.

6.3.1 Soar-mode: An integrated, stl_'uctured editor for Soar

Soar-mode (Ritter, et al., 1992) provides a set of commands to manipulate Soar objects more directly
and allows the user to start a Soar process. The user is provided menu items and keystroke commands
that can qmckly pass various sized portions of Soar tasks to the connected Soar process. Table 6-23
lists the major functionalities provided by Soar-mode.

Novice users can drive Soar-mode (and TAQL-mode) with a menu. After each command is executed a
description of any equivalent keystroke accelerators is displayed to the user, providing a path to
expertise. The user can also query a menu (select the "?" item that is provided or type a space) for a
list of the keybindings of the menu items. -

Soar-mode is built on top of a Lisp editing mode for GNU-Emacs called ILISP (McConnell, 1992),
which is similar to, and emulates many of the functions in the Lisp machine programming environment
(Greenblatt, Knight, Holloway, Moon, & Weinreb, 1984). The under]ymg functionality of that mode
and GNU-Emacs are also available.

Table 6-23: Overview of the functionality offered by Soar-mode.

¢ A structured editor for Soar productions and for loading productions, regions, and files
directly into a running Soar interpreter.

¢ The ability to treat Soar problem spaces and operators as levels in an outline, performing
the usual outline processing functions on them.

e Commands to test and examine productions bound to keys and mouse buttons that are
smart enough to tell which productions they are in or over.

e Complete on-line documentation for Soar, Soar-mode, the Soar default productions, and
the Soar source code.

» Functions to generate and maintain informative source code file headers.

¢ Tags file support for Soar productions (i.e., find-production-source-code) to enable fast
and easy retrieval of production’s source code.

e Support for running one or more Soar processes in separate buffers, and commands for
interacting with these subprocesses.

¢ Support for Common Lisp programming (this is the system underlying the current
implementation of Soar 5, and may disappear in later releases when Soar moves to C).

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 120

6.3.2 Taql-mode: An integrated, structured editor for TAQL

Taql-mode (Ritter, 1991) builds upon the basic capabilities in the GNU-Emacs editor and a template
system extension (Ardis, 1987) to provide users with the ability to enter TAQL constructs by filling in
a template. When users execute the command to insert a template, they are offered the menu of
templates shown in Figure 6-31. Figure 6-32 shows an example template as it would initially appear in
a buffer. During expansion, commands to expand the current TC are explained in the mode line (the
reverse video line at the bottom of each buffer) or the message line (the line at the very bottom of an
GNU-Emacs display). Often the user is simply queried with yes/no questions about inclusion of
optional clauses and expansion of clauses. At other times, they are presented with a menu similar to
the selection menu. The heart of the templates is entered as text. The ability to auto-complete names
upon a keystroke command, already extent in Emacs, is highlighted through display on the Tagl-mode
menu, and by rebinding it to a new key. Encouraging the use of auto-completion helps keep variables
spelled the same way each time, and cuts down on the number of keystrokes to enter a TAQL
construct.

PROBLENM-SPACE-PROPOSAL-AND-INITIALIZATION:
propose-space:
propose-initial-state:
propose-task-state:

OPERATOR-PROPOSAL:
propose~task-operator:
propose-operator:

OPERATOR-SELECTION-and-EVALUATION:
prefer:
compare:
evaluate-cbject:
evaluation-properties:
operator-control:

OPERATOR-APPLICATION:
apply-operator:

GOAL-TESTING-and-RESULT-RETURNING:
goal-test-group:
result-superstate:
propose-superobjects:

ELABORATION:
augment :

OTHER-TEMPLATES :
the-0SU-production-templates:
8ps ; the simple sp
TAQL-program-template: ; Yost’s outline

Figure 6-31: TAQL-mode templates menu.

6.3.3 The Soar Command Interpreter

The SX display is run with the new Soar Command Interpreter (SCI). It provides a better command
interpreter, one tailored to Soar. The prompt of the Soar Command Interpreter has three fields: a Soar
Command Interpreter title ("SCI"), characters indicating the current reader syntax, and the current lisp
package. This prompt is easily changed. The read table in Soar interprets commas as preference
syntax; Lisp normally interprets them as part of the backquote macro. In the prompt, "Is" indicates that
the Lisp interpretation is used, while "ss" indicates that the Soar syntax is used. For example, the
prompt "<SCI Is:user>" indicates that the user is running the Soar Command Interpreter, the Soar
reader is set to Lisp syntax, and the current lisp package is the user package. The SCI accepts
keywords that specify an action for the graphic display or Soar. These commands can begin with or

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 121

(propose-space (propose-space-name}
{space-proposed)
{subspace~-function-clause)
{?when-conditions)

{?copy-clauses)

{?rename-clauses}

{?new-actions-specs)
{?use-superspace-top-space-or-id-clause)

? indicates optiocnal clauses, .
! indicates mandatory expansion (usually user doesn’t see this)
plurals indicate multiple copies may appear, e.g. when-conditions.

Figure 6-32: Example TAQL-construct template.

without a colon. Table 6-24 lists the most important commands in the SCL

Table 6-24: Most important commands in the Soar Command interpreter (SCI).
¢ The ability to run ahead based on the problem space level, such as next operator.
e Short cuts for toggling the reader syntax and the lisp package.
e Pop up an examination window on the currently selected PSCM level object.

¢ Run ahead one macrocycle. The default value for a macrocycle is 1 decision cycle. Any
open windows on PSCM items are updated each macrocycle.

¢ Any number runs the model N macrocycles.

e Type the initial letter of any problem space level object (goal, problem space, state,
operator, chunk) to run to the next new occurrence of that object.

¢ Redo the last successful command.
¢ Take a snapshot of the display for inclusion in documents like this one.

e When the user types "help"” or "?", help is provided as a listing of the keywords and their
effects. The help message is automatically generated from the commands.

¢ Anything else gets read, evaluated, and printed.

6.4 Supporting the requirements based on the whole process and its size

Besides the direct requirements of aligning the predictions with the data and starting to interpret their
comparison, the DSI supports the five global requirements based on the whole process and its size.

6.4.1 Providing consistent representations and functionality

In the DSI, while each of the tools can stand alone, they also know about the others, and can interact
appropriately with them. For example, commands executed from the menu on the graphic display
window can request buffers to appear in Emacs. (In the best of all possible worlds, if the other tool is
not present, something appropriate still happens.) Similarly, commands in Soar-mode can run
commands in Soar directly. In each tool and across tools, some care has been taken to provide

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 122

multiple entry points. That is, each command is available in each tool and often in a variety of
appropriate and similar ways. For example, there are several ways to run the init-soar command; one
can type (init-soar), :init, or init to the Soar Command Interpreter, choose Init on the graphic display
menu, or type an "i" on the graphic display window. Help is provided with each tool to facilitate
learning the other entry points. For example, the graphic menu item for init-soar includes a listing of
the other expressions of this command in the other modules.

Because they can communicate, the various modules in the DSI are also able to use each others
display. Users can request objects be displayed graphically from the Soar Command Interpreter, and
the graphic display, when chunks are clicked on, can display them in Emacs buffers. As an additional
example, Soar has been augmented with a command called continuous-match-set. This command sets
up machinery so that after every elaboration cycle Soar prints out which productions will fire on the
elaboration cycle (the match set). If Soar-mode is available, they get displayed at the top of a separate,
scroll-able buffer. If Soar-mode is not available, they merely get put in the trace.

The components of the DSI also interact with Spa-mode and the measures of fit. Upon the user’s
request, Spa-mode can query the graphic display to obtain a listing of the operators in the current
model, and the trace can be inserted in the spreadsheet. Spa-mode can then use these for exploratory
coding of data. The displays of fit organize their data using the names of the operators obtained from
the graphic display as labels on the display.

6.4.2 Automating what it can: Keystroke savings

The model manipulation interface does not offer any large pieces of automation such as automatic
alignment or display creation. What it offers is a large number of small automations. Models can be
loaded more quickly, some pieces of functionality are directly accessible. The largest small
improvement has been to create functions to perform frequent tasks, and bind them to keystrokes and
command names in Soar-mode, the Soar Command Interpreter, and the SX graphic display.

The keystroke model of Card, Moran, and Newell (1981; 1983) predicts that as a first order effect, the
amount of time performing a task will be proportional to the number of keystrokes needed to perform
the task. Table 6-25 shows the savings for several common tasks that Soar-mode provides over

interacting with a plain Soar process. ‘

The savings appear to be considerable. The measures in this table are only an approximation of the
true savings because they include many simplifying assumptions. The measures do not include the
time to plan, but it should be small for most of these actions, and the interactions with Soar-mode are
more direct and should require less planning. Some of the more complicated commands not shown in
Table 6-25, such as running the model to the next problem space, would offer further savings because
they would require many more keystrokes and would include several mental operators.

6.4.3 Providing a uniform interface including a path to expertise

The DSI has been designed to accept multiple entry points and names for commands. Many
commands can be executed in a variety of windows, with a variety of names. You can choose the way
that best suits you, and the work that you are currently doing. For example, you can init-soar by typing
to the command interpreter ":init", "init" (as long as the variable init is unbound), or (init-soar), by
selecting init-soar on the graphic display pop-up menu, by typing "i" on the graphic display window
itself, or by typing in Emacs, ESC-x init-soar.

Each command across the multiple possible entry points is consistent: they share the same name, or
when appropriate, they use (so far) single letter abbreviations. While several toolkits are used, only
one designer has integrated them, so while perhaps screwy, a method to the madness also should be
observable (Brooks, 1975).

Menu driven for novices, keystrokes for experts. Each component of the DSI (SX graphic display,

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) ' 123

Table 6-25: Keystroke savings for Soar-mode accelerator keys, the Soar-mode menu,
the SCI, and the SX graphic display compared with the default Soar process.
(All measures in keystrokes unless otherwise indicated.)

