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We investigated theoretically and empirically a range of training schedules on tasks with three knowledge types: declarative,
procedural and perceptual-motor. We predicted performance for 6435 potential eight-block training schedules with ACT-
R’s declarative memory equations. Hybrid training schedules (schedules consisting of distributed and massed practice) were
predicted to produce better performance than purely distributed or massed training schedules. The results of an empirical
study (N ¼ 40) testing four exemplar schedules indicated a more complex picture. There were no statistical differences
among the groups in the declarative and procedural tasks. We also found that participants in the hybrid practice groups
produced reliably better performance than ones in the distributed practice group for the perceptual-motor task – the results
indicate training schedules with some spacing and some intensiveness may lead to better performance, particularly for
perceptual-motor tasks, and that tasks with mixed types of knowledge might be better taught with a hybrid schedule.

Practitioner Summary: We explored distributed and massed training schedules as well as hybrids between them with
respect to three knowledge types based on theories and an empirical study. The results suggest that industrial and operator
training in complex tasks need not and probably should not be done on a distributed training schedule.
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Introduction

Training strategies have been investigated in a wide range of fields because of the importance of training in each of these
fields, including education (e.g. Bloom and Shuell 1981), psychology (e.g. Cepeda et al. 2009; Pavlik and Anderson 2005)
and ergonomics and human factors (e.g. Kim, Ritter, and Koubek 2013; Moskaliuk, Bertram, and Cress 2013; Pew and
Mavor 2007). For example, in ergonomics, training of and in systems is an important design consideration (Pew and Mavor
2007).

Training strategies for declarative learning (e.g. learning vocabulary) and to some extent procedural skills (e.g. learning
mathematical skills) have been researched in a variety of ways, for example, second-language vocabulary (Bloom and
Shuell 1981), computerised spelling drills (Fishman, Keller, and Atkinson 1968), the spacing effect on memory (Pavlik and
Anderson 2005) and computing mathematical permutations (Rohrer and Taylor 2006). (These skills are analogues and
components of more complex skills.)

Generally, this literature has compared the performance of two training schedules representing two extremes in the
sequencing spectrum: distributed and massed training schedules. In numerous retention tests drawing on declarative and to
some extent procedural memory, distributed training schedules have consistently produced better retention than massed
training schedules (e.g. Bahrick 1979; Bloom and Shuell 1981; Rohrer and Taylor 2006).

These findings are further supported by studies examining the performance of complex tasks drawing not only on
declarative but also perceptual-motor skills. For example, to achieve better performance on a wide range of medical skills,
studies have examined the relative effectiveness of massed and distributed schedules for training medical students in
laboratory settings (Moulton et al. 2006) as well as virtual reality environments (Gallagher et al. 2005; Mackay et al. 2002).
The results of these studies also show better retention for distributed training schedules than for massed schedules.

The almost unanimous results of early studies examining training schedules may have contributed to the examination of
only the two poles in the range of learning schedules (completely distributed and completely massed practice). The results
of those studies show that a paradox of learning and retention (Schmidt and Bjork 1992), which indicates the best way to get
good performance in a knowledge acquisition phase (massed practice), is bad for retaining acquired knowledge during the
retention interval. On the other hand, the training schedule that gives poorer performance during the acquisition phase
(distributed practice) produces better outcomes in retention tests.
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This paradox of learning and retention may have led to exploring only these two kinds of training schedules. But, our
assumption is there could be even better schedules for retaining knowledge. Bahrick et al. (Bahrick et al. 1993) investigated
retention performance according to different learning intervals, such as 14, 28 and 56 days, in a vocabulary learning task.
The retention tests were held 1, 2, 3 and 5 years later, and the results show that wider spacing between learning sessions
gives better retention performance in all retention tests, which indicated that more widely spaced training produced the
greater retention performance on a declarative memory task. Cull, Shaughnessy, and Zechmeister (1996) investigated the
advantages of expanded spacing over the uniform spacing in cued recall tasks, which was originally investigated by
Landauer and Bjork (1978). They explored the expanded spacing schedule (1-5-9, which are the resting periods between
training sessions), uniform spacing schedule (5-5-5) and massed schedule (0-0-0), and found that both spacing schedules
were superior to the massed schedule and the expanded spacing schedule outperformed the uniform spacing schedule in this
task (the numbers stand for the number of intervening items between the testing phases, so it can be assumed the number is
the resting period between learning sessions). Recent studies (Cepeda et al. 2009; Cepeda et al. 2008) on declarative
knowledge have shown that performance on retention tests relies not only on the degree of spacing between training
sessions, but also the spacing between the last training session and the retention session. That means that even if we are
trained in the same amount of training sessions in distributed ways, the performance on the retention session varies
depending on the resting period length between the training sessions, and the amount of the resting period between the last
training session and the retention session. These results support that hybrid schedules might be superior to distributed
schedules in learning declarative knowledge.

