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Abstract. We used a cognitive architecture (ACT-R) to explore the procedural 
learning of surgical tasks and then to understand the process of perceptual motor 
learning and skill decay in surgical skill performance. The ACT-R cognitive model 
simulates declarative memory processes during motor learning. In this ongoing 
study, four surgical tasks (bimanual carrying, peg transfer, needle passing, and 
suture tying) were performed using the da Vinci© surgical system. Preliminary 
results revealed that an ACT-R model produced similar learning effects. Cognitive 
simulation can be used to demonstrate and optimize the perceptual motor learning 
and skill decay in surgical skill training. 
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1. Introduction 

Competence for technical tasks has become an important issue within the medical 
profession in recent years. A benefit of VR training is to enhance surgical proficiency 
of novice surgeons from “pure novice” to “pre-trained novice” [1-3]. The virtual 
training environment allows the learner to attempt a well-defined task at a set difficulty 
level with opportunities for repetition and correction of errors. However, most VR 
trainers are only designed for a set of task difficulty levels without considering the 
experience of learners. Some learners may be frustrated or overwhelmed by the 
complexity of the training task, but others may become bored or not challenged enough 
to progress further. It is crucial to take individual surgical skill and experience into 
account during trainer development. 

One approach to make the trainer be more user-specific and adaptive is to explore 
the learning process and skill decay during training. Contemporary basic research on 
learning and forgetting has produced a number of findings with potential real-world 
implications for the training of medical professionals. For instance, researchers have 
typically described the course of forgetting during laboratory tasks as following a 
power function [4-5]. Similar mathematical functions have also been used to describe 
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the course of skill decay for both routine and complex procedural tasks in the 
workplace [6-7]. However, other researchers [8] note that skill decay may follow an 
exponential decay, and that individual rates of decay for different types of skills may 
be influenced by a number of moderating factors, many of which can potentially be 
modified as part of a training protocol. For instance, the methods used to test skill 
retention (e.g., recognition vs. recall) and the type of criteria used to judge that 
retention (e.g., recall of task-related knowledge on a written test vs. behavioral 
demonstrations on a simulated task) significantly influence estimates of decay in 
skilled performance. 

In this empirical study, a cognitive architecture model (ACT-R) was applied to 
investigate surgical skill learning and forgetting over time. ACT-R offers an approach 
for simulating human behavior, including learning and forgetting. This study used our 
understanding of the surgical tasks to create a simulated learner. We hypothesized that 
the ACT-R model could produce learning effects similar to experimental data.  

2. Methods 

2.1 Subject 

Four young medical students (M1) from the University of Nebraska Medical Center 
participated in this study. 
 
2.2 Experimental Protocol 

 
Participants performed four training tasks (bimanual carrying, peg transfer, needle 
passing, and suture tying) five times using the da Vinci© surgical system. The order of 
tasks was randomized. 
 

2.3 Training Tasks 
 

The following four inanimate robotic surgical tasks were performed in this study: 
A. Bimanual carrying (BC), a “pick and place” task: picking up five 15 × 2-mm 

rubber pieces from a 30-mm metal cap with the right and left instruments, 
respectively, and carrying them to the opposite caps simultaneously (Fig. 1a). 

B. Peg transferring (PC), a “both hands coordination” task: picking up one ring from 
one peg, transferring it to the other hand in space, and then placed it on the peg 
located at the opposite area. Once participants transferred all rings from the non-
dominant hand to the dominant hand, they repeated the drill from the dominant 
hand to the non-dominant hand (Fig. 1b). 

C. Needle passing (NP), a “translational” task: passing a 26-mm surgical needle 
through six pairs of holes made on the surface of a latex tube (Fig. 1c). 

D. Suture tying (ST), a “precision navigation” task: passing a 150 × 0.5-mm surgical 
suture through a pair of holes made on the surface of a latex tube and making three 
knots using intracorporeal knots (Fig. 1d). 
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(a) Bimanual carrying                        (b) Peg transferring 

   
(c)  Needle passing                         (d) Suture tying 

  Figure 1. The tasks performed in the study using the da Vinci© Surgical System. 