PLAIN SOAR PROCESS SOAR-MODE
COMMAND Keys Keys Speedup Menu Speedup
Load file 24 3 8.00 7 3.42
(using 7 char long name)
Excise production 25 3 8.33 7 3.57
Load production
with keys 14 3 4.66 7 2.00
with mouse 7 3 2.33 7 1.00
Trace production 24 4 6.00 7 3.42
Production matches? 31 4 7.75 7 4.42
Continuous match set 8 1 8.00 1 8.00
(Just look for Soar-mode)
Run Soar 1 DC 9 3 3.00 na na
Open on-line Soar manual 49 7 8.00 7 7.00
FPind out reader syntax 14 9 1.55 na na
View function documentation 35 3 11.66 7 7.00
PLAIN SOAR PROCESS 8SCI SX Display
COMMAND Keys Keys Speedup Keys Speedup
Run model 1 decision cycle S 2 2.50 1 5.00
Find out reader syntax 14 1 14.00 na na
(Just look for SCI)
Examine an object (spr) 9 2 4.50 2 4.50
Initialize Soar 12 2 6.00 1 12.00

Soar-mode, and TAQL-mode) can be menu driven and keystroke driven. Menus lay the commands
out for the user, users need not memorize them. Each menu also displays the equivalent keystroke
shortcuts. If the user does not know how to do something, they can check the menus. The graphic
display menu is available by clicking the middle mouse button, and then selecting an item with any
mouse button. In Soar-mode and TAQL-mode, Control-C Control-M will bring up a menu of
commands and sub-menus, and in later releases of GNU-Emacs this will be saved to provide menu
functionality. Menu items can be selected by typing their first letter. Further explanations and key

binding information can be obtained by typing a "?" or a space. After the command is executed, the
keybinding is echoed in the message area.

Previously there was little documentation for Soar on-line, including the manual ("someone might take
it and improve it"!), and the documentation for individual functions were awkward to obtain; the user
had to type the cumbersome command "(documentation ’<function-desired> ’function)”. This is not
uncommon for modeling systems, Lisp often comes that way out of the box. We consider on-line
documentation to be a useful adjunct to hardcopy versions, so Soar-mode includes a uniform
documentation accessing mechanism available as a menu item. Users can now obtain the main Soar
manual and other manuals (such as the editor manuals and release notes) via the main menu.,

6.4.4 Providing a set of general tools and a macro language

The DSI is designed to support a general activity, inserting knowledge into a Soar model, and is itself
general. It can be used to create any Soar model, and is designed to be able to display any Soar model.
Macro-languages and an interpreter are available for each component. Common Lisp is available with

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) ‘ 124

the graphic display, and GNU-Emacs Lisp is available with the structured editors, Soar- and TAQL-
mode. The source code is provided for each component, so what is poorly documented or not
documented in sufficient detail can be found in the source code.

Hooks are places to customize a system’s behavior by calling a user-supplied function at a set point,
such as at startup, or after a file has been loaded. Several have been added to Soar5, and the standard
set (loading and initialization) for Emacs modes have also been included. The appropriate user-
supplied functions, if any, are called after Soar is initialized, after each decision cycle, and after a
macrocycle. _

6.4.5 Displaying and manipulating large amounts of information

Objects that the programmer (or Knowledge Engineer if you prefer) has in mind, such as productions,
TAQL constructs, emergent objects in Soar that appear as members of the goal stack or attached to a
subpart of it, are treated as first class objects that can be directly loaded, excised, run, and examined.

The SX graphic display uses a new, node-based algorithm for browsing the working memory
structures in the goal stack in a natural manner, and for displaying how the contents change while the
model runs. The structures inherent in a model, most notably the problem spaces (states and operators
too, but they are not shown as nicely), are examinable after a run in the graphic display, and their
names and frequency of appearance are available from the pscm-stats command. Which structures are
in the stack is graphically depicted.

The structured editors provide support for manipulating the productions and TAQL constructs directly.
Direct manipulation of Soar models on the appropriate level provides a significant drop in the number
of keystrokes required.

6.5 Lessons learned from the DSI

In addition to providing an environment to support manipulating the model, its initial use unrelated to
testing process models provided several lessons about the usability of Soar software and the behavior
of Soar models in general.

6.5.1 The relatively large size of the TAQL grammar

Codifying and supporting the creation of TAQL constructs in a structured, template driven editor
required enumerating them in a formal grammar. Table 6-26 displays the sizes of each version of the
TAQL grammar with respect to several other languages that template-mode provides. Included for
comparison purposes are set of templates used at The Ohio State as part of Tagl-mode. These
templates are based on the problem space level operation templates that were included in the Soar 5.2
manual (Laird et al., 1990) as plain text. From left to right, the columns display the raw size of the
templates, the total number of nodes in the grammar, and the number of grammar nodes automatically
expanded for the user as the templates were completed, and the size of each set of templates in nodes
relative to the smallest template set, excluding any auto-expanded nodes.

This table shows the relatively large size of the TAQL grammar. It is quite possible that the coding of
the TAQL grammar is more thorough than the coding of the other grammars, and an examination of
the grammar for Emacs Lisp confirms that it is missing perhaps half of the special forms. However,
the TAQL 3.1.4 grammar itself is not complete, with approximately 90% of its constructs represented
in the templates. The size of its grammar may have impeded TAQL’s acceptability and learnability.

6.5.2 Behavior in Soar models is not just search in problem spaces

Models of human behavior in Soar have often been described exclusively as search in problem spaces.
Table 6-27 lists several places where the behavior of Soar models have been described this way (and

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 125

Table 6-26: The size of the TAQL grammars within TAQL-mode and the
programming languages supplied with the underlying template-mode.

Raw size Relative size Total Auto-expand Relative size
in char. to elisp Nodes Nodes to elisp
(in chars) (in nodes)
TAQL (3.1.2) 29.40 k 10.50 238 . - 99 5.34
TAQL (3.1.3) 31.10 k 11.10 287 93 7.46
TAQL (3.1.4) 35.80 k 12.78 306 98 8.00
Soar (SPs) 11.60 k 4.14 31 o 1.19
c 2.70 k 0.96 k¥ 0 1.30
Pascal 3.40 k 1.21 44 0 1.69
Blisp 2.80 k 1.00 26 0 1.00

yet there are other descriptions where the relationships between problem spaces and search in Soar
models includes other alternative formulations, e.g., Yost & Newell, 1989; Newell, 1991; Waldrop,
1988). Even the cover of Unified theories of cognition (Newell, 1990) presents a schematic of this
type of search. If the behavior of the models is viewed this way by their authors, it will color their
thinking, and percolate out to other audiences, as indicated by the last quotation.

Table 6-27: Descriptions of Soar and Soar model’s behavior as search in problem spaces,
presented in chronological order except for the final quote (All italics in original).

e "Soar is organized around the Problem Space Hypothesis (Newell, 1980b), that all goal-
oriented behavior is based on search in problem spaces.” Rosenbloom, Laird, & Newell,
1988, p. 229

e "The Soar architecture is based on formulating all goal-directed behavior as search in
problem spaces.”” (The Soar group, 1990) '

e "The search through the [problem] space can be made in any fashion", Newell, 1990, p.
98.

e "Soar formulates all tasks in problem spaces, in which operators are selectively applied to
the current state to attain desired states." Lewis, Huffrnan, John, Laird, Lehman, Newell,
Rosenbloom, Simon, & Tessler, 1990, p. 1035.

e "All tasks are formulated in Soar as search in problem spaces, where operators are applied
to states”, Simon, Newell & Klahr 1991, p. 435.

¢ "One of the most unique characteristics of Soar is its view of all goal-directed cognitive
behavior as search in problem spaces. Each problem space consists of a set of states and a
number of operators to move from state to state. Given a goal to achieve, Soar first selects
an appropriate problem space, then selects an initial state, and then selects an operator that
it applies to that state to get a new state. This process continues until a state that satisfies
the goal is reached." Ward, 1991, p. 13.

¢ "The basic premises [of Soar] are these: ... 4: That all intelligent activity can be
characterized as search through a problem space;" (Norman, 1990)

What is search in a problem space? Search in Soar would appear to describe primarily two types of
behavior. The first is the application of numerous operators in a single space. Backup, when

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 126

necessary, would be performed by other operators to modify the state. Soar4 models often used this
technique when they performed search. These operators could also use other knowledge sources
through impasses to other problem spaces. If the operators were all indifferent, there would not have
to be a conflict leading to a tie between operators and the associated impasse. Search in this instance
would have a large number of operators applied per problem space, and a large number of states.

The other way that search could be performed would be to have several available operators in a
problem space, but not have them indifferent to each other. An impasse would arise of which operator
to apply, and a goal stack of problem spaces used in look -ahead search would be created, like the one
in Sched-Soar shown in Figure 6-27. This type of behavior would also result in numerous operators in
the lookahead space, and a large number of instantiations of the lookahead space.

Types of behavior that are probably not best described as search in problem spaces are situations where
there is a series of operators applied, and each operator is the only possible operator and where the
operator is readily available. That is, where there is no uncertainty involved in the creation, selection,
and application of the operator. That is not to say that such situations will not arise in problem spaces,
or that it cannot be represented in terms of the problem spaces, just that these are not situations best
characterized as search in problem spaces.