A recent review is consistent with and summarises the results of the studies that support the efficiency of hybrid
schedules (Kim, Ritter, and Koubek 2013). It notes that there are three stages in learning: declarative, declarative to
procedural and procedural, and the rate of memory loss when not practising varies within the stages. The initial stage of
learning (declarative stage) is more susceptible to memory loss, and the final stage of learning (procedural stage) is more
sustainable for learned knowledge. This review argues that periods of massed practice after declarative knowledge is
learned may be a more effective way to reach the final stage of learning because the massed practice increases the
declarative memory related to procedural tasks enough that it can be retrieved quickly enough to proceduralise. Their
review made a case for examining hybrid schedules by citing a study examining the effects of massed practice on stroke
patients (Vearrier et al. 2005). Vearrier et al. (2005), however, did not compare distributed and massed training schedules,
so they only provide evidence for the relative benefits of massed practice for supporting the retention of perceptual-motor
skills.

We can also imagine that massed or somewhat massed training schedules provide better learning than distributed
schedules when we are learning tasks that require memories to be active enough to be proceduralised, perhaps in perceptual-
motor skills, such as skiing. A hybrid schedule could lead to better learning in a more massed way (e.g. four hours in a row
in two days) than in a more distributed way (e.g. one hour per day for eight days).

Schmidt and Bjork (1992) also reviewed the relationship between spacing interval and retention. They show experiment
results that random condition outperformed blocked (regular) condition in motor tasks (Shea and Morgan 1979), and spaced
learning is better than massed one, but increasing the spacing interval provides better retention (Landauer and Bjork 1978).
These findings also support the possibility of a hybrid practice schedule that is superior to the distributed one for retaining
knowledge.

There may be schedules better than fully distributed ones capable of supporting even greater retention for certain task
types. We can quickly examine the performance profiles of the wide range of possible schedules by using a theory of
learning and forgetting to predict retention of each possible schedule. With these predictions of the relative strength of each
schedule in hand, we then empirically test some of the most promising schedules with several task types.

A theoretical study of hybrid practice

Hybrid practice is a mixed training schedule that blends distributed and massed practice. In this section, we provide a
theoretical approach based on the memory equations of the ACT-R cognitive architecture to examine a wide range of
learning schedules. We will use the predictions to choose schedules to test empirically.

The baseline ACT-R model

ACT-R is a functional cognitive architecture that contains theories about the mechanisms of human cognition (Anderson
2007; Anderson et al. 2004). The ACT-R architecture includes a declarative memory module and procedural memory
module that store and retrieve information that corresponds to declarative knowledge and procedural knowledge.
Declarative knowledge in ACT-R is represented by a set of chunks (Anderson and Schooler 1991; Miller 1956; Simon
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1974). Every chunk has a numeric value, activation, and this activation reflects the strength of the chunk; higher activation
leads to faster retrieval with less errors. The activation value increases with more presentations and retrieval requests. The
activation Ai of a chunk i has two components, base-level activation and noise; Equations (1) and (2) show how these
concepts are related.

Ai ¼ Bi þ 1: ð1Þ

The base-level activation for chunk i is:

Bi ¼ ln
Xn

j¼1

t2d
j

 !

; ð2Þ

where n: the number of presentations for chunk i; tj: the time since the jth presentation; d: the decay parameter that is set
using the base-level learning parameter.

Another important equation that decides the possibility of retrieval of a chunk is the recall probability function
(Equation (3)). This is a function of a chunk’s activation value and a retrieval threshold. It reflects the probability of recall at
a particular moment that a model receives a retrieval request for a particular chunk.

PðAiÞ ¼
1

1þ e ðt2AiÞ=s ; ð3Þ

Evaluating a learning schedule based on an activation-based model

Pavlik (2007) and Pavlik and Anderson (2005) investigated the effects of practice and spacing on retention of a Japanese-
English vocabulary task. They found more frequent practice and a longer retention interval produce the relative benefit of
spacing from their empirical data, and they proposed an activation-based model that is an extension of the base-level
activation equation of ACT-R 6.0. They argued that the activations of chunks increase with retrieval requests; however,
these increments decay as a power function of time, so the decay rate for each presentation is not a constant, but a function
that depends on the activation at the time of the presentation. Equation (4) shows the decay rate, di, is computed for the ith
presentation of an item as a function of the activation mi21.

diðmi21Þ ¼ cemi21 þ a; ð4Þ

where c: decay scale parameter; a: intercept of the decay function.
This equation provides a steady decrease for the long-term retention of a chunk when the distances between

presentations are close. In contrast, as exposure spacing gets wider, activation decreases between presentations, and decay is
therefore lower for new presentations, and long-term retention effects do not decrease as much (Pavlik and Anderson 2005).
Using this decay function, they revised the base-level activation equation (Equation (5)), which shows the decay (di) is the
function from Equation (4) rather than a constant variable, and the activation strength is based on the time since the previous
presentation of an item and the decay value from the decay function.

mnðt1 ... nÞ ¼ ln
Xn

i¼1

t2di
i

 !

