
 1 

Running head:  MULTIPLE MODELS OF LEARNING 

Modeling Users at Multiple 
 Levels of Expertise While They Learn 

Jaehyon Paik (jaehyon.paik@lge.com) 
UX LaboratoryLG Electronics, Seoul, South Korea  

 
Jong W. Kim (jong.kim@ucf.edu) 

Department of Psychology 
University of Central Florida, Orlando, FL  

 
Frank E. Ritter (frankritter@psu.edu) 

College of Information Sciences and Technology 
The Pennsylvania State University, University Park, PA 

 
David Reitter (reitter@psu.edu) 

College of Information Sciences and Technology 
The Pennsylvania State University, University Park, PA 

 
Corresponding Author  

Frank E. Ritter, PhD  
College of Information Sciences and Technology 
The Pennsylvania State University 
University Park, PA 

Email: frank.ritter@psu.edu    
Phone: +1 (814) 865-4453 

24 May 2015 

Document Statistics 

Tables:  6    Figures:  7   Word Count:  ~10,500 (inclusive of tables)  (+abstract: 
165;  references ~1,500) 
 
 

Paik, J., Kim, J. W., Ritter, F. E., & Reitter, D. (2015). Predicting user performance and learning in human-computer
iinteraction with the Herbal compiler. ACM Transactions on Computer-Human Interaction. 22(5). Article No. 25.



 2 

Abstract 

We report a way to build a series of GOMS-like cognitive user models representing a 

range of performance at different stages of learning.  We use a spreadsheet task across 

multiple sessions as an example task; it takes about 20~30 min. to perform. The models 

were created in ACT-R using a compiler.  The novice model has 29 rules and 1,152 

declarative memory task elements (chunks)—it learns to create procedural knowledge to 

perform the task.  The expert model has 617 rules and 614 task chunks (that it does not 

use) and 538 command string chunks—it gets slightly faster through limited declarative 

learning of the command strings and some further production compilation; there are a 

range of intermediate models.  These models were tested against aggregate and individual 

human learning data, confirming the models’ predictions.  This work suggests that user 

models can be created that learn like users while doing the task.   

 

Keywords: User modeling, Learning, Expertise, ACT-R, GOMS, KLM.  

 



 3 

1. Introduction 

A model of how users learn has been acknowledged as one of the important goals in 

human-computer interaction (HCI) and in cognitive modeling.  The GOMS1-type 

engineering model (Card, Moran, & Newell, 1983; John & Kieras, 1996b) has provided 

us with quantitative predictions of expert human behavioral performance.  Since GOMS 

was introduced, the need has been recognized for a user model that learns as well (Olson 

& Olson, 1990).  That is, GOMS models reflect only errorless skilled performance in 

terms of task time (although the Cognitive Complexity Method related to GOMSL has 

been used to predict learning and transfer on initial learning curves, Bovair, Kieras, & 

Polson, 1990).  GOMS was a good start to look for a cognitive model of an expert 

behavior, but knowing how a model can represent users’ learning behavior of a real 

world task has been and remains an intriguing question.   

Cognitive architectures (e.g., ACT-R, Soar) provide important theories that 

scientifically summarize and model human behavior.  People learn how to build a 

cognitive model by working with a cognitive architecture.  However, it is acknowledged 

that people find it difficult to build cognitive models that represent complex human 

behavior (Pew & Mavor, 1998, 2007) and that it is difficult for cognitive modelers to 

learn details of cognitive architectures.   

Using a mature cognitive architecture—i.e., ACT-R (Anderson et al., 2004) and 

Soar (Laird, 2012; Newell, 1990), cognitive modelers are able to model learning 

processes.  We chose to use one of the widely used cognitive architectures, ACT-R, to 

                                                
1 Goals, Operators, Methods, and Selection rules 



 4 

describe a larger model of learning in a real world task.  (Other architectures could 

probably have been used as well.)  The ACT-R theory, which provides a well-validated 

account for the acquisition of knowledge and its routinization, describes the process of 

human learning as the three-stage process through a distinctive classification of 

knowledge representation: declarative and procedural knowledge.  In a cognitive model 

that is based on a production system (e.g., ACT-R), declarative knowledge is represented 

as a relational network of facts, and procedural knowledge is represented as a set of 

production rules.  The applicability of each rule depends on the state of the system at a 

given point in time.  Each rule at the symbolic level specifies when a cognitive act should 

take place (condition), as well as the effects of this act (action).  Based on the construct of 

declarative and procedural knowledge, ACT-R provides both symbolic and sub-symbolic 

learning mechanisms—i.e., the production rule learning mechanism and the activation 

mechanism (Anderson, 1982b, 1987; Taatgen & Lee, 2003).  