Visual displays of search. With the graphic display having provided dynamic pictures of several
model’s goal stacks and counts of how many operators the models use and how many operators are
used in each problem space, we can now make the argument that search within a single problem space
does occur, but it is not the only mode of activity and is too weak of a description of how current
models in Soar use knowledge. The graphic display’s representation of the goal stack shows that the
models are not just performing search in a problem space. Observing the goal stack for Browser-Soar
(Peck & John, 1992), Seibel-Soar (Ritter, 1988), Sched-Soar (Nerb & Krems, 1992), MFS-Soar
(Krishan et al., 1992), NTD-Soar (John, et al., 1991), NL-Soar (Lehman, Lewis, & Newell, 1991) and
Rail-Soar (Altmann, 1992; Newell, P., Lehman, Altmann, Ritter, & McGinnis, forthcoming) indicates
that most of the time these models do not apply many operators in a row before subgoaling, and
instantiate nearly as many problem spaces as they do operators. After much worry and concern about
how what happens when operators walk out the rear of problem spaces, it does not seem to happen all
that often. Indeed, only two systems (Red-Soar: (Johnson & Smith, 1991), Able-Soar, Jr.: (Levy,
1991; Ritter, 1992)) have seriously overrun the current limitation of being able to display four or five
operators in a problem space before they are no longer graphically in the triangle.

Several models do perform explicit search as part of their behavior. Sched-Soar, Rail-Soar, NL-Soar,
and Groundworld, at least, sometimes do it. For example, part of the structure of Sched-Soar’s search
can be seen in Table 6-25 and Figure 6-27. Other models do not perform any search on the problem
space level. If the operator support displays for Browser-Soar are examined (the Appendix to Chapter
7), one can conclude that Browser-Soar’s behavior is routine (and this is indeed what Peck and John
intended and claim). The operators are applied in a very orderly way. A system that was performing
search that depended on the information it found would presumably be less regular.

Table 6-28 presents other possible measures for characterizing behavior as search: the number of
operators, the number problem spaces, and instantiations of operators and problem spaces over a
typical task episode (as defined by their authors) for several Soar models. In each case, the number of
different operator types in each problem space is relatively small (the largest average ratio is
approximately 4 operators per problem space in Red-Soar), and the average number of instantiated
operators per instantiated problem space is small too.

The proportion of goals that are operator no-changes are shown for each of the programs in Table 6-28.
Several of these programs do use lookahead search, but the ratio of operator no-change impasses

suggests that these programs are not spending a substantial amount of their effort performing
lookahead search.

There are also some unusual, very non-search-line behaviors exhibited by the models in Table 6-28.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 127

Table 6-28: The number of operators, problem spaces, and instantiations of these
per run for several Soar models.

Descriptive Instantiations
Model Oops Spaces Ratio OP nc Ops Spaces Ratlo Max
(ops/ps) goal (ops/ps) (ops/ps) Space
ratio i
Browser-Soar 31 18 1.72 0.87 238 52 4.57 7.223 Evaluate-items-~in-window
Groundworld 33 15 2.20 0.92 531 74 7.17 179.50 Wait-external
Liver-soar 5§ 20 3.75 0.72 208 [Y] 4.72 15.66 Check-features
MFS-8oar 69 23 3.00 0.96 347 92 3.77 6.33 Input-variable
NL-8ocar 18 8 2.325 0.56 122 52 2.3¢ 6.33 Check-constraints
all learned 18 8 2.25 0.50 3s8. 2 19.00 37.00 Comprehension
NTD-Soar 42 11 3.81 0.93 779 73 10.67 24.40 Sqagr
Rail-socar as 13 1.92 0.73 233 48 4.85 8.00 Eval-state
Red-Soar
plain episode 107 27 3.96 0.94 1258 130 9.67 154.00 Rule-out
“Searchy” episode 109 - 29 3.7% 0.86 923 126 7.32 81.50 Match-hyp-to-antigram
Sched-8oar 11 4 2.75 0.69 866 187 4.63 3.35 Analyze

Red-Soar uses 154 operators in the rule-out space to check constraints when typing blood. The goal
stack and pscm-stats in the SX graphic display indicate that Groundworld (Stobie et al,
1992) performs one 9-step look ahead search, and then waits for approximately 270 operators. It is a
program designed for a continued existence, and can keep running after its initial task is finished.
NL-Soar, after it has learned a sentence, performs rather differently from its initial behavior. The
"expert" behavior has no search whatsoever, and directly applies a series of 37 operators to understand
the 10 words used in the example sentence. :

Examination of the visual displays of these models suggests that they can best be characterized as a set
of behaviors, including search through problem spaces, hierarchical decomposition of problem solving,
as migrating and combining knowledge sources, and as search within a single problem space. In a
fully learned Soar model, actions just happen automatically in the top space, which is not a search
space at all then. The problem spaces used for search have disappeared. Search may remain on other
levels. There may be the results of previous searches guiding behavior that can be seen as degenerate
search; there may be search going in the external environment; there may be search being performed in
the Rete net to find which productions to fire. But in many cases there is not search being performed

on the problem space level. These other searches are not wrong, but they must be included in the
explanation of behavior of Soar models.

6.5.3 Soar models do not have explicit operators

Problem spaces and their objects, such as operators, do not exist in Soar models in an explicit sense.
Within a running Soar model, neither the model nor the modeler can obtain a list of all the problem
spaces and operators that exist. They are only available to an observer (including the model itself) by
watching the system perform over time, and a history of their appearance and use is not saved
automatically (except by the SX graphic display).

The "operators" (or any problem space level object) that are selected for application are not Operators
(capital O). A chain of the same operator in the graphic display, all in a row, illustrates that the
Operator is not being applied, but instantiations of it are being created and applied. If the same
operator was being applied, then a chain would not be an appropriate metaphor, but a moving dot
would be. Operator preferences may really be preferences for a given operator, but perhaps they
should be seen as operator instantiation preferences. Or how else could you prefer add(3 4) over add(5
6)? Both appear to be the add operator.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 128

What is selected then? The objects selected are instantiations of a semantic object, or object instances
generated by an implicit generator. Both the semantic operator and the operator generator are not
available for inspection on the symbol level. They are knowledge level objects, and can only be
manipulated on that level. The symbol level, which the Soar architecture provides, can only
approximate them, and can only obtain them through effort and observation.

This difference between operators and operator instantiations may seem small, but it is necessary to
disambiguate these differences for automatic model testing. When aggregating the results of testing
the model the objects that are supported must first be identified, and represented across runs of the .
model. The instantiations are not the theoretical level objects they are often mistaken to be, and cannot
aggregate support. Identifying architectural objects is also necessary to display them.

6.6 Summary

The Developmental Soar Interface supports creating models in Soar by treating model building more
like an Al programming task. Users can load and run code more directly, manipulating productions as
productions, rather than as portions of plain text. By integrating a Soar process within the editor, the
textual representation of productions can be quickly augmented with features found only in the
process, such as how well a production matches the current goal stack and its contents.

The DSI has added several key ideas to building models in Soar. The first is that the theoretical
constructs of Soar models should be displayed. The SX graphic display provides a visual description
of the model’s structure and behavior over time, and the improved trace provides a better linear
description. By aggregating the ephemeral trace over time, the SX graphic display can infer the
structure of the problem spaces.

The second is that the user should be able to directly manipulate the theoretical structures. The two
structured, integrated editors provide commands for creating, evaluating, and examining models in
various ways on the production or TAQL construct level. The SX graphic display provides the ability
to examine objects on the PSCM level, but not the ability to create them.

Implementing and using the DSI has provided some lessons on Soar programming languages on the
behavior of Soar models. Implementing an aid for TAQL programming pointed out the relatively large
size of the TAQL language. Using the graphic display has pointed out two features of Soar models
that are more accessible with a graphic display of Soar model’s behavior. First, that Soar models
include other types of behavior than just search in problem spaces. Second, that within a Soar model,
its basic structures, problem spaces level objects, do not exist in an explicit form. Users and systems
that want to manipulate Soar models will have to create their own representations of them.

Remaining problems with the DSI. The main components of the DSI represented different levels of
support for the user and had different levels of success. The two editors, Soar-mode and TAQL-mode,
are well received, and will continue to be used by a large part of the community given normal software
maintenance. The curmrent version of the graphic display of the model’s behavior and structure has
several problerns that will have to be fixed for it (or by future systems) to truly useful.

States remain essentially untraced. This is a problem both for testing predictions against protocols and
for basic model building. What the necessary information is, how to let the user represent it, and how

to provide it succinctly, remains a high priority design issue. Implementing the trace once it has been
designed is probably straightforward.

Users have requested several extensions to SX display. These include the ability to remove working
memory elements and to show how a single production matches over time, but the largest problem
with the SX graphic display has been speed. This is the largest acceptability issue that the graphic
display has faced. People who do not use it, do not use it because it unacceptably slows down Soar. It
has only been truly acceptable where speed is not an issue, such as for teaching novices and for demos,
but the lack of later acceptability has even encouraged some novices to not start to use it. As the Soar

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 129

architecture gets implemented in C, this system should get duplicated in C, but it is unclear that the
relative slow down will not also occur there. Any display, but particularly graphic ones, may always
offer at best a two-to-one slow down compared with the underlying application (Myers & Rossen,
1992).

Several graphic design issues remain. The dynamic structures of Soar in the goal stack are all
represented fairly well. How to represent several of the static structures remains a problem, for
example, how to nicely display the operators in a space; we use a simple way for chunks, can we find a
similar one for operators? Representing the states that exist in a problem space suffers from a similar
problem. ' :

Finally, can we tie creating and editing productions to the graphic display? The ability to click on
chunks and examine them has proved useful in exploring the types of chunks that end being assigned
to Every-Space. Being able to go between a graphic and textual representation is appealing.

Soar/MT - 21 December 1992

130

Soar/MT - 21 December 1992

131

III Performance demonstrations of Soar/MT and Conclusions

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 132

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 133

Chapter 7

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply

Browser-Soar (Peck & John, 1992) is a model of a user using an on-line help system. Ten episodes
totalling approximately ten minutes of a single subject’s behavior have been used to test it. This
chapter examines Browser-Soar in detail, duplicating and extending the previous set of analyses. By
choosing to duplicate and extend an existing analysis, it includes a set of analyses known to be useful,
and provides a reference point for measuring its speed and discrimination.