 
 
2.4 Description of the ACT-R Cognitive Models 

 
There are existing models of learning that can be used and have been used to examine 
different learning schedules [9, 10]. Also, it is possible to create a learning model and 
examine a broad range of training schedules. The ACT-R architecture [11-12] makes it 
possible to simulate cognitive and perceptual motor skill learning. The learning 
mechanisms in ACT-R predict that procedural and declarative knowledge are improved 
by practice in non-linear and not equivalent ways. The equations in ACT-R suggest 
that massing practice to make the declarative knowledge stronger right before it is 
proceduralized may make learning procedures more efficient [13]. Therefore, we 
investigated surgical skill learning over time through simulating a human learner. 

We analyzed four robotic surgical training tasks into components to implement 
ACT-R models. The components are listed on Table 1. The four robotic surgical tasks 
were decomposed with unit task components with motion states (Table 2). For instance, 
the bimanual carrying (BC) task has 1+2, 3+4 representing that the BC task was 
decomposed into a) moving to target with left and right hands, b) grasping object with 
left and right hands, and so on. The task analysis is a theoretical base to develop and 
test a computational model against complex and dynamic fundamental robotic surgical 
training tasks.  

Based on these decompositions of tasks, we implemented ACT-R models using 
Herbal/ACT-R compiler [13], and compared the results with experimental data. 
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2.5 Data Collection and Analysis 

 
Kinematics of the da Vinci© instruments was sampled and recorded at 100 Hz. Analysis 
of the experimental data included task completion time and the average speed of the 
instrument tip. Only the task completion time is presented in this paper. 

3. Results  

As the learning curves generated by the ACT-R model show in Fig. 2, repetitive 
practice (iteration) had little learning effect on the BC task, because of the simplicity of 
the task. However, peg transfer, needle passing, and suture tying showed significant 
learning effects with practice because those tasks are composed of more complicated 
and less practiced unit tasks. These results were similar to the experimental data, which 
also showed that more complex tasks take longer time to reach a plateau effectively 
than a simple task. 

Table 2. The combinations of unit motions 

 Task components with motion states 

BC 1+2, 3+4, 1+2, 5, 6+7 

PT 1, 3, 1, 8, 4, 6, 2, 5, 7, 2, 4, 2, 8, 3, 7, 1, 5, 6, 
1+2 

NP 2, 4, 2, 5, 10, 1, 3, 11, 12, 8, 1, 6, 1+2  

ST 2, 4, 2, 5, 10, 1, 3, 2+5, 13, 13, 8, 1+2, 4, 
11+12 

Table 1. Decomposed unit motion states 

1. Move to target (left hand). 
2. Move to target (right hand) 
3. Grasp object (left hand)  
4. Grasp object (right hand) 
5. Position object 
6. Release object (left hand)  
7. Release object (right hand) 
8. Orient object with both hands 
9. Push suture/needle (left hand)  
10. Push suture/needle (right hand) 
11. Pull suture/needle (left hand)  
12. Pull suture/needle (right hand) 
13. Rotate suture (left hand)  
14. Rotate suture (right hand) 
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Figure 2. Perceptual motor learning curves generated by ACT-R.  

(BC: Bimanual carrying, NP: Needle passing, PT: Peg transferring, ST: Suture tying) 
 

4. Conclusions 

Our preliminary results revealed that ACT-R models predicted similar learning effects 
compared with the experimental data. In conclusion, a cognitive simulation model 
could be used to demonstrate the perceptual motor learning and skill decay in surgical 
skill training. This model could be used to examine how different learning regimens 
could have different effects on learning and retention.  For example, it would be much 
easier to run the model 100 times with four different practice times than it would be to 
get medical residents (or students even) to try these different learning programs. 
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