Despite the maturity of cognitive architectures, these efforts have been stymied in 

part by the detailed level of specification required by existing architectures to create 

models.  While one of cognitive modeling’s great strengths lies in providing 

computational features, the low-level abstractions have frequently proven expensive to 

create.  Furthermore, it has been noted that these models have often proven difficult to 

maintain, extend, or merge (e.g., John, Blackmon, Polson, Fennell, & Teo, 2009; Pew & 

Mavor, 1998; Pew & Mavor, 2007; Ritter et al., 2003) 

Another concern is that building a larger model easily is important because it, in 

fact, helps our understanding of cognitive functions and structures in the context of a real 

world task that relates to a daily work task (e.g., using a spreadsheet).  However, a 



 5 

cognitive modeler can usually find it difficult to implement several hundreds of 

production rules, assuming that a modeler uses a production system to build a user model.  

A cognitive model often focuses on microscopic psychological tasks so that it can help 

examine cognitive functions in milliseconds, focusing mainly on the Cognitive and 

Rational Bands (Newell, 1990).   

In this paper, we present a way to build a large model that learns and that learns 

differently in each learning stage—performance changes from a beginner through an 

intermediate to a skilled individual, and different mechanisms dominate each stage.  We 

expanded a high-level behavior representation (Herbal) framework (Cohen, Ritter, & 

Haynes, 2010) to provide a general way to build larger cognitive models that learn.  

Herbal supports a general task analysis approach based on the Problem Space 

Computational Model (PSCM, Newell, Yost, Laird, Rosenbloom, & Altmann, 1991), a 

type of task analysis based on problem solving.   

Here, we report analyzing a long (20~30 min.) non-iterated (sub-tasks are not 

repeated) task and building relatively large ACT-R models to predict performance from 

novice to expert.  In addition, we tested the models against human data to test and 

validate them.  In the next section, we briefly review previous efforts, and then discuss 

recent work on a high-level language for ACT-R and large learning models we have 

generated and tested, and then present a test of the models. 



 6 

2.  Review of Learning Models 

In this section, we briefly review several types of cognitive models of learning 

used to model users.  We also present the need for a high-level representation language 

that includes learning and interaction. 

2.1 Static models without learning 

GOMS-type frameworks have been widely used in HCI for designing user 

interfaces and predicting human behavior (e.g., Gray, John, & Atwood, 1993; John & 

Kieras, 1996a).  GOMS models can predict the task procedure, task completion time, and 

inconsistencies in interfaces.  GOMS has spawned several task analysis and modeling 

techniques, including the Keystroke-Level Model (KLM), GOMSL, and the Critical Path 

Method (CPM)-GOMS.   

Despite the success of GOMS-type models, they have several limitations.  Some 

user interface designers in HCI see GOMS as a relatively difficult technique to learn and 

use (John, Prevas, Salvucci, & Koedinger, 2004).  There are several ways to make 

GOMS easier to use.  CogTool (John, Prevas, Salvucci, & Koedinger, 2004) could solve 

this limitation by providing a graphical user interface (GUI).  Users of CogTool can 

obtain the predictions of execution time easily, based on the KLM and the perceptual-

motor component of ACT-R.  

Although CogTool makes user predictions easier, it still has a limitation that 

GOMS has.  That is, the GOMS-type models can only predict errorless skilled 

performance (although GOMSL could predict learning, CogTool does not include it).  

However, it would be useful to predict the time course of learning from novice through 



 7 

intermediate to expert.  The GOMS framework and its extensions are a good start to 

predict expert behavior but knowing how a model can represent the process of learning a 

real world task would be a useful extension.   

2.2 Cognitive architecture-based learning user models  

Cognitive architectures, such as ACT-R and Soar, theories of the information 

processing mechanisms that are used  in cognition, often provide learning mechanisms so 

that a cognitive model implemented under these architectures could predict learning 

during a task. Thus, GOMS-like models implemented in them could learn as well.   