Soar/MT allows the sequential predictions of Browser-Soar to be tested more quickly and at a finer
level than can be performed by hand using sheets of paper and a plain spreadsheet (Excel) to hold the
correspondences. Displays showing the fit of the data to the predictions can be easily created, and
provide additional insight for characterizing the model and how to improve its predictions.

Browser-Soar provides predictions of when structures enter working memory. This allows testing the
sequentiality assumption of verbal protocol theory, that mental structures are reported on in the order
that they appear in working memory. This assumption is found to hold for verbal utterances.
Sequentiality can also be tested for mouse actions and they too are performed in order. However the
verbal utterance and mouse action information streams do not initially appear to be sequential with
respect to each other. The most likely cause for this discrepancy is that an approximation in the
interpretation and alignment process was used. The data in the two information streams should be
considered sequential. When this is done, the overt actions provide fixed reference points for
computing the lag of the verbal utterances.

With a measure of the model’s performance and fit in hand, a small modification of Browser-Soar
suggested by the measures of fit is attempted, removing some problem spaces that might be redundant.
This change does not drastically improve the fit, and this is shown clearly in the analytic displays. The
resulting model, however, is more parsimonious with the effects of learning.

In nearly every case the results reported here duplicate what Peck and John already know about
Browser-Soar, but they come at less expense and can be shown more compellingly with Soar/MT’s
displays.

7.1 Description of Browser-Soar and its data

While Browser-Soar and its data are explained fully elsewhere (Peck & John, 1992), an overview is
presented here with particular emphasis on the aspects of the data and model that receive attention in
this reanalysis. Because Peck and John have generously allowed me access to their original data, I am
able to include additional descriptions of the data here.

Description of the data. The Browser-Soar data used to test Browser-Soar was gathered from a single
user interacting with the cT programming environment on the Macintosh computer (Sherwood &
Sherwood, 1984; Sherwood & Sherwood, 1992) to perform her own task arising out of her work,
creating a graphing program for her own use. She was a non-professional but experienced computer
programmer who had never used cT before the experiment. The episodes of interest occurred when
she used the on-line help system to learn about cT. The data that Browser-Soar is tested with
represents only a portion of the 85 episodes using the help browser that occurred during the three and
one-half hours of behavior that was videotaped. A portion of the remaining data was used informally
to help create the model.

The first four episodes were chosen to cover a wide variety of browsing behavior, and the remaining
six were chosen randomly from all the browsing episodes that were videotaped. Each episode
represents a different environment and goals.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 134

As noted in Table 7-30, the ten episodes averaged 56 s in length and included a total of 58 verbal and
non-verbal segments. Each episode included a mean of 126 words. This was not reported in the
original analysis because computing the number of words ger episode is something that is not easy to
do, at least given a journeyman’s familiarity with Excel.® The subject’s behavior provided a high
density of data, on average, over an action or utterance every second, and a relatively high
verbalizations rate of 146 words per minute.

Three information streams from the subject were transcribed by hand into Excel spreadsheets, the
verbal utterances, the mouse movements, and the mouse clicks. Verbal utterances were broken into
separate segments when pauses of more than 100 ms occurred.

There are three special features of the Browser-Soar data worth noting. The first is that the types of
mental information reported is small. The user generally only mentions search criteria, evaluation
criteria, and the words that she is reading. Second, this is not a hard problem. In contrast to many
tasks that have been modeled, using the computer interface is routine behavior for the subject and their
intemal representation of the task is not changing. Finally, there is what will turn out to be a useful
mix of overt, necessary task actions (mouse actions) with verbal staternents. The overt, motor actions
will help disambiguate the verbal, and vice-versa. :

Description of the Browser-Soar model. Figure 7-33 depicts the problem spaces in Browser-Soar and
their relation to each other as drawn with the SX graphic display. Figure 7-34 presents the problem
spaces as depicted by Peck and John (1992). All the problem spaces are related by operator no-change
impasses except the Selection problem space, which is used to resolve operator ties in the
Find-criterion space. Browser-Soar does not reuse any problem spaces, so the maximum goal depth
will be six, not counting the top-goal.

The Soar learning mechanism is not turned on in the Browser-Soar model. Peck and John (1992)
argued that there will be little learning observable in this set of tasks. The user is either performing as
an expert, that is, will not be learning how to move the mouse, or is learning items that will not transfer
between trials, such as how to print out a variable’s value.

Based on a sample run (the "Write" episode, the subject was seeking information about writing
information onto the cT screen) and assigning the productions to problem spaces graphically, the
problem space level statistics function in the SX graphic display reports that there are a total of 18
problem spaces and at least 31 operators. The statistics based on a complete run are shown in Table
7-29.

Browser-Soar is actually a short progression of models based on testing and modify it with the ten
episodes. During this progression Browser-Soar remained rather stable. Between the first and the
tenth episode, two operators were added to Browser-Soar, and four operators application conditions
were changed. Because there are so few adjustments, in this analysis Browser-Soar can be treated as a
single program.

Comparing the listing of problem spaces in Table 7-29 with Peck and John’s (1992) listing, it appears
that either they do not include all the Macintosh method problem spaces, or the organization of
Browser-Soar has changed since it was reported. Table 7-29 includes an additional operator more than
reported by Peck and John (1992) (probably several more, because four of the Mac-method-* problem
spaces also would have operators). This missing operator could be the Browsing-task operator itself,
or it could be an operator used in two spaces, which the SX graphic display would count twice. The
difference in object counts is compounded by Peck and John’s treatment of the model. They knew that
they did not have an adequate model of reading, and did not attempt to match the model’s behavior
below reading the whole screen.

8Macros can, however, be created to perform this task (Schroeder, 1992).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 135

TOP-8PACE

] EVERY -8SPACE j BROWSING
' Op MC

" FIND-APPROPRIATE-HELP

EFINE-SEARCH-CRITERION

p NC
4 /Op [e — POR-HRLP EVALUATE-HELP-TEXT
rnzn-:vu.uuml-curmou
e
mmmemmen====0D Tie MAC-METHODS-POR-ACC L

Tow /9 nc EVALUATE-PROSE-IN-WINDOW
IND-CRITERION

NC
MAC~METHOD-OP-CLICK-PREV-INDEX
/09 nC p NC
UATE-ITEMB~-,.
NINDOW

MAC-METHOD-OP-CLICK-ON-ITEM

-METHODS -~ POR-CHAM

MAC-METHOD-OF-DOUBLR-CLICK-ON-ITEM

NC

e\ WS
-H“HOD-O?-DM(_I&D D MC
~METHOD-Or - OLL
MAC-METHOD-OF-PAGR

- Figure 7-33: The problem space organization of the 19 problem spéces in
Browser-Soar generated with the SX graphic display.

The static structure depicted in Figure 7-33 shows the normal dynamic selection and use of the
problem spaces. It was created by loading Browser-Soar and running an episode. The problem spaces
that were created were then rearranged from their location on a grid to the tree structure shown in the
figure, connected together by hand, and annotated. Their organization was written out so that this
structure could be used again.

Figure 7-35 shows the goal stack in Browser-Soar at decision cycle 17 of the Write episode. The
selection and use of problem spaces moves roughly from top to bottom and left to right. At the start of
the browsing episode, the Browsing space is selected and the Find-appropriate-help operator is
applied. This cannot be directly implemented, so the Find-appropriate-help problem space is selected.
Within this problem space, the operators Define-search-criterion, Define-evaluation-criterion are
called to initialize the search. Both of these operators cannot be directly applied, and similarly named
problem spaces are used to implement them.

The Search-for-help operator is applied once the search and evaluation criteria are defined. This
operator also cannot be directly implemented, and the Search-for-help problem space is selected.
Within this problem space, operators (and corresponding problem space to implement them) are
applied to search the help screen (Find-criterion), and to select an interesting item to read about if it is
found (Mac-methods-for-accessing-item). When searching for interesting items, the Find-criterion
problem space uses two operators, one to evaluate items in the window, and one to scroll the screen

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 136

Skill spaces used throughout
Browser-Soar model

e %o, e,
.....

...............
...........

...................

., . .
...................

........
............

.....

...........................

£ Problem spaces modeling knowledge of browsing in general
[Problem spaces modeling knowledge of the cT help browser

Figure 7-34: The problem space organization of Browser-Soar taken from Peck and John (1992).

when the end of the screen of items is reached (Mac-methods-for-changing-window). Both operators
are implemented in their own space.

Once an item has been found and selected by clicking on it, the Evaluate-help-text operator is selected
in the Find-appropriate-help problem space. This operator is implemented in its own space using two
operators. The first operator selected will be to evaluate the help text by reading it. The other operator
is the same scroll used to scroll the window of items to select from.

When they did their analyses, Peck and John grouped two of the Soar operators in
Evaluate-items-in-window problem space that implement reading the computer screen into a higher
level operator, Evaluate-current-window, not shown in the automatically derived figures. In Peck and
John’s operator support displays, the low-level operators, such as Read-input, do not appear, for all the
coding was based on the higher level operator. This coding scheme was duplicated in the later
analyses that are reported here, except that the lower level operators and problem spaces do appear in -
the automatic display and aggregate model statistics.

Figure 7-36 shows the number of productions used to implement each problem space. Approximately
430 productions are generated from the 193 TAQL constructs used to create these problem spaces.
The exact numbers varied slightly between episodes. When the productions were sorted into problem
spaces, a problem space was found for most productions. Productions and TAQL constructs that are
included as part of Soar’s default knowledge are not included in the counts or the display.