ð5Þ

Evaluating the space of schedules

We use these revised equations to examine all the possible training schedules given eight learning sessions and one-
retention session. Although these equations are mainly related to declarative memory learning, we believe that acquired
declarative knowledge might be proceduralised with certain amount of practice, so these equations may predict the
procedural learning too. The learning sessions we examined correspond to potential empirical work that we report in the
next section. We assume the sessions could occur Monday through Thursday over two weeks with a 21 days retention
session after the last (eighth) learning session. This is just one of many possible training situations. The training schedule
could be varied in numerous ways, and we note this choice as a limitation in the conclusions.
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We generated the recall probability (Equation (3)), which indicates the chance of recall for a learned item at each
learning and retention session, for all 6435 possible schedules through the revised equation (Equation (5)) because the
original equation (Equation (2)) could not predict the spacing effect (see the results based on the original equation at acs.ist.
psu.edu/paik/Recall-Prob-Baseline-Model.xls, as well as the full table).

Table 1 shows the results for several schedules based on the revised equations, and Figure 1 illustrates the four exemplar
schedules we tested in our empirical study. The Schedule column in Table 1 shows how many 30-minute training sessions
are in each day. The columns that have a number from 1 to 8 are the probability of recall for each day, and the Ret21 stands
for the retention test after 21 days.

The results in Table 1 predict that a hybrid-distributed training schedule (HD: 1-0-1-1-1-0-1-3) will provide the best
recall probability at the retention session. The fully distributed training schedule (D: 1-1-1-1-1-1-1-1) is not the best – its
rank is 754 among 6435 (12%) – and the fully massed training schedule (M: 0-0-0-0-0-0-0-8) ranks 6103 among 6435
(94%). These results show that the fully distributed training schedule does not lead to the greatest memory activation, and
that relatively, the distributed and massed schedules, when directly compared, look like what previous studies have found:
a paradox of learning and retention.

Other parameters have been used in these equations, and we briefly report that the use of these other parameters does not
make a substantial difference. Pavlik and Anderson also examined the results of the previous canonical studies for learning
and retention through their model as Raaijmakers (2003) did. They explored the studies of Rumelhart (1967), Young
(1971), Glenberg (1976), Bahrick (1979) and Bahrick and Phelphs (1987). Their analyses lead them to adjust the decay
intercept (a) and decay scale (c) parameters of the memory equations. These adjusted parameters are presented in Table 2,
and we predicted activation strength according to Equation (4) with these adjusted parameters.

We also used these parameters and generated the recall probabilities for possible schedules, and we found that the
parameters that were used for Bahrick (1979), Bahrick and Phelphs (1987) and Glenberg (1976) resulted in the same
prediction as our previous ones (the hybrid training schedule, 1-0-1-1-1-0-1-3, was the best). The parameters that were used
for Rumelhart (1967) and Young (1971) predicted that 1-0-0-2-1-0-1-3 was the best training schedule. However, the 1-0-1-
1-1-0-1-3 ranks at the 12th and 3rd in each result, respectively and both schedules rank higher than the fully distributed
training schedule.

Table 1. Recall probability (from Equation (3)) at learning and retention sessions based on Pavlik and Anderson’s memory strength
Equations (4) and (5). D is the distributed, M the massed, HD and HM the hybrid-distributed and hybrid-massed schedules chosen to be
tested empirically.

Recall probability at the end of session

Rank Schedule 1 2 3 4 5 6 7 8 Ret21

1 HD 10111013 0 0.0452 0.2773 0.2991 0.4748 0.6452 0.7834 0.8418 0.4625
2 11011013 0 0.0719 0.2123 0.2879 0.4688 0.6420 0.7819 0.8409 0.4623
3 10111103 0 0.0452 0.2773 0.2992 0.5413 0.6026 0.7683 0.8350 0.4622
4 11011103 0 0.0719 0.2123 0.2879 0.5348 0.5991 0.7667 0.8342 0.4621
5 10111022 0 0.0452 0.2773 0.2992 0.4249 0.7076 0.7446 0.8304 0.4616
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
360 D 11111111 0 0.0712 0.2922 0.4851 0.4226 0.6191 0.7160 0.7726 0.4508
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
5847 HM 00002321 0 0.1234 0.2978 0.5868 0.7224 0.7166 0.8093 0.8020 0.3845
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
6282 M 00000044 0 0.1234 0.4252 0.6234 0.6301 0.7626 0.8222 0.8565 0.3654
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
6412 00000008 0 0.1234 0.4252 0.6234 0.7321 0.7952 0.8349 0.8618 0.3478
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
††† ††† ††† ††† ††† ††† ††† ††† ††† ††† †††
6435 70000001 0 0.1234 0.4252 0.6234 0.7321 0.7952 0.8349 0.4538 0.3338

Note: The numbers in the schedules column stand for the number of training sessions in each training day (e.g. 10111013 schedule stands for one session at
the first, third, fourth, fifth and seventh days, no session at the second and sixth days and three sessions at the eighth day.), the columns from 1 to 8 are the
day number and the Ret21 stands for the retention test after 21 days.
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These predictions are probably still approximations and would not fully reflect the effects of more sophisticated models
with multiple retrieval strategies, previous knowledge, a more sophisticated theory of proceduralisation and individual
differences. But, these predictions suggest that hybrid training schedules could lead to better performance than a distributed
training schedule. In the next section, we present an empirical study that tests the hypothesis that the effects of training
schedules will follow the order predicted by this theory, and that the hybrid training schedules will perform better than the
massed and distributed schedules.