For example, ACT-R (Anderson, 2007; Anderson et al., 2004) is based on a 

production system; declarative knowledge is represented as a relational network of facts 

and procedural knowledge is represented as production rules.  Each production rule has a 

condition/action statement and specifies when a cognitive act should take place.  Based 

on the construct of declarative and procedural knowledge, ACT-R provides learning 

mechanisms and even a forgetting mechanism—i.e., the activation mechanism and the 

production rule learning mechanism (e.g., Anderson, 1982a; e.g., Anderson, 1982b; 

Anderson & Fincham, 1994; Anderson, Fincham, & Douglass, 1999; Pavlik & Anderson, 

2005; Taatgen & Lee, 2003). More recently, ACT-R models were developed to match the 

results of brain imaging studies (Anderson, 2007), and its framework has a key role in 

some intelligent tutoring systems (Corbett & Koedinger, 1997).  

Newell and Rosenbloom (1981) proposed an impasse-driven learning mechanism 

called chunking, which is the foundation learning mechanism in the Soar cognitive 

architecture.  Soar has multiple learning mechanisms according to the different 



 8 

knowledge types: (a) it has chunking and reinforcement learning for the procedural 

learning, and (b) it has episodic and semantic learning for declarative learning (Laird, 

2012). Chunking can happen when there is a lack of sufficient knowledge in a current 

problem space. Soar generates a subgoal to resolve the impasse.  When this impasse is 

resolved or other results are produced, a new procedural memory is created. If Soar 

encounters a similar condition in the future, it can apply this newly learned chunk/rule to 

avoid the impasse. By adjusting numeric values that are relevant to rules, Soar includes 

reinforcement learning. Episodic learning are records of the contents of working memory 

while semantic learning and memory are related to storing and retrieving declarative 

facts. 

Myer and Kieras (1997) developed a framework, EPIC,  that can account for 

human information processing especially human perception, cognition, and motor 

activity for human computer interaction. With production rules, human performance 

(cognitive process) can be simulated and organized as a method to accomplish. Although 

EPIC does not have a learning mechanism in it, it has been widely used as a cognitive 

modeling technique and cognitive task analysis tools to explore human computer 

interaction.  

Other cognitive architectures can be found in reviews (Langley, Laird, & Rogers, 

2009; Morrison, 2003; Pew & Mavor, 1998; Ritter et al., 2003).  Cognitive architectures 

have been widely used for modeling human behavior, understanding human cognition 

and problem-solving tasks.  However, because those architectures use low-level 

languages, it can be difficult to create models using them.  These features may lead 

cognitive modelers to concentrate on representing smaller and shorter tasks. We also 



 9 

argue that it would be better if we could generate several user models that predict a 

different range of expertise in a particular task with a single effort, similar to Card, 

Moran, and Newell’s (1983) range of behavior. It would be much better if we can ease 

development of cognitive models through reuse (Langley, Laird, & Rogers, 2009; Ritter 

et al., 2003), however, the current range of cognitive architectures that we present above 

do not provide those features very strongly.   

2.3 High-level languages for creating user models that learn 

High-level behavior representation languages use abstractions to generalize 

common structures and processes found in existing cognitive architectures (Ritter et al., 

2006).  These persistent commonalities are evident when one considers defining a high-

level knowledge representation, building a structured task analysis, or implementing a 

decision cycle characterized by the perceive-decide-act mechanism.  Cognitive 

architectures’ shared dependence upon least commitment (or the making of control 

decisions at every decision point) and associative encoding (or the associative retrieval of 

potential courses of action and a conflict resolution process for choosing between 

solution paths) entail a set of core commonalities from which to abstract.  The 

commonalities include: declarative memory structures and retrieval methods, goals, 

procedural memory frequently used for the achievement of those goals, mechanisms for 

responding to external events, and an iterative decision process (Jones, Crossman, 

Lebiere, & Best, 2006; Langley, Laird, & Rogers, 2009).   

These approaches can differ in many respects, such as their different 

representation structures, different reasoning and learning processes, etc.  We will briefly 

summarize four existing candidate approaches for assisting to create more complex 



 10 

cognitive models:  Jones et al.’s (2006) High Level Symbolic Representation Language 

(HLSR), Rosenbloom’s (2009) graphical approach (Sigma), Reitter and Lebiere’s ACT-

UP, and Herbal, a High-Level Behavior Representation Language (Cohen et al., 2010). 

HLSR uses three primitives (relations, transforms, and activation tables) to create 

micro-theories for representing cognitive models or architectures (and by extension, 

cognitive theories). It has two approaches; (a) a top-down approach by analyzing 

similarities across a numerous cognitive architectures and (b) a bottom-up approach by 

providing a common language that generate both ACT-R and Soar models. Those 

approaches enable modelers to develop cognitive models more easily.  