Productions without a problem space name directly in their condition were assigned to Every-space, 29
in all. Every-space is used to display productions that could fire in every space. Examining these with
the graphic display indicated that 15 of them are for proposing new problem spaces based solely on the
goal and its superstate, 12 are internal TAQL productions, one is used to note that all search-for-help
operators are equivalent, and one prints out the search criteria whenever it changes.

The number of productions associated with each problem space is an approximate measure of the
amount of knowledge in each problem space. One of the reasons this measure is approximate is
because TAQL uses a production for each of its state edits. Only the user’s productions are included in
this display, so the lack of productions associated with the Selection space means that it only uses the

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 137

Table 7-29:
Problem space level statistics for the "Write" episode. The top block presents the problem
spaces and operators represented in the graphic display. The selection counts for each goal,
problem space, state, and opeator are presented in their hierarchical calling order.

PSCM Level statistics on November 27, 1992

16 prodblem spaces, with a total of 31 operators.
Ops Problem space

top-space

browsing

find-appropriate-help
define-search-criterion
define-evaluation-criterion
search-for-help ’
find-oriterion
evaluate-items-in-window

mac-methods -for-change-curreat-window
mac-method-of -scroll
mac-methods-for-access-item
mac-method-of -click-on-item
evaluate-help-text
evaluate-prose-in-window
mac-method-of ~drag

mac-method-of -page

mac-method-otf -click-prev-index
mac-method-of ~double-click-on-item

COOCOUWWNKFHFWFNWNNWNWMMM

The actual selection counts and calling orders:
1 6: g1 (g1)
.P: top-sp (top-sp)} (3 chunks)
. 8t 85 (no name)
. O: browse (browse)
Q: (operator no-change) (gl9)
.P: browsing (browsing) (16 chunks)
. 8: 839 (no name) -
G: (state no-change) (g3145)
.@1 (goal no-change) (g3152)
. @1 (goal no-change) (g3159)
G: (goal no-change) (g3166)
.@:1 (goal no-change) (g3173)
. . G: (goal no-change) (g3180)
. O: find-appropriate-help (find-appropriate-help)
G: (op tor no-change) (gd3)
.P1 find-appropriate-help (find-appropriate-help) (55 chunks)
. 8: 859 (no name)
. Ot define-search-criterion (define-search-criterion)
G: (operator no-change) (g65)
.P: define-search-criterion (define-search-criterion) (30 chunks)
. 81 879 (Do name)
. 0t g te-search iterion((write)) (generate-search-criterion)
.« 01 svaluate-search-oriterion (evaluate-search-criterion)

PR

P b e e e b e e e e e e e

(continued on next page)

default productions provided with Soar. It appears that it takes a minimum of three user productions to
create a usable problem space.

Browser-Soar interacts with a simulation of the cT help browser. The simulation provides Browser-
Soar with the contents of each window in the browser. The simulation does not take into account the
length of time a mouse is held down; on each mouse click it scrolls to the same place the subject
scrolled to in the same situation. If the model were to scroll in the wrong direction (which it no longer
does, and perhaps never did), it would be up to the analyst to catch this.

Description of original Browser-Soar analyses. Peck and John’s (1992) originally performed the
alignment by hand, aggregating the correspondences into summary measures for each episode and for
each operator. They used limited graphic displays of the alignment, relying mostly on a tabular
representation. Their analysis also included a picture of the Browser-Soar problem spaces drawn by
hand in MacDraw (their Figure 3).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 138

Table 7-29: Problem space level statistics for the "Write" episode (concl.).

« 01 define-evaluation-oriterion (define-evaluation-criterion)
. @ (op no-ch) (g103)
+« <P define-evaluation-oriterion (define-evaluation-oriterion) (17 chunks)
. 8t 8117 (0o name) :
. Ot gensrate-evaluation-criterion((value-of-something)) (generate-evaluation-criteriomn)
. 01 evaluate-evaluation-oriterion (evaluate-evaluation-criteriom)
O: search-for-help (search-for-help)
Q: (op & no-ch) (g1025)
.F:1 search-for-help (search-for-help) (17 chunks)
« 8: 31043 (Do name)
. 01 find-criterion(keyword) (find-criterion)
e+ o+ @ (op & no-ch } (91049)
e + « P find-oriterion (find-criterion) (27 chunks)
B « 831 31066 (no name)
. 01 foous-on-current-window (focus-on-current-window)

L N T

« & e o o s s e s s

. . O evaluate-current-window (evaluate-current-window)
e e s Gt (op t ao-ch) (g2415)
« + s« o P evaluate-items-in-window (evaluate-items-in-window) (85 chunks)
« e . « « 81 82432 (no name)
. . « 01 read-input (read-input)

Qﬂaao&&’””“ﬂ“”“”ﬂﬂﬂﬂﬁﬁﬁ

. . « o« 01 attempt-match(12504) (attempt-match)
« + + . 01 change-ocurrent-window (ochange-current-window)

e s e« . @1 (op hange) (g2339) .
1. . . . -P: mac-methods-for-change-current-window (mac-methods-for-ch urrent -window) (34 chunks)
11 . « o+ 8t 83042 (no name)

11 . . « O3 scroll(help-text) (scroll)

i1 . . s (op or no-ch) (g30S¢)

11 . +P1 mac-method-of- 11 (mac-method-of-scroll) (21 chunks)
i1 . . . 8: 83070 (no name)

4. . - 0: move-mouse(help-text down) (move-mouse)

11 . . O: press-button (press-button)

¢« ¢ « + + o« 01 release-button (release-button)
« « « 01 access-item(keyword) (access-item)
G: (op t no~ch) (92527)
.P1 mac-methods~-for- item (mac-methods-for item) (4 chunks)
. 8: 82542 (no name)
. 0t olick-on-item(12537) (click-on-item)
. . @t (op ¢ no-ch) (g2548)

« + + «P: mac-method-of-click-on-item (mac-method-of-click-on-item) (5 chunks)
. . . 8: 82562 (no name)
e« s+« + .+ . 01 move-mouse(keyword unspecified) (move-mouse)

e« + + .« 0t click-button (click-button)
« + 01 evaluate-help-text (evaluate-help-text)

« « <« Gi (operator no-change) (g2576)

«+ « + .P1 evaluate-help-text (evaluate-help-text) (26 chunks)

- 8: 82592 (no name)

. 01 focus-on-help-text (focus-on-help-text)

. + 01 evaluate-current-window (evaluate-curreat-window)

« + « o Gt (operator no-change) (g3104)

e« ¢+ « « .P: evaluate-prose-in-window (evaluate-prose-in-window) (69 chunks)

« e« + o 8: 83122 (no name)

« < + . 01 read-input (read-input)

. . Ot comp d (comprehend)

e e e« . . Ox =p to: iteria (compare-t riteria)

+ + =« . 01 change-current-window (change-current-window)

. G: (operator no-change) (g3027)

-
B hRAAARAAARANNINIRNOMNDORIDNNND G
. .« “ . F T T TS Y

11 Pt mac-methods-tfor-change-current-window (mac-methods-for-change-current-window) (34 chunks)
11 . . 81 83042 (no name)

11 . . 01 scroll(help-text) (scroll)

11 . G: (op t no-change) (g3054)

11 . . -P: mac-method-of-scroll (mac-method-of-scroll) (21 chunks)

11 < 81 83070 (no name) .

4 . 0t move-mouse(help-text down) (move-mouse)

11 . . 0: press-button (press-button)

11 . . . 0: release-button (release-button)

1 « 0: change-search-criterion (change-search-criterion)

The model trace and protocol were first printed out and interpreted and aligned by hand, with the
correspondences and annotations entered into an Excel spreadsheet. Over the course of testing
Browser-Soar with the ten episodes, few changes to the model were required. The first episode was
used to create the initial model, and during testing of the next three episodes four additional operators
were added and two were modified. During the analyses of the last six, the only changes required of
the model were modifying two of the operators.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 139

= TOP-SPACE

o BROWSING
find-appropriate-help

s TIND-APPROPRIATE-HEBLP
earch-for-help

. SRARCH-POR-HELP BVALUATR-HRLP-TEXT)
tiind-etltcrion(xcmzd)

MAC~-METEODS-POR-ACCESS-ITEM

BVALUATE-PROSE-IN-WINDOW
7 PIMD-CRITERION . '

hange-curreat -window

RVALUATE-TI 8- IN-WINDOW <

s MAC-METHODS - FOR-CHANGE -CURRENT -WINDOW
scroll (keyword) MAC-METBOD-OP-CLICK~ON-ITEM

MAC-NBTHOD-OF-CLICK-PREV-INDEX

MAC~NBTHOD-OP-DOUBLE-CLICK-ON-ITEN

Bove-mouse (keyword down) MAC-METHOD-OP-PAGE

MAC -METHOD-Q, <
= MAC-METBOD-OP-SCROLL
g451

Figure 7-35: Browser-Soar during a run.

All the interpretation was done with respect to operator applications. This included overt, task actions
necessary to perform the task, and internal mental actions necessary for deciding what to do and for
understanding. The verbal utterances were interpreted with respect to internal operators or their
results. Mouse clicks were always interpreted with respect to overt task actions. Mouse movements
could correspond to either. When the model predicted that they were required to perform the task and
they were used in a task specific way, they were interpreted as overt task actions. When the model did
not predict their use, and the mouse pointer could be interpreted as over some part of the display
currently being used or read, they were treated like eye-movements and interpreted with respect to an
internal operator.

Peck and John’s major analyses were to aggregate how many of the subject’s behaviors were predicted
by the model’s actions, aggregating separate measures for directly observable operations, such as
mouse clicks, and mental operators that are only observable through verbal protocols or movements of
the mouse over words on the screen. Over 90% of the subject’s actions and utterances were accounted
for by the model’s predictions, and the fit between data and predictions was judged to be very tight.
These computations were computed by hand for each episode.