Empirical study of hybrid and traditional learning schedules

In this empirical study, we tested the distributed, massed and two hybrid schedules. The schedule labelled Hybrid-D is the
best schedule for retention in Table 1. Hybrid-M is a highly ranked but somewhat arbitrary choice that provides a somewhat
massed learning schedule. We used 4-4 for the massed schedule because it was difficult to have participants do a fully
massed (eight block) session, and they are predicted to have similar learning.

We designed tasks with three knowledge types: (1) a declarative task, (2) a procedural task (perhaps with some
declarative components), and (3) a perceptual-motor task, to see how learning schedule interacts with knowledge
types. These are component skills in many complex, real-world tasks. These can be mapped onto taxons used, for
example, in the IMPRINT tool for predicting task times (Booher and Minninger 2003) or to GOMS components (John
and Kieras 1994).

Participants

Forty undergraduate students (during 2010–2011) at the Pennsylvania State University were recruited and randomly
assigned to conditions. None of them had experience with any of the experimental tasks. Participants were provided extra
course credit or $27. Each participant performed both learning and testing sessions alone in a separate room.

Figure 1. The four training schedules that were chosen to be tested. The four top boxes represent Monday to Thursday of the first week,
and the four bottom boxes stand for the same days of the second week. The numbers represent the number of 30-minute blocks the tasks
are practised, so, for example, 3 represents 90 min. of practice on the tasks. (Fully massed, eight sessions on a single day, are difficult to
schedule, and the 4-4 schedule, which we will use later, has a similar retention prediction.)

Table 2. Decay intercepts and decay scales that were explored by the study of Pavlik and Anderson (2005).

Bahrick (1979);
Bahrick and Phelphs (1987) Rumelhart (1967) Young (1971) Glenberg (1976)

Decay intercept (a) 0.217 0.149 0.300 0.058
Decay scale (c) 0.143 0.495 0.419 0.283
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Materials

A Web-based Japanese-English vocabulary test based on Pavlik and Anderson’s test (2005) was designed for declarative
knowledge learning and retention, as this task is very similar to previous declarative knowledge tasks and is nearly a pure
declarative knowledge task. Fifteen Japanese-English word pairs were used, and the number of correct answers was used for
scoring. The English words have only four-letters (e.g. base, mail), and four-to-seven letter Japanese translations were used
(e.g. dodai, yuubin). All the words were assigned randomly for each participant and each trial. One word was displayed in
one page as a question and participants were requested to answer the question. The correct answer was provided with a
‘Correct’ or ‘Wrong’ label in the next page.

AWeb-based Tower of Hanoi puzzle was used for procedural knowledge learning and retention. This task has been used
before to study procedural learning and models of it (e.g. VanLehn 1989) have consisted of nearly completely procedural
knowledge. Participants were asked to move six disks from the leftmost rod to the rightmost rod with three rules: (1) only
one disk can be moved at a time, (2) only the top disk can be moved to another rod, and (3) a larger disk cannot be placed on
a smaller disk, and those rules were provided to the participants in every trial so that they did not need to retrieve the rules.
Participants were not told the optimal procedure but asked to move the disks as efficiently as possible. The optimal number
of moves, 63 moves, was displayed for motivational purpose along with their number of moves so far. The number of disk
moves in moving six disks from the leftmost rod to the rightmost rod was used as the participant’s score.

For the perceptual-motor skill acquisition and retention, an inverted pendulum task was used. Models of it would be
made up nearly completely of perceptual-motor knowledge. This task was performed using an application (BalanceMe)
running on an iPod touch that is controlled by an accelerometer in the iPod. The goal of inverted pendulum tasks is to keep
the stick (pendulum) vertical by moving the pivot point (the bottom of the stick or pendulum); our task showed a stick,
which is on a ball in the screen, and participants were asked to keep balancing the stick by tilting the device. The task is
illustrated in Figure 2, which shows a side view and the participants’ view of the task. The time duration of balancing was
provided by the application itself, and was used as the participant’s score.

Design and procedure

This experiment was a mixed design with a between-subjects independent variable with four levels (distributed, massed,
Hybrid-D and Hybrid-M schedules, from Table 1), and task types as a within-subject factor. Participants were randomly
assigned to one of the four different groups, and were run individually. Table 3 shows the training schedules, which
consisted of eight (30 min. each) learning sessions and one 30 min. retention session. Each session had three tests including
the Japanese-English vocabulary test, the Tower of Hanoi puzzle and the inverted pendulum task. Thus, all of the
participants performed nine sessions with each task according to their training schedule.

The distributed practice group had eight learning sessions in eight days over two weeks (one session per day and four
sessions per week). The massed practice group had eight learning sessions in two days over one week (four sessions at the
first day and another four sessions at the second day). The Hybrid-D practice group performed eight learning sessions in six
days over two weeks (one session at the first, third, fourth, fifth and seventh day, and three sessions at the eighth day). The

M
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;

C
ol
ou
r
O
nl
in
e

Figure 2. A depiction of the task (left) for the inverted pendulum task (BalanceMe iPhone app) and the user interface (right). The task is
to move the base, holding an iPod in your hand, so that the simulated stick stays balanced vertically.
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Hybrid-M practice group performed eight learning sessions in four days over one week with somewhat massed sessions
(two sessions at the first day, three sessions at the second day, two sessions at the third day and one session at the fourth
day). The retention tests occurred 21 days later (three weeks) after the last learning session of each group. Participants were
asked not to do mental rehearsal or practise the tasks between sessions.