Rosenbloom (2009) seeks to develop a unified implementation level based upon 

factor graphs. According to Rosenbloom, a cognitive architecture can be represented 

using graphs, because it has a fixed structure for the human mind, and there are relations 

of knowledge and skills that are embodied within the architecture.  

ACT-UP is a high-level implementation of ACT-R that emphasizes rapid 

modeling and reusability.  It asks the modeler to specify algorithms in a functional 

programming language rather than in procedural rules, committing only to verifiable 

portions of the model, and underspecifying unclear strategies (Reitter & Lebiere, 2010).  

The authors report writing a complex model (Reitter, Keller, & Moore, 2011) in 10% of 

the lines of code in the ACT-R variant in a fraction of the time. 

Herbal characterizes common cognitive modeling tasks such as task analyses and 

problem solving using an ontology based upon the Problem Space Computational Model 

(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991).  Its ontology consists of agents, 

problem spaces, conditions, actions, and types (Cohen, Ritter, & Haynes, 2010, also see 



 11 

the Herbal web site, tutorial, and sample models).  Each of these approaches is 

promising; each potentially allows for comparative analysis across architectures.  Each, if 

fully developed, could promote model reuse across a diverse community of users. 

Herbal, however, has some unique features among the four approaches. HLSR 

supports both Soar and ACT-R, but is not yet available outside of its developers. The 

results of an unpublished usability study (N = 23 in three between-subjects conditions) 

comparing Soar, ACT-R, and HLSR show that there are few reliable differences between 

these approaches in several tests, except some tasks might be coded about 2x faster with 

HLSR2. Sigma is still at an early stage and remains focused on re-implementing aspects 

of Soar on a more functional level.  

Herbal, in contrast, is open source, supports two cognitive architectures and one 

agent architecture across a set of common cognitive modeling tasks (Soar, ACT-R, and 

Jess), has been tested with several usability studies (e.g., Cohen, 2008; Cohen, Ritter & 

Haynes, 2010, 2012) to improve it and document its effect on coding time, has been used 

to create several models (Cohen, Ritter, & Haynes, 2007; Cohen et al., 2010; Friedrich, 

2008; Paik et al., 2010), and has been used for a docking study, which compares how two 

similar models perform, and considers what would be needed to ‘dock’ them to produce 

the same results (Burton, 1998).  The docking study was done by developing a previously 

existing model (Pirolli, 2007) in ACT-R and comparing its results to a Herbal-created 

model (Zhao, Paik, Morgan, & Ritter, 2010).  So, we have chosen to develop our model 

using Herbal.   

                                                
2 We thank Jacob Crossman for providing us with a copy for our use.   



 12 

2.4 Summary 

In this section, we briefly reviewed the currently used cognitive modeling 

approaches that allow cognitive modelers to develop models of users more easily, starting 

with GOMS. Several cognitive architectures, such as ACT-R and Soar, have been used to 

create models because of the limitations of GOMS-type engineering models, such as the 

difficulty of use and inability for representing novice users and their learning process. It 

is difficult to make cognitive models using these cognitive architectures, because they use 

low-level languages. This difficulty may have led cognitive modelers to concentrate on 

representing smaller and shorter psychological tasks.  

The reimplementation of cognitive modeling languages using object-oriented 

languages (e.g., Java) may be useful for programmers who are familiar with those 

languages, but does not address the fundamental problem of choosing an abstraction level 

that is unsuitable for complex tasks and partially unknown strategies. 

The high-level cognitive languages that are reviewed could help resolve these 

problems. Among them, Herbal has several advantages for user modeling. It has 

undergone several usability tests, has been used to created several models, has had a 

docking study, and it is published under an open source license. Next, we will describe 

Herbal and work related to Herbal more fully, focusing on Herbal’s implications for HCI 

and the more rapid creation of user models that can learn.  

3.  Herbal 

In this section we provide a description of Herbal. We also present the recently 

added ACT-R declarative memory pane compiler (Herbal/ACT-R compiler), which uses 



 13 

the key components of Herbal and was used to build a range of ACT-R models in a 

spreadsheet task. 

3.1 Overview of Herbal  

Herbal’s ontological representation is based on the PSCM. It defines behavior as 

operators modifying states, as well as change through choosing and using problem 

spaces.  The elaboration cycle describes the process by which an agent modifies its state 

representation through the associative retrieval of information.  The agent achieves this 

through the firing of production rules (conditions and actions): conditions are the 

circumstances under which that information is relevant; actions specify the knowledge to 

perform or apply. The decision cycle in turn consists of repeated cycles of elaboration 

that persist until quiescence—until no further rules can be fired.  