The percentage of operator predictions supported by the data were also computed. At 15% this
initially appears to be a low rate. One must keep in mind that the trace of the Browser-Soar model
provides more predictions than can be tested, even given the rich verbal and non-verbal data streams
used to test it. Across all episodes they found indirect evidence for 57% of the operators that could not
be directly observed.

An operator support display drawn by hand in MacDraw (their Figure 4, our figure 2-7) illustrated the

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 140

mxo--cumm ' ;"" FrALOATE-S T

MAC -MRTHODS-POR -ACCRNQ-TTEX
WVALUATR-PROGE-IN-WINDOW

Figure 7-36: Browser-Soar problem space organization with productions shown by
their problem space.

tightness of fit, but this was not done for all episodes because it took approximately a day to produce
(Peck, 1992).

7.2 Producing richer analyses more quickly

This demonstration of the Soar/MT environment must show that it is possible to duplicate the previous
tests of Browser-Soar, and that new, more useful analyses can be performed as fast or faster than have
been done in the past. Supporting the analyses is the most important though, speed can come from
faster machines or revisions of the software.

This demonstration will not include all the possible analyses that could be or were done by hand for
Browser-Soar or for other process models, but it should be clear from this example that the analyses

that were not performed are no harder, and are quite likely more easily performed with Soar/MT than
by hand.

The emphasis of the analyses will be Grant’s (1962) emphasis, finding out where to improve the
Browser-Soar, not that all the improvements will be incorporated in this demonstration.

7.2.1 The interpretation of data with respect to the model trace done faster and tighter

Using the Soar/MT environment allowed the interpretation and alignment step to be performed more
quickly. The first four episodes were used to debug the Soar/MT system. For later episodes, either
analyst (FER or VAP) could go once through the TBPA loop, deriving the predictions, aligning them,
and creating the global displays in 20 minutes to 2.5 hours, depending on the pre-existing degree of

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 141

alignment, length of the episode, and desired level of detail. The amount of time to analyze another
episode is now much less than the initial ten hours needed to understand one.

In each episode the unambiguous data was aligned first. This took on average a minute to set up.
During the 30 minutes it would take to rearrange the cells the analyst did not need to be present. The
verbal protocols would then be partially interpreted, their locality would be bounded by the matched
non-verbal actions near them. A complete listing of the analyses’ results are shown in Table 7-30, and
the visual, analytic measures created for each display are included as the Appendix to this chapter.

After two episodes of observing me work and working jointly, Virginia Peck (VAP), analyzed three
episodes on her own except for creating the displays of model fit. She took approximately 100 minutes
to perform these analyses from producing the trace to interpreting the data. Her time was a limited
resource, and the software I was most interested in testing was the alignment capabilities, so I created
the displays based on her alignments. She also attempted to analyze the last data set, Zcommand, but
the unusual size (it is the largest episode by approximately a factor of two) disclosed some bugs in the
Spa-mode.

The Card2 algorithm worked admirably. Across the ten episodes it correctly aligned all of the 296
predicted unambiguous mouse actions (mouse clicks and mouse movements). The ability of the
algorithm to adjust the edit-list to align a predicted action with the last action in a series of similar
subject actions substantially contributed to this performance. Without that modification the results
would have been less, around 90%. For each episode the edit list used to align the two meta-columns
was generated in under a minute. The alignment of the data with the predictions then took
approximately 30 minutes for the Write episode. This alignment process does not require intervention
of the analyst. If the two information streams were partially aligned this took less time. A single trial
with a single subject on the Write episode, an average sized episode, took approximately 45 minutes to
align by hand with Excel. Longer episodes take more than proportionally longer in Excel (Peck,
1992), up to several hours.

After the Card2 auto-alignment algorithm was run, the analyst (FER, VAP, or both) would go through
the Spa-mode spreadsheet interpreting the remaining data with respect to the model’s predictions.
Because both data streams were completely included in Spa-mode, this resulted in a tighter match
between the two information streams. Each correspondence included a line of Soar trace (including
the decision cycle, the context element selected, and any traced substructures), instead of a coded
operator name. These alignments included in the display Soar actions not matched. Figure 7-37
provides a partial example, and the appendix to this chapter includes a complete example for the Write
episode.

These alignments generated in Spa-mode provide a more telling comparison of the predictions with the
data. Including both data streams in a tabular display shows gaps where the model performed more or
less actions (and thus took more or less time) than the subject. When we viewed the first episode
aligned this way, we were somewhat surprised by the amount of Soar trace not aligned with subject
data. It is also easy to find mismatched actions in this display. False alarms, actions by the model not
matched by the subject’s actions, which are not representable when the model’s predictions are not
directly included, can also be represented in Spa-mode. It remains slightly difficult to compare and
aggregate the comparisons between episodes with this spreadsheet representation because of the large
number of sheets of paper and dispersion of information across them.

7.2.2 Operator support displays created automatically -- as a set they highlight
periodicity in behavior

An operator support display for each episode was generated automatically from the alignmeﬁt data in
the spreadsheets. These displays are shown in the appendix to this chapter as Figure 46, along with the
displays for a modified model and episode called Better-array, which is explained later in this chapter.

These displays originally took approximately a day to produce, so only four were created in the initial
analysis (Peck, 1992).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply 142
T MOUSE ACTIONS WINDOW ACTIONS VEEBAL ST § MEYPR MDC DT Scar Trace Comments
180 R 2 S Ot attempt-match ()
181 92 01 read-input (scalax)
02 2 O¢ attempt-matoh ()
10 94 . . .00 item (bi ical)
104 95 . . . =»G: g€76 (operator mo-change)
188 96 P mao hods-for it 4]
186 97 B 091 ()
167 98 01 click~ca-item (1486)
108 % =301 gé97 (opsrator no-change)
109 100 ?: mac-method-of-click-on~-ites ()
120 1M 8 8711 ()
191 30 M{-y} 1 line to ‘scalex’ in “scalex Setting the So = 19 mr 182 102 Os (hi loal wmspecified)
192 58 C("soalezx Setting the Scales”) P3¢ mbe 183 103 O: click-buttoma ()
19 mouse polater to watch
194 104 . . O« evaluate-help-text ()
198 39 ‘ecalex’ help temt appears 108 . . =»Gs g725 (operetor ao-change)
196 S9 Let’s lock at ‘scele-a‘. v 11 v
197 “scalex Setting the Scales” to bold
198 . wouse watch to poiater
199 106 . . . Pt evaluate-help-text ()
200 187 . . . 81 8741 ((acosssed scalaxz) (mark-and-label-azes))
201 60 T 108 . . . 01 foous-om-help-text (}
M
Figure 7-37:

Portion of the alignment of the protocol and model trace from the Axis episode. On each row: T is time of
subject’s actions in seconds. MOUSE ACTIONS is any mouse action. WINDOW ACTIONS are any
responses from the actual cT system that the subject saw. ST is the segment type. VERBAL is any verbal
utterances by the subject. # is the segment number. MTYPE is type of match, MDC is the decision cycle
matched, DC is corresponding Soar decision cycle. Soar Trace holds the model’s predictions.

Each display provides a visual depiction of the operator applications for the episode modeled, along
with the support each operator received, if any, from corresponding verbal utterances, move actions
necessary to perform the task, and mouse movements over screen items that were read. The
indentation of the operator names corresponds to their problem space level, and roughly to which
problem space they belong to.

For each episode. Individually the operator support displays indicate for each episode the level of
support for the model’s operators in that episode. Figure 7-38 shows the operator support display for
the Write episode. It shows that most of the subject’s actions could be interpreted by the model’s
actions. The verbal utterances mostly match the Evaluate-current-window operator, as do the mouse
movements that are not required to perform the task.

We also can start to see that the subject’s performance shows a definite periodicity. The cycle of
evaluating a window, changing it through scrolling by moving the mouse and then clicking on the
scroll bar occurs 13 times, with some variations. On the third cycle of examining help topics, the
subject sees something that changes her search criteria. On the ninth cycle, she finds a topic that
matches the criteria she was looking for, and selects an item for examination. On the remaining cycles
she examines the help window. So the main loop is based on menu interaction, and there may be a
secondary loop of revision of the search criteria. Just this episode is not enough to tell.

Ohlsson (1980) noted that he could find regularities in protocols that covered a shorter period of time
than Newell and Simon (1972) used (200 s versus 1,000 s). This display shows that regularities can
occur over shorter time periods. The point is getting enough data, not time. In this domain, in addition
to verbal utterances, the mouse movements and mouse button presses help provide the required data
density.

A few of the subject’s actions could not be interpreted, and they are shown on the bottom as
corresponding to the NOT MATCHED operator. Just examining the surface of this display does
provide any insight into why they were unmatched, although two of the mouse movements appear to
come after a click button operator. When the points and their context are examined by clicking on
them (or by finding them in the original spreadsheet, but this is more work), the first is found to be a
random mouse movement to a position that is not over something being read or in anticipation of a
later click or move, the second the subject laughing, the third another random mouse movement, and’

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply 143
OPERATOR .
Browse _ # Modsl action
Fnd-appropriste-help o O Corvespanding overt mouse behavior
Define-ssarch-crit -— X Conespendng implicl mouse behavior
Genesrmte-ssarchcit v orling verbel ullerance
Evaluste-search-crit —
Oefine-evakmtion-crit -
Generste-evalustion-crit | \
Evaluste-evaluation-crit
Change-esarch-crit -
Modily-ssarch-crit -
Search-lor-help -
Find-crit -
Focus-on-cument-win
Eveluste-holp-text -
Focus-an-help-text —
Eveluste-cumentwin b) A A
Chenge-currentwin |
Access-tem - l
Scroll -
Page -
Orag .
Click-on-item -
Double-click-on-tem
Move-mouse -
Press-button -
Release-button -
Note-saw-crit —
Click-button - ® ®
Double-click-button —
wT“ATCHE - i 1 1 i H ml 1 Il 1 ' '] A 1 I 1 A 1 i A 1 ' ' 1 1 A 1 L L
Operator applications

Browser-Soar episode 1 :write

Fri Dec 421:48:30 EST 1992

Figure 7-38: Operator support display for the Write episode.

finally, a movement that is interpreted as a mistake. The last mouse uncoded action is a mouse
movement that falls short of a scroll bar, and is soon followed by a mouse movement to the position
the model predicts.