Results

We conducted a one-way analysis of variance (ANOVA) for the Japanese vocabulary task and the Tower of Hanoi task to
test for differences among the training schedules. However, we conducted a survival analysis for the inverted pendulum
task, because the data in this task increases rather than decreases with practice and may reach a limit. Survival analysis
(Mills 2011) is a branch of statistics that mainly focuses on time-to-event data, such as death of organisms or failure in
systems. It is widely used in engineering, economics and sociology to analyse how long a particular system or phenomenon
is sustained with particular conditions so that we can predict the outcome of such conditions. As we noted in the previous
section, we measured how long participants could keep balancing the stick on the ball in the device and used this as the
dependent measure in the survival analysis.

The Japanese vocabulary task

Accuracy and latency were measured to test the effectiveness of the training schedules in the Japanese vocabulary task.
We excluded one of the participants in the massed practice group, because his/her accuracy was an outlier (more than 2
standard deviations above the mean).

Table 4 shows the results of the descriptive statistics for the task, and Figure 3(a) shows the mean accuracy of the four
practice groups at the first learning session, the last learning session and the retention session. Table 4 shows that the
distributed practice group showed the lowest accuracy, and the Hybrid-D practice group showed the highest accuracy at the
last learning session. However, the distributed practice group showed the highest accuracy, and the massed practice group
showed the lowest accuracy at the retention session.

Table 3. The four training schedules for the learning and retention experiment.

Mon. Tue. Wed. Thu.

1st week Distributed D1 D2 D3 D4
Hybrid-M
Hybrid-D HD1 HD2 HD3
Massed

2nd week Distributed D5 D6 D7 D8
Hybrid-M HM1,2 HM3,4,5 HM6,7 HM8
Hybrid-D HD4 HD5 HD6,7,8
Massed M1,2,3,4 M5,6,7,8

5th week Distributed D–Ret. test
Hybrid-M HM–Ret. test
Hybrid-D HD–Ret. test
Massed M–Ret. test

Table 4. Descriptive statistics for the training schedules on the Japanese vocabulary task.

Last learning session Retention session

Mean SEM Mean SEM

Accuracy D 56% 10% 51% 8%
M 64% 7% 28% 5%
HD 65% 6% 43% 9%
HM 58% 9% 40% 7%

Latency D 3.09 s 0.28 s 4.01 s 0.47 s
M 3.00 s 0.27 s 4.79 s 0.79 s
HD 3.03 s 0.27 s 3.50 s 0.35 s
HM 3.18 s 0.31 s 3.41 s 0.42 s
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A series of ANOVA were conducted to examine whether there were any statistical differences in learning (last learning
session) and retaining (retention session) knowledge among the four training schedules. The results revealed that there were
no significant differences in accuracy across schedules at the last learning session, F (3,35) ¼ 0.256, p ¼ 0.857,
h 2 ¼ 0.021, and at the retention session, F (3,35) ¼ 1.45, p ¼ 0.246, h 2 ¼ 0.11.

Figure 3b shows the mean latency of the four groups at the second learning session (participants could not answer in
Session 1 because they did not yet know the associations), the last learning session and the retention session. The mean
latency at the last learning was almost identical; however, the performances of all groups at the retention session showed
little differences. We conducted a series of ANOVA among groups to examine whether there were any statistical
differences in latency at the last learning session and retention session, and no statistical differences were observed (all F’s
(3,35) , 3, p’s . 0.05).

We also conducted a series of independent t-tests to examine the effects of training schedules in this task and found that
the massed practice group has lower accuracy than the distributed practice group at the retention session (t (17) ¼ 2.24,
p ¼ 0.038, d ¼ 1.08), which is consistent with several previous studies. However, using Bonferroni adjusted alpha level
0.0083 (0.05/6), we could not find any reliable differences between the two schedules. The corrected alpha is too small in
our study, which might lead to Type 2 errors (misses), so we will not provide any further analyses of this task.

But visually, the results are suggestive that hybrid learning schedules may be useful, and the results at least suggest that
further study is warranted of non-standard training schedules that are often found in the real world, what with cancelled
classes, holidays, weekends and other interruptions to a learning schedule.

The Tower of Hanoi

The number of disk moves and task completion time for the Tower of Hanoi were examined for the effect of training
schedules on learning and retention. We excluded five trials where the number of disk moves was greater than 500 or where

Figure 3. The means of accuracy and latency for each session with respect to four groups (N ¼ 9 for the massed group and N ¼ 10 for
the other groups) on the Japanese vocabulary task (error bars are standard errors of the mean, SEM). (a) Accuracy; (b) Latency.
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task completion time was greater than 1200 sec. Table 5 shows the descriptive statistics for the task, and Figure 4 shows the
average number of disk moves and task completion time at the first learning session, the last learning session and the
retention session with respect to the four practice groups.