The agent makes decisions based upon its state interpretation and preferences, 

choosing either a unique operator (actions capable of transforming the state) or 

generating an impasse if an operator cannot be selected due to insufficient knowledge. 

Agents resolve impasses by generating sub-states that enable the agent to retrieve the 

information necessary to specify the next operator.  Problem spaces are thus 

representations describing a sequence of decisions (or a search in the event of limited 

knowledge) that can be further defined in terms of goals, states, and operators.  

Herbal’s ontology characterizes behavior in terms of classes that represent 

concepts such as states, operators, elaborations, impasses, conditions, actions, and 

working memory.  These classes furthermore entail basic relationships for instance—

states can contain impasses, working memory, operators, elaborations, and other 



 14 

information while operators and elaborations can contain zero or more conditions and 

actions.  Programming in Herbal thus involves instantiating objects using these 

ontological classes.   Herbal also supplies additional attributes that enable future 

developers to understand the model including its design rationale, the intent motivating 

creation of a given object. Including the design rationale can lead to models that can 

explain themselves (Haynes, Cohen, & Ritter, 2009).  

Users create models by editing Herbal’s classes either graphically with an Eclipse 

plug-in or directly in XML. The plug-in affords users access to Eclipse’s functions to 

assist them in creating and maintaining models in a graphical interface. While Eclipse can 

simplify the creation of PSCM components, some developers prefer to work directly with 

the Herbal high-level language in XML.  Developers can edit the Herbal XML code 

directly, and these changes are immediately reflected in the GUI Editor (Friedrich, 

Cohen, & Ritter, 2007). Herbal then compiles the XML representation into low-level 

rule-based representations that are executed within a lower level architecture, Soar, or 

Jess, and, as we report here, ACT-R. More information on Herbal is available from its 

web site (acs.ist.psu.edu/herbal) including a manual, and sample models.  

Herbal clarifies for the user the model’s structures and relationships, and makes 

the high level structures (e.g., operators, problem spaces) available as first class 

structures. In general, the arguments for using a high level behavior representation 

language for modeling are similar to all arguments for high level languages (Brooks, 

1975), including ease of use, programming speed and uniformity, and intelligibility of the 

resulting model/program (Cohen et al., 2010; Dancy & Abuomar, 2012; Ritter et al., 



 15 

2006).  In the following two sections, we briefly describe applications and usability tests 

of Herbal before discussing recent work extending Herbal to include an ACT-R compiler. 

3.2 Applications of Herbal 

Herbal has been used to create several models that learn. To provide some 

context, we describe briefly four representative models, as well as work using Herbal to 

develop an intelligent user interface.   

Cohen et al. (2007) tested a model of learning and unlearning by implementing a 

competitive reflective learning model and also opponents in Herbal/Soar.  Participants 

(n = 10) and a learning model played a simplified baseball game, acting as the model 

pitchers attempting to strike out batters.  Each participant faced batters employing one of 

five batting strategies:  hacker (always swinging), aggressive (always swinging at the 

first pitch and when there are fewer strikes than balls, unless there are three balls and two 

strikes), random (randomly swings), chicken (never swings), and alternate (swings if the 

last pitch was a fast ball and does not swing at the first pitch or if the last pitch was a 

curve ball).  The pitcher model learns to pitch and the batter models (written in an 

afternoon) respond to the model or human participant by cycling through all five batting 

strategies (presented in blocks).  Participants and the model continued playing the game 

until they had struck out seven batters in a row.  The model’s learning compared well to 

humans doing the same task.   

Herbal has also been used to create a revised version (Friedrich, 2008; Friedrich 

& Ritter, 2009) of the Diag model (Ritter & Bibby, 2008).  The original Diag model, 

written in Soar, predicted fairly accurately (r2 > .95) the time course of learning and 



 16 

problem solving in a troubleshooting task for 8 out of 10 subjects.  The data Friedrich 

gathered was done in a way to lead to more strategies.  Herbal was used to create five 

more strategies and was used to find further combined strategies (18 out of 37 had 

significant r2’s and 25 were greater than .5) in the additional subjects’ behavior.  

Herbal has also been used to create a model of an anti-terrorism force protection 

planner as part of the Rampart project (Haynes, Kannampallil, Cohen, Soares, & Ritter, 

2008).  This model is embedded in a complex decision-support environment that assists 

users in selecting between various resource allocation options.  