~ Across episodes. As a group the ten operator support displays (included as Figure 46 in the appendix
- to this chapter) tell us even more, and the reader is encouraged to examine them before proceeding.
The largest effect visible when viewing these en masse is the periodicity. The longest episode, Zwrite,
looks like the display of an oscilloscope indeed.

When viewed together we also can start to characterize what operators are supported and with what
types of evidence. We can see that the subject did not talk about every operation. (Many operators
have no mark (V) indicating a corresponding verbal utterance.) This is predicted by Ericsson and

- Simon’s (1984) theory of verbal protocol production, so this is as expected, and the rate, in quantitative
terms is probably acceptable as well. However, it is slightly surprising to see what this looks like, see
just how little is said and supported in each single episode. Based on these displays, Browser-Soar
appears too small grained indeed, much more detail is provided than in Newell & Simon’s models
where nearly every production firing could be matched against a verbal segment.

Across the ten episodes, the subject talked about operators that she should have talked about, and did
not describe operators that she should not have. Higher level operators, such as setting up the search
criteria and evaluating the window contents were often talked about. These operators manipulate
verbal representations, so they should appear in the verbal protocol stream. The motor operators for
actually scrolling the windows were never mentioned in the verbal protocol, and this is appropriate

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 144

given our measurement theory (Ericsson & Simon, 1984), for they would include non-verbalizable
operators or information.

What is not verbalized? The Change-current-window and its implementation operators Scroll, Page,
Drag, and Click-on-item, were never supported by verbal utterances, nor could they be directly
supported by mouse movements or mouse button actions for they are themselves implemented with
lower level primitives such as Click-button and Move-mouse. In the future, they must be considered
for removal, unless other evidence, perhaps timing evidence, can be provided for them.

The mouse clicks also appear not to be in working memory. In no episode did the subject report that
they were using the mouse. Based on the Soar architecture we would believe that they are motor
operations, so we would not expect them to be directly represented. The external motor actions need
to be set up, however, and the operator that does this remains unsupported.

New questions these displays raise. In each episode at least one of the operators that set up the search
in the cT help browser, the first seven operators below the Browse operator, is mentioned at the
beginning of an episode. Never are they all mentioned, and eight different combinations appear across
the ten episodes. It may be possible to combine or rearrange these operators to provide more
consistent support for a single operator or set of operators. .

During both the Zwrite and Vars episodes, there is a long period of behavior where nothing is said.
Similar periods exist in other episodes but there are verbal utterances and mouse movements to support
the intermediate operators of reading the topic lists. Characterizing these periods in some way remains
an open problem.

Several problems remain with this display. The indentation of the operator names hints at their
hierarchical relationship to each other. The implementation of their relationship remains poorly
specified and awkward. Operators can come from different problem spaces, and still appear at the
same level in the hierarchy.

7.3 Where the model and subject process at different rates shown clearly

Relative processing rate displays were created automatically from the alignment data for each episode.
A complete set of these displays is included in the Appendix to this chapter as Figure 47.

7.3.1 Processing rate display based on decision cycles shows that the quality of fit is high

The relative processing rate display can provide hints about how to improve the model within a single
episode. Across episodes it can provide additional hints, and measures of the architecture can start to
be taken.

For each episode. As an example, consider Figure 7-39, which shows the relative processing rate
display (developed in Chapter 5) for the Write episode of Browser-Soar. Each correspondence
between the model’s predictions and the subject’s actions is noted with a connected symbol. Each
correspondence shows the relative times when the model and the subject performed the same action.
The time that the subject performed the matched actions is represented in seconds on the x axis, and
the time that the prediction occurred in the model’s behavior is represented in model cycles on the y
axis.

The number and relative linearity of the line of correspondences indicates that the predictions
generated by Browser-Soar are relatively well matched by the subject’s behavior. The number of
unmatched subject segments, placed on the bottom of the display at the time they occurred is a
relatively low amount, and there are no overt task actions performed by the model that were not
observed in the subject. If there were any, these would go near the y-axis.

The squiggles and sections with extremely high or low slopes show where the fit could be better.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 145

When the line becomes more vertical, it means that the subject has started to perform faster than the
model, and when the line becomes more horizontal, it means that the model is performing faster than
the subject. In Figure 7-39 both occur.

A regression line is provided to help judge the rate of correspondences, and it is used to provide some
additional information as well. -Its slope is the relative processing rate for that episode in decision
cycles per second. The correlation it computes may be a prediction of how well the model can predict
the time course of processing in an episode, but it is likely to show a falsely high correlation. Note that
the relationship of decision cycles to seconds (the slope) is well within the range (indicated by the
dashed lines at 3 DC/s and 30 DC/s) predicted by the Soar theory.

In each episode the correlation between the subject actions and predictions (measured in decision
cycles and operator applications) is fairly high. The values of the slope and 12 value for each episode
are shown in Table 7-30. These values for r* values are comparable to well developed single response
models (e.g., 12 = 0.79: Thibadeau, et al., 1982; r2 = 0.94: Just & Carpenter, 1985). Browser-Soar is
near to making engineering level predictions of human behavior, as has been called for by John (1988).

Dashed Sines are range of th Ny exp pond. rates
§ B !
O Ovetmoume wm/
X impicit mouse behavibe
V' Verbal ulterance /]
§ A | | MM
i
" /
5 /
e} o i
] —
‘us) 3 7] .’/ _/“/
g II - -~
= / T
s / ~
i -
g §] ',1: /’/’/
3 "
8 II - //
= ! S
/ -
3 / =
. il /// Model to data slope 5.322 dc/!
i - AMSD = 36061 do
f - MAD = 29.455 dc
& Nz, 62 malched behavi
o+, & a8 52 mat aviors
T T T T T T
V] 20 40 60 80 100
Subiject time in seconds
Browser-Soar episode 1 :write Mon Deo 7022947 EST 1982

Figure 7-39: Relative processing rates display in decision cycles for the Write episode.

The first parts of display that give specific recommendations on ways to improve the model are the
relatively vertical and horizontal sections of the line of correspondences. These sections represent
periods where the model and the subject are processing information at relatively disproportionate rates.
When the points on the horizontal section between 20 and 40 s are examined by clicking on them, one
finds that they all matched to Evaluate-current-window operator. This operator is taking much longer
for the subject to perform than it does for the model (this operator essentially reads at 100 words/s).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 146

The model could be improved by incorporating a more complete operator to evaluate the current
window, that is, read the help text.

The second part of the display to examine is the near vertical line at around 40 seconds. In this section
the model is reading every word on a menu while the subject must be skimming the menu’s contents,
as suggested by the relative rates of processing. Here the model must be smarter about what it is
doing, and do less processing than it currently does.

Table 7-30: Summary of raw measures for each episode and regression results.

Bpisode Tine Words Raw Slope 8lope
Segments (s) | Rate DCs de/s DC-x2 op/s op-r2 DCs/op
w/min

1 write 62 66 113 102 399 5.32 0.90 1.18 0.93 4.50
2 unic 40 39 91 140 331 11.29 0.68 2.40 0.80 4.70
3 array 96 68 151 133 517 9.48 0.69 2.26 0.78 4.19
3’ array’ 96 68 151 133 346 6.37 0.59 1.49 0.75 4.27
4 precision 21 25 58 139 146 6.82 0.19 1.95 0.34 3.49
S marker 32 47 162 206 116 2.58 0.43 0.91 0.33 2.83
6 axis 46 83 245 177 173 1.53 0.80 0.45 0.70 3.40
7 labelx 23 34 52 91 77 2.04 0.51 0.61 0.53 3.34
8 circle 52 (11 136 125 395 7.32 0.79 1.74 0.78 4.20
9 vars 69 27 44 97 805 35.21 0.90 6.21 0.90 5.66
10 zcommand 140 108 213 118 1529 16.62 0.58 2.76 0.66 6.02

Sum: 581 562 1265
Mean: 58 56 126 146 449 6.92 0.65 2.08 0.67 4.23
8D: 37 27 68 36 439 4.65 0.22 1.66 0.31 1.32
Normalized SD: 0.63 0.47 0.54 0.27 0.98 0.67 0.35 g.81 0.31 0.35

From left to right the columns display for each episode the total number of subject data segments, the time of the
subject data being modeled, the number of words uttered during the segment and the rate in words per minute, the slope
of the least squares regression line on the correspondences in decision cycles per second, the 1 for that line, the slope
of the regression line in operators per second, the 12 for that line, and the relative rates in the episode of decision cycles
per operator. Aggregate measures do not include the Array’ episode. Each episode is equally weighted.

Across episodes. Several known problems of Browser-Soar are shown in these displays. Seeing the
problems occur in ten episodes is more believable than seeing it in just one episode. Over individual
episodes the regression line matched to the correspondences provides a good prediction of the subject’s
search time. The results of the regression for each episode are shown in Table 7-30.