We performed a series of ANOVA for the number of disk moves and task completion time among the groups at the first
learning session.We found that there was no statistical difference in the number of disk moves among groups; however, there
were statistical differences in task completion time, F (3,31) ¼ 3.41, p ¼ 0.02, h 2 ¼ 0.24. Post hoc comparison using the
Tukey HSD test indicated that the average first learning session task completion time for the massed practice group
(M ¼ 312.9 s, SD ¼ 119.8) was significantly different than the Hybrid-M group (M ¼ 575.8, SD ¼ 275.2) with the massed
group taking less time. However, there were no significant differences in comparing the other groups.

Table 5. Descriptive statistics for the four training schedules on the Tower of Hanoi task.

First learning session Last learning session Retention session

Mean SEM Mean SEM Mean SEM

Moves D 148.77 18.44 84.60 10.65 75.77 5.20
M 130.55 14.35 73.88 6.59 85.00 11.25
HD 176.25 35.03 80.25 11.48 98.00 15.33
HM 220.00 44.21 92.88 12.84 100.44 7.89

Latency(in s) D 383.57 36.78 149.38 22.35 126.35 10.56
M 312.88 39.93 138.63 22.78 171.82 34.20
HD 349.46 72.55 103.60 14.38 126.62 19.06
HM 575.86 91.72 155.57 26.49 167.07 14.52

Figure 4. (a) The means of the number of disk moves and (b) task completion time for the first learning session (N ¼ 9 for the
distributed, massed, and Hybrid-M groups and N ¼ 8 for the Hybrid-D group), the last learning session and retention session with respect
to four practice groups (error bars are SEM) on the Tower of Hanoi task. (a) Number of disk moves (b) task completion time.
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The number of moves and task completion time gradually decreased during the learning sessions, and the performance
of all groups were almost identical at the last learning session (see Figure 4). To examine any differences in learning among
the groups, we conducted a series of ANOVA for the performance of the last learning session. The results of analyses
indicate there were no significant differences among the groups in both measurements (because of differences between
massed and Hybrid-M groups in the task completion time at the first learning session, we analysed the change in
performance for the task completion time).

We also examined whether or not there were any performance differences according to the training schedules in
retaining knowledge for the Tower of Hanoi task. Figure 4 provides an overview, showing the performances of all practice
groups at the retention session were almost identical to the last learning session, which indicates participants retained their
learned knowledge regardless of training schedule, and the acquired procedural knowledge was not decayed by time.
A more detailed plot (Paik 2011, Figures 4-9 and 4-10) shows nearly identical curves for all schedules by block. While the
time between sessions varied for the data points, their values did not. The results of the ANOVA in both measurements also
showed that there were no reliable differences among the groups.

The inverted pendulum task

The learning curves of the inverted pendulum task look different than the other tasks; they use an inverted measure (time the
pendulum can be held), where the task time goes up with practice but also the curves are quite distinct. Table 6 shows the
descriptive statistics for this task. The results of the ANOVA for the first learning session in the task showed there were no
significant differences among the groups, F (3,36) ¼ 0.81, p ¼ 0.49, h 2 ¼ 0.06.

Figure 5 shows that each group starts out with approximately the same balance time. Figure 5 also shows that each
training schedule had a different shaped learning curve and final performance. The balance time of the participants in the
distributed group had little variance, and performance was very low during the learning sessions and did not increase at the
retention session. The participants in the Hybrid-M group performed the best at the last learning session and showed little or
no forgetting at the retention session.

We conducted a survival analysis to examine which training schedule gives better performance during the learning
session and the retention session. Figure 6(a) shows the results of survival analysis of the last learning session for all groups.
The graph shows that the participants who learned this task in a distributed way could not survive (keep balancing) longer
than the other participants who trained on different schedules. Participants in the Hybrid-M group could survive longer than
the other groups.

To examine the learning effect of different training schedules, we conducted a Cox proportional hazard regression and
found that there was a significant difference (p ¼ 0.01) between the distributed group and Hybrid-M group with the Hybrid-
M group balancing longer.

We also conducted survival analysis of the retention session, and the results are presented in Figure 6b. As the graph
shows, the results are almost identical to those of the last learning session, except the massed practice group survived longer
than the Hybrid-D group (opposite to their relative order in the last learning session). The participants in Hybrid-M group still
survived longer than the other groups in this session. The results of the Cox proportional hazard regression shows that there
was a significant difference (p ¼ 0.02) between the distributed practice group and the Hybrid-M practice group. In this task,
the schedules lead to reliably different learning curves and the differences appear to be of both theoretical and practical
importance.

Discussion and conclusions

We first summarise the theoretical analysis and study results. Then, we consider the practical implications and future work
that arises from these results.

Table 6. Descriptive statistics for the inverted pendulum task.

First learning session Last learning session Retention session

Mean SEM Mean SEM Mean SEM

Duration time D 17.54 5.80 29.87 7.39 25.38 4.77
M 13.65 4.21 74.12 31.51 109.00 39.10
HD 9.32 2.22 98.32 44.03 76.66 38.41
HM 11.68 1.85 148.26 40.35 146.35 38.91
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Figure 5. The means of balance time for the first learning session (N ¼ 10 for each point), the last learning session and the retention
session with respect to four practice groups (error bars are SEM) for the inverted pendulum task.