A version of Pirolli’s (2007) hotel price-finding ACT-R model created using 

Herbal was compared (docked) to a similar model created by hand, and we found that the 

models match each other’s performance. Furthermore, Herbal has been used to create a 

Soar model in an adversarial reasoning task in NSS (Dancy & Abuomar, 2012).   

These projects provide some illustration of Herbal’s versatility.  In each case, we 

could not have developed models of equivalent complexity or interest as quickly in the 

underlying low-level formalisms. These projects suggested two things: one, that it would 

be useful to have a compiler in Herbal for ACT-R (e.g., Anderson, personal 

communication, has asked how would an ACT-R model of the Diag task perform?); and 

two, it would be useful to have a compiler that supported representing task analyses more 

directly.  We report a recent extension of Herbal that provides these two features, and an 

implemented model that begins to test them showing how learning from novice can be 

modeled. 



 17 

3.3  Tests of Herbal’s Usability 

We have tested how much faster Herbal is to create models several times.  A 

summary is shown in Table 1.  The table uses a baseline rate of 3.6 min/production. This 

rate was reported by Yost (1992, Table 4-2, 4-3, and Yost, 1993, finding 3.6 

min./production as the median across tasks in three experiments) as a time to write Soar 

production rules using his TAQL high level language. Yost’s three subjects were 

graduate students in computer science at Carnegie Mellon University (and included 

himself).  They created a variety of relatively small AI and logic tasks. Yost does not 

report times for Soar, but an anecdotal rule of thumb that was used at the time was 5 min. 

per production. 

Table 1.  Tests of Herbal’s usability.  

Publication Speed 
up 

Time per 
prod. 
(min.) 

Population N Task 

Morgan et al. (2005) 16% 3 PSU under-
graduate (UG) 

1 Tank game 

Cohen et al. (2007) n/a n/a PSU graduate 
student 

1 Baseball pitching 

Cohen (2008) 44% 2 Lock Haven 
Psych, CS & CIS 
UGs 

24 Vacuum cleaner 
simulation tasks 

 
In Table 1, Morgan et al. (2005) reported a study of a single Penn State  

undergraduate writing a single tank model to play a tank game.  Cohen (2007) reported 

creating 6 models with about 10 rules per model in an afternoon, but did not report the 

model creation rate because he did not think it would be believed (Cohen, personal 

communication, 2007). In his thesis, Cohen (2008) explored teamwork and maintenance 

using Herbal.  He had teams of undergraduate students build models. One student would 



 18 

build components, a library, and then another would use the components to build a model 

to move in the Vacuum cleaner world (Cohen, 2005, Table 7-4).  The students working 

serially created 16 production models much faster than Yost reported, but perhaps more 

importantly, half of these students were undergraduate psychology majors at a teaching 

college, and their performance was indistinguishable from undergraduate CS majors 

there, and faster than CMU graduate students.  

Herbal has also been used to create larger models where timing was not recorded.  

Friedrich (2008) used Herbal to create six models of multiple strategies on a 

troubleshooting task.  The previous project created one model of this task.  Friedrich did 

not report time per production, but created 6 times more models than previous work.  

There are several limitations to these data.  The tasks are not as big as some 

expert system tasks and some models, and the models are not hardened to be systems, a 

criterion that Brooks (1975) notes makes systems slower to be developed.  The subjects 

are probably not representative of commercial developers who both have more 

experience and also more distractions.  Interaction with the task remains a problem as 

well. The models created here had tasks immediately available to them to interact with—

supporting models’ interactions with tasks can be problematic and take time to create and 

debug (Ritter, Baxter, Jones, & Young, 2000).  Overall, however, these results suggest 

that Herbal/Soar allows less experienced modelers with less background (i.e., psychology 

vs. computer science) to create models more quickly.  



 19 

3.4  The Herbal/ACT-R Compiler 

We have created a task-analysis-based compiler in Herbal to create ACT-R 

models that perform a hierarchical or sequential task. The compiler is based on 

representing task knowledge in a hierarchical task analysis in declarative memory. With 

this approach, we were able to add hierarchical and sequential tasks to an ACT-R model 

—the relations among tasks are shown in a tree form in the user interface. Herbal then 

makes declarative memories and production rules based on these relationships, and based 

on those chunks and rules the Herbal/ACT-R compiler can generate either a novice ACT-

R model or eleven kinds of expert ACT-R models with varying degrees of expertise 

ranging from 0% to 100%. In this case, expertise is based on the task completion times, 

that the times are relatively lower than novices require to perform the task, and similar to 

how these terms have been used previously in HCI (Bovair, Kieras, & Polson, 1990; 

Card, Moran, & Newell, 1983).   