The rate of the architecture, in decision cycles per second, is slightly slower in Browser-Soar than the
Soar theory predicts. Across all the episodes, as shown in Table 7-30, the average rate of decision
cycles is six per second. The Soar theory predicts ten per second, plus or minus half an order of
magnitude. As this is an average, the actual rate on a single episode can be much lower. This implies
that the model is still slightly lean, performing less of the task than the subject is, or that the theoretical
analysis of decision cycle rate is slightly high. The first explanation, that the model performing more
efficiently or doing less of the task is consistent with but not as far off as other model results (John &
Vera, 1992; Newell, 1972; Ritter, 1988; Ritter, 1989; Rosenbloom & Newell, 1982). The large
variance in the rate may be cause for some concern, or may just be artifact of the known problems in
the Evaluate-current-window operator, the Read-menu operator, and their ratio in each episode.

In none of the episodes do we find that the line of correspondences is concave upwards, indicating that
the subject’s relative rate of performance is increasing relative to the model. The displays tend to
display the opposite effect, that the line of correspondences is concave downwards. In general, this
would suggest that the model was learning and using what it learned (intra-trial transfer) more than the
subject was. I believe, however, that in these analyses, this is caused by the order of menu reading and

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 147

text reading in this task and the relative performance of the model with respect to the subject. In each
episode the basic task units are first to read a menu and then to read some help text, and this sequence
may be repeated. The model is slower than the subject at reading menus (causing the line to become
more vertical) and faster at reading help texts (causing the line to become more horizontal). This is
probably what is causing the curve of correspondences to be concave downwards. Any within episode
learning effects will not be visible until these larger problems are ameliorated.

There is often an initial horizontal segment in the first 5 to 10 seconds where the subject is taking
much longer than the model. The Write episode, for example, displays this effect. We can find out
from the operator support display that this region is exclusively where the selection and evaluation
criteria are decided upon. It appears that these operators are too simple, at least in terms of the amount
of processing that they perform. This mismatch is smaller than the text and menu reading rates, but
probably does reflect a basic problem.

We also can note some problems interpreting this display. The verbal utterances have durations, and
currently only their starting point is taken into account. All operators are treated as taking the same
amount of time. If substructure will be added at a later point to an operator, the analyst can not
currently represent that it should take longer than a simple operator.

7.3.2 The processing rate display can be based on other measures of the model’s effort

The relative processing rate display can represent the model’s rate of processing in measures other than
the decision cycle rate. In this subsection a version using operator applications is used to test Browser-
Soar. This display is the same display as the display based on decision cycles, except the model’s
performance is viewed with a different metric.

Figure 7-40 provides an example display of the relative processing rates of the model (in operator
applications) and the subject (in seconds). A complete set, one per episode, is included in the appendix
to this chapter. A regression line is still fit to the line of correspondences to indicate outliers, but an
expected range is not provided because the Soar theory does not provide one — it will depend on how
often problem spaces are entered and exited, which is based on the task at hand and the knowledge that
can be brought to bear.

The results of computing the relative performance of the model in terms of operator applications are
reported in Table 7-30. The operator application rate (in seconds) has a wider relative range and varies
more than the decision cycle rate does; the normalized standard deviation of the operator rate is higher.
The number of operator applications the model took to perform the task correlated as highly with the
subject’s performance as did decision cycles. The correlation is slightly higher, but it is not significant
(t(9) = 1.05), nor does it appear to a large enough difference to be important. This is not too surprising,
operator applications are caused by and correlate highly with decision cycles.

The known problems with the two Read-text and Read-menu operators can again be seen in these
displays. Relative learning rates within an episode can also be examined, but again, any relationships
found probably are due to the big bad Read operator.

This display does not appear to tell us anything new about Browser-Soar, but other models may see an
effect here if operators are less directly used, or more behavior occurs in each problem space.
Similarly, it does not imply that other measures of the model’s effort, such as rule applications,
elaboration cycles, or problem space selections, will not prove useful in some way. It is, however, the
most likely measure after decision cycles to prove useful.

We can note a constant relationship within Browser-Soar with this display that appears constant across
episodes: the number of decision cycles per operator as computed from the two regression slopes. It is

not clear yet what this really means, it may mean nothing, but if a relationship appears constant, there
may be reason for it.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 148

O Overt mouse behavior
X wplicit mause behevior

@ ¥V Veral ulerance
§] Ursnaiched behavior
3
a
g g
§'
K-}
E
LR
g .
=
g Model to data slope 1.182 opa/s
g AMSD = 6.175 ops
MAD = 4.958 ops
2= 0.037
o - - N= 62 matched behaviors
] (u]]
T T T T T
] 20 40 60 80

Subject time in seconds
Browser-Soar episode 1 :write Men Dae 7022028 €51 102
Figure 7-40: Operator applications vs. subject time display for the Write episode.

7.4 High level features of the Browser-Soar model made apparent

Examining Browser-Soar in the SX graphic display suggests further modifications based on how it
models routine behavior. Performing a pseudo-model revision to incorporate the effects of learning
suggests that Browser-Soar might be improved by using less problem spaces.

7.4.1 Browser-Soar as routine behavior is made directly visible

Search in a problem space means lacking knowledge about how to proceed, and search between
alternatives where the solution path is unknown. The solution path in Browser-Soar is not unknown,
or at least not substantially unknown. Most operators are the only one proposed, and most problem
space impasses are resolved directly. We can see this in the graphic display while Browser-Soar runs.
Figure 7-35, which shows Browser-Soar during a run, shows that there are not many operators applied
in any one problem space. This is also visible in the problem space level statistics, few states are
visited, and not many operators are applied.

Search, in Browser-Soar, when it occurs, also occurs as much as search through problem spaées for
knowledge external to the initiating space. The name of "solution space” (Ohlsson, 1990) particularly
here, makes more sense, with Browser-Soar more like a task (Ohlsson, 1990) than a problem. This

result is noted by Peck and John (1992), but appears more clearly in these pictures and aggregate
statistics than in the textual trace alone.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser;Soar model
faster and more deeply 149

7.4.2 Noting Browser-Soar’s large goal depth

The goal stack depth is relatively deep in Browser-Soar. As noted in Figures 7-33, 7-35, and 7-36, the
goal stack often grows to be between four and six levels down from the top problem space. This
appears to be a large number for what is described as routine behavior (but we have no real metric). In
addition to the question of the depth of the goal stack, all the lower problem spaces for manipulating
the mouse and screen represent expert level behavior in the subject, that is, behavior that does not
significantly improve with practice. In Browser-Soar impasses still occur, and if leaming was turned
on, knowledge would migrate between them. In expert behavior, the lowest level of operators and
problem spaces in Browser-Soar should not be visible because they have been learned by the problem
spaces that use them.

7.4.3 Modifying Browser-Soar

With the learning constraint in mind, a modified version of Browser-Soar was created and tested using
the pseudo-model revision method mentioned in Chapter 3. The modified version does not contain the
lower level problem spaces that would have been learned. The actual output operators were migrated
to higher level problem spaces, and intermediate operators and problem spaces that did not receive
support from the data, such as the operators in the Access-item problem space. A complete listing of
the modifications is provided in Table 7-31.

Table 7-31: Problem spaces and operators removed from the Browser-Soar model
simulating the effects of learning.

¢ Browsing PS and OP,

¢ Find-criterion OP and PS,

* Mac-methods-for-change-current-window PS,
* Change-current-window OP,

¢ Drag OP,

e Scroll OP,

¢ Mac-method-of-scroll PS,

¢ Mac-method-of-drag PS,

* Mac-method-of-page PS,

» Access-item OP,

e Mac-methods-for-access-item PS,

¢ Click-on-item OP,

¢ Mac-method-of-click-on-item PS,

¢ Evaluate-help-text OP,

» Evaluate-help-text PS,

¢ Double-click-on-item OP,

* Mac-method-of-double-click-on-item PS, and
¢ All associated goals and states.

Figure 7-31 shows the problem space organization of this modified version of Browser-Soar. The
organization can be compared with the original version shown in Figure 7-33. The new version has
fewer problem spaces, and is flatter. The maximum goal stack depth of this version is four, with final

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 150

depths of two and three. It has 8 problem spaces compared with 17 problem spaces in the ongmal
Browser-Soar, 22 operators compared with 31 in the original, and a corresponding decrease in the
number of intermediate states and impasses.

TOP-SPACK

FIND-APPROPRIATR-HRLP

INE-SRARCH-CRITERION

j 8| - FOR-HELP
Ill EVALOATION-CRITERI
p NC
p Tie
EVALUATE-PROSE- IN-WINDOW
]‘vIID-cRITSRIOI

/p
<rvnmﬂ- ITEMS-IN-WINDOW

Figure 7-41: The nine problem spaces in the modified Browser-Soar
(see Figure 7-33 for the original structure).

The revised model was not implemented on the production level, but was created using a more
lightweight technique of trace revision. All the operator and problem spaces that were removed, were
simply deleted from the trace for the Array episode, the second largest episode, and the trace was
renumbered. This took approximately 20 minutes. These changes also could have been implemented
by modifying the model, and rerunning it. Theoretically there would be no differences, in reality,
actually editing the code instead of the trace probably represents an order of magnitude more work.

As the actual model was not modified, this represents an instance of pseudo-model based revision,
where an aspect of the analysis changed in terms of the model, without the expense of completely
implementing the changes on the production level.

7.4.4 Testing the modified Browser-Soar

After the revised trace was made, the two information streams were realigned from scratch. Because
no model actions with support were removed, the realignment was essentially the same. It would have
been faster to use the old alignment and modify it slightly, removing the empty cells, for no
correspondences were cut, but I wanted to see what the total process could look like, and see how long
a more modified model would take to test. The total time to perform the model manipulation,
realignment, and generate the analyses was 2.5 hours.

Figure 7-42 shows the operator support displays for the two versions of Browser-Soar. The displays
are essentially the same, the shape is the same, and the subject actions and the operators that they
correspond to are all represented. The only difference is that the modified version is more compact; it

Soar/MT - 21 December 1992