Figure 6. Survival probability curves with respect to all practice groups in the (a) last learning session and (b) retention session. The
Hybrid-M and distributed curves are reliably different in both cases with p ¼ 0.01 and p ¼ 0.02, respectively.
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Summary of analysis and results

In this study, we explored a range of training schedules that might be superior to the equally spaced distributed and massed
training schedules previously used with respect to three types of knowledge. We theoretically examined the 6435 possible
training schedules that arise from eight learning sessions with a 21-day retention session. We predicted the performance of
all training schedules through the base-level learning equations of ACT-R.

By using a revised base-level learning equation, we could predict the performance of learning and retention sessions for
all training schedules. From those schedules, we selected four: (1) the one that predicts the highest performance at the
retention test (Hybrid-D, 1-0-1-1-1-0-1-3), (2) a massed (M: 0-0-0-0-0-0-4-4), (3) a distributed (D: 1-1-1-1-1-1-1-1)
schedule that has been widely used in previous studies, and (4) a hybrid-massed schedule (Hybrid-M, 0-0-0-0-2-3-2-1).
We then examined these schedules with three different tasks that include a declarative knowledge task, procedural
knowledge task and perceptual-motor task.

The results of the declarative knowledge task showed that there were no significant differences among the groups, which
is a different result from numerous previous studies. We believe that this result might be from the structure of our massed
training schedule. Our massed training schedule was not a completely pure massed training schedule (4-4 sessions, not 8
sessions in a day) compared to previous studies. The space between the 2-4 sessions might help participants retain
knowledge. It could also be the case that the sample was small and/or unusual. It is also possible that for this type of task, the
most efficient training schedule could vary, but the hybrid-distributed schedule might be good. A hybrid schedule might
also be seen in practice more often than a pure distributed schedule.

The results of the procedural knowledge task (Tower of Hanoi) showed no significant differences among the four
different practice groups – the learning curves are almost identical. Similarly, knowledge was retained during the
retention interval for all groups; the performance between the last learning session and retention session was almost
identical; the procedural knowledge did not decay over this time period. More detailed analysis based on session finds a
similar pattern at that level (Paik 2011). This result suggests that the most important factor for acquiring and retaining
knowledge and skills in a task that requires procedural knowledge is not the training schedule, but simply the amount of
practice.

The lack of change in performance over time from the last practice to the retention test also suggests that decay for
procedural knowledge is substantially lower than for declarative knowledge. This is an assumption that many learning
theories make (Anderson 1982; Fitts 1954, 1964; Kim, Ritter, and Koubek 2013; Ohlsson 2011; Rasmussen 1986) and a
few studies appear to find (e.g. Cooke, Durso, and Schvaneveldt 1994; Stefanidis et al. 2006). However, our results are
different from the study of Rohrer and Taylor (2006), which examined the effect of training schedules in a mathematical
computation task, and showed that the distributed group was superior to the massed group. We believe that the main
reason for the different result might be due to different tasks. Both tasks require procedural knowledge; however, the
mathematical task that they used also requires declarative knowledge, such as declarative math facts and memorisation
of how to solve the problem (using a novel formula), and most of the participants in the massed practice group might
forget this formula at the four-week retention test, because the declarative knowledge is more sensitive to decay over
time.

For the perceptual-motor skill task, which we argue is the most important contribution in this study, we found Hybrid-M
led to better learning and retention, and that there were significant differences between the Hybrid-M and the distributed
practice groups. This result examines and supports a theory of skill retention (Kim, Ritter, and Koubek 2013) and our
hypotheses that learning should occur with different degrees and ways in each stage of learning, and that the tasks that
require perceptual-motor skills should be trained with a massed or somewhat massed schedule to reach the procedural stage
of learning. The result also indicates that the learning in the task that required perceptual-motor skill was more influenced by
the training schedules than the other tasks, and massed or somewhat massed training schedules lead to better performance
than the purely distributed schedule.

We also found that our results were different from the previous studies, which showed that distributed practice was
better than massed practice in medical skill acquisition and retention (Moulton et al. 2006). We believe the reason is the
same as the differences in the procedural task, which is that the previous medical skill task depended on a large amount of
declarative knowledge; however, our inverted pendulum task was more purely a perceptual-motor skill task and does not
appear to require declarative knowledge. It may also be the case that this task itself is more sensitive to the effect of different
training schedules. We can note these problems as an area for future work.

From the results of our study, we could say that a fully distributed schedule is not superior to the other schedules in
retaining acquired knowledge and skills except for declarative knowledge. Learning procedural tasks appears to mainly
depend on the amount of time to practise rather than the different schedules. Furthermore, our results suggest that tasks that
require perceptual-motor skill should be learned with some intensive practice that can be obtained from massed or hybrid-
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massed schedules. In real life, however, there are tasks that require both declarative and perceptual-motor skills, such as
learning with a virtual surgery system. Traditionally, the way to train with that system is more likely to use a distributed
schedule, but it is probably better to train with a mixed schedule; a massed or hybrid way to train how to control the system,
and a distributed way to train where and why to move the controller.