Novice models, in this framework, have no information regarding the next task 

step, and thus must retrieve each step from declarative memory, whereas the expert 

models have the next task step incorporated as part of the operation some proportion of 

the time. The proportion of the time the step is known is used to label the model (e.g., 

10% of the time is the 10% expert).  The novice model thus predicts the maximum 

anticipated completion time while the normative expert models (described below) 

provide the task time for a range of expertise including complete experts. 

Distinguishing novice from expert, we further divided the expert models into two 

types: (a) a normative expert, model where all the declarative memory elements for the 

task has been compiled into procedural knowledge, and (b) practicing experts, models 



 20 

that exhibit varying degrees of proceduralization. The model exhibiting 100% expertise 

(normative expert) provides a baseline. It does not use memory elements in declarative 

memory to perform a task because the model has these elements fully proceduralized.  

Models ranging between 0% and 90% expertise (practicing experts) have a 

proceduralized task structure, but the number of declarative memory retrievals to walk 

the task structure varies. For example, if a model needs to have ten declarative memories 

(DMs) to perform a task, the 0% expertise model needs to retrieve all DMs to perform a 

task while the 10% expertise model needs nine DM retrievals, because one (10%) 

declarative memory is already proceduralized. The rest of the models, such as 20%, 30%, 

etc, perform a proportional amount of declarative memory retrievals with this 

mechanism. (The 0% expert model differs from the novice model in that the 0% expert 

one knows which memories to retrieve, however, the novice one has to fully walk the 

task tree in declarative memory to find the steps to do.)  The practicing expert models 

thus provide us with a basis for making useful comparisons with the human data by 

providing incremental predictions of performance (task completion time) based upon 

expertise, and will perhaps enable us to isolate the participants’ actual average level of 

expertise at the onset of learning.  

Figure 1 shows (a) the declarative memory structure of the two types of models, 

and (b, c) examples of the mechanism to perform a task with respect to different levels of 

expertise. As can be seen in Figure 1, the novice model walks through all the nodes of the 

task structure based on a depth-first search method to perform a task. However, the 

practicing expert models need to retrieve only a proportional amount of information 

based on each models’ expertise. 



 21 

 

 
(a) An example of the model’s declarative memory structure, with sub-tasks 1-3 shown 
and unit tasks below them. Each node represents a chunk and each arrow represents the 

hierarchical relationship between chunks.  

 

(b) An example trace of the mechanism to perform a task in the Novice Model.  

 

(c) Example traces of the chunks used to perform a task in the practicing expert models. 
Figure 1. The declarative memory structures for the models (a), and the example traces of 
the mechanisms to perform a task with respect to different levels of expertise (b, c).   



 22 

4.  Description of the Empirical Data 

Here, we compare the learning performance data (subjects using a menu-driven 

interface) with our models’ performances. We used published human performance data 

on the Dismal spreadsheet task (Kim & Ritter, 2015).  The Dismal spreadsheet task is 

sequential, consisting of 14 subtasks; tasks are performed in order once per session and 

not repeated multiple times, such as in Argus (Schoelles & Gray, 2001) and similar tasks 

where a single task is performed through the duration of a session.  Table 2 shows the 

subtasks of the Dismal spreadsheet task.   

Table 2.  The fourteen subtasks in the Dismal spreadsheet task.  

(1) Open a file, named normalization.dis under the experiment folder 
(2) Save as the file with your initials 
(3) Calculate and fill in the Frequency column (B6 to B10)  
(4) Calculate the total frequency in B13  
(5) Calculate and fill in the Normalization column (C1 to C5) 
(6) Calculate the total normalization in C13 
(7) Calculate the Length column (D1 to D10) 
(8) Calculate the total of the Length column in D13 
(9) Calculate the Typed Characters column (E1 to E10) 
(10) Calculate the total of the Typed Characters column in E13 
(11) Insert two rows at cell A0  
(12) Type in your name in A0 
(13) Fill in the current date in A1 using the command dis-insert-date 
(14) Save your work as a printable format 

 

4.1 Method 

4.1.1 Materials 

Subjects performed the Dismal spreadsheet task using a vertical mouse (Evoluent 

Vertical Mouse), a Macintosh keyboard, an Apple desktop computer, and a 20” display.  

The task completion time and keystrokes, mouse clicks (pressed and released), and 



 23 

mouse movements (e.g., xy coordinates of mouse locations in pixels) were recorded by 

the Recording User Input (RUI) system (Kim & Ritter, 2007; Kukreja, Stevenson, & 

Ritter, 2006; Morgan, Cheng, Pike, & Ritter, 2013). 