The difficulty for the classification of tasks based on a particular knowledge type might be a problem of this study. The
Japanese vocabulary and the inverted pendulum tasks mainly required declarative knowledge and perceptual-motor skill
respectively, so we can categorise those two tasks fairly clearly as declarative and perceptual-motor tasks. The Tower of
Hanoi task, however, might require mixed knowledge because there are rules that participants should know to solve the
problem. We provide the rules before participants performed the task to make participants mainly use their procedural
knowledge instead of mixed knowledge, but it may have both types of knowledge. A study that provides more clear
information about task categorisation might be needed. In addition, further tasks that can be categorised particular
knowledge types or that use mixed knowledge types should be studied to provide general guideline for learning and
retention.

Although there are unresolved issues and room for future work, our study suggests a new training paradigm by
examining schedules based on learning equations and testing non-equally distributed learning schedules. We showed that a
hybrid-distributed/massed schedule, which is different from the widely used approach in the previous studies, did lead to
greater learning in a perceptual-motor task. Most of the previous studies simply examined distributed practice and massed
practice, and compared performance at retention. However, our study, especially in the theoretical analysis, examined all
the possible training schedules and predicted the performance for all learning and retention sessions.

Theoretically, the schedules are different, and the distributed schedule is not the best. In addition, the declarative
schedule did not lead to greater learning empirically in these tasks – this could be due to low power, but there were
differences pair-wise for the declarative vs. massed, and for all schedules on the perceptual-motor task, which makes this
hypothesis less likely. Our theoretical analyses in this study can be used by other researchers who want to explore the range
of training schedules by gathering data on them.

Practical suggestions for training schedules

For practitioners and industrial trainers, this work makes suggestions about how to train complex tasks. The results suggest
that mostly declarative tasks can continue to be trained with distributed training schedules, but that they can be safely and
perhaps more profitably trained with a less distributed schedule and may be more robustly learned across training schedule
types than we may have initially thought. These tasks would include, for example, learning industrial signs (Chan and Ng
2010).

The results suggest that procedural tasks, similar to many plant operations (e.g. Sauer et al. 2008) and vehicle operations
(e.g. Bellet and Tattegrain-Veste 1999; Petersen and Barrett 2009) could be trained with hybrid schedules because time-on-
task seems to be the most important aspect for learning – across training schedules learning appears to occur at the same rate.

The results suggest that for perceptual-motor tasks, including many hospital (e.g. Warming et al. 2008) and
manufacturing tasks (e.g. Koubek, Clarkston, and Calvez 1994), and even sport (Annett 1994), that massed and particularly
hybrid-massed learning schedules will be better than other schedules and that distributed schedules in particular should be
avoided.

Future work

The other problem that we found is the revised ACT-R base-level learning equation failed to fully predict our empirical
results. We tested several parameters of decay intercept and decay scale that predicted the results of some canonical studies,
and found that the Hybrid-D training schedules is superior to the purely distributed one in our experiment setting. However,
the results of our empirical study (Japanese-English vocabulary task) showed no significant difference in accuracy between
the distributed practice group and the Hybrid-D practice group. There might be noise or the theoretical performance
difference between the two training schedules might be relatively too small (see Table 1) to find reliable differences of those
schedules. The number of the participants might be seen as small (N ¼ 10 per schedule), because when we use the power
analysis for ANOVA design (Cohen 1988), the required sample size is 18 per each group with large effect size (with 0.05
for alpha, and 0.8 for power); however, we designed a multi-session (eight sessions) study with a test after a retention
period, and the subject sessions in our study represent the resources of a more than four times more subjects than single-
session studies. In addition, the sample size per schedule that we used is fairly common, that of 10–15 subjects per
condition in a complex study (e.g. Pavlik and Anderson 2005; VanLehn 1989).

TERG 1067332—8/8/2015—ANANDAN.R—525956———Style 2

Ergonomics 13

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715



However, these results support a recent study (Cepeda et al. 2008) that found the revised base-level equation could not
predict their results of an empirical study either. Therefore, the revised base-level learning equation for predicting complex
learning and retention spacing over multiple sessions could probably still be improved.

Like all studies, this study is limited. It would be interesting to gather empirical data of further retention intervals, a
larger number of training sessions, more total time training, additional tasks, less or more concurrent tasks, or of another
retention interval, which might give more evidence for our results. In addition, we did not record many aspects of the
participants’ demographic information; this is not always or perhaps often done in some learning studies (Pavlik and
Anderson 2005; Reder and Ritter 1992), but we would recommend doing so when to support secondary analyses. All of
these areas represent limitations of the current study and areas for future work.

We also need theories that might be able to predict the performance of procedural and perceptual-motor skills tasks.
The theory that we used in this study was based on declarative knowledge and our assumption was that acquired
declarative knowledge might be proceduralised with certain amount of practice, so the declarative knowledge theory
might predict the learning for the other knowledge types. However, the shape of learning curves might vary in different
knowledge types (Kim, Ritter, and Koubek 2013), so particular theories or equations with respect to particular
knowledge types to predict the learning performance are still needed, and further hybrid learning schedules might yet be
examined.
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