Figure 2 shows the study environment with RUI and Dismal. In the Dismal 

spreadsheet, some default values were provided in the Frequency and Normalization 

columns.  Thus, participants worked on the same spreadsheet problems across sessions, 

but the data given were varied.   

 

Figure 2.  The Dismal spreadsheet task study environment.  RUI is seen on the left and 
ready for recording user performance.  Dismal on the right is ready for user input.  

 

4.1.2 Participants 

A total of 78 students at Pennsylvania State University took part in the original 

experiment for compensation (Kim & Ritter, 2015).  The first 6 participants were pilot 

subjects and 12 participants could not complete the multiple experiment sessions due to 

personal time conflicts (e.g., a job interview that arose after starting the study).  Thus, a 



 24 

total of 60 completed all of the experimental sessions; 30 subjects (randomly assigned) 

using the menu-driven interface and 30 subjects using the keystroke-driven interface.  No 

participants had previous experience with the Dismal spreadsheet, Emacs, or this task.  

Menu-driven users all reported no experience with the vertical mouse.  All participants 

that completed all required sessions were paid in full. There were no incentives based on 

performance. 

4.1.3 Design 

The experiment consisted of two independent factors of input modality 

(keystroke-driven modality and menu-driven modality).  In this paper, we are only 

interested in modeling the mouse-driven modality.  

4.1.4 Procedure 

For the learning sessions, all subjects completed a series of study sessions for four 

consecutive days, Day 1 to Day 4.  In the study sessions, subjects used the study booklet 

to learn the Dismal spreadsheet task knowledge (this use was not recorded).  The duration 

of each study session was no longer than 30 minutes.  After subjects studied the booklet, 

they performed the Dismal spreadsheet task.  While doing the task they had access to the 

study booklet.  For example, on Day 1, participants had a maximum of 30 minutes to 

study the given spreadsheet task and then performed the Dismal spreadsheet task.  On 

Days 2 to 4, subjects were allowed to refresh their acquired knowledge from Day 1, using 

the study booklet, and then performed the task.   



 25 

4.2 Results 

All of the menu-driven interface thirty-subjects completed the learning sessions, 

which includes performing the subtasks in order.  Their mistakes were not analyzed 

formally, but they were not catastrophic (i.e., they managed to complete the task in all 

sessions).  Mistake correction times are included in the task completion times.  The 

average task completion time ranged from 1,366 s (SE = 60.8 s) on day 1 to 659 s (SE = 

22.7 s) on Day 4, shown in Table 3.  Figure 3 shows the mean task completion time in a 

linear and log-log scale (Newell &  , 1981).  The learning data matches the power law of 

learning (y=1,338 x-0.5, r2 = 0.99, for the menu-driven modality group, fit in log-log 

space).   

Table 3.  Task completion times in seconds for the four learning sessions.  
 Day 1 Day 2 Day 3 Day 4 

M 1,366 894 727 659 

SE 60.8 26.6 25.5 22.7 
 

 
(a) Task completion times for four learning sessions. Error bars show SEM.   



 26 

 
 (b) The log-log plot of learning data.  Error bars show SEM.   

Figure 3. Learning performance of the menu-driven modality group with error bars 
showing SEM. 

5.  Description of Model Predictions 

There are two ways in Herbal to make an ACT-R model for the Dismal 

spreadsheet task3. One is using the Herbal declarative memory pane (GUI), and the other 

is using the corresponding memory elements in the XML representation. We used the 

XML representation to enter the information of each unit task and their relationship, 

because this task has numerous declarative memory elements and unit tasks in each 

subtask, and these tasks are repeated in a very similar sequence.  

After entering the whole task, the Herbal/ACT-R compiler translated this XML 

file into Herbal as a tree structure. Figure 4 shows the XML structure of the declarative 

memory elements and the structure of the Dismal spreadsheet task in Herbal. 

                                                
3 The models can be downloaded at http://acs.ist.psu.edu/paik/Dismal_Models.zip 



 27 

 
<xs:element name=”declarativememories”> 
 <xs:element name=”declarativememory”> 
  <xs:element name=”parents”> </xs:element>  
  <xs:element name=”firstchild”> </xs:element> 
  <xs:element name=”nextsibling”> </xs:element> 
  <xs:element name=”action”> </xs:element> 
  <xs:element name=”perceptualmotor”> </xs:element> 
  <xs:element name=”chunktype”> </xs:element> 
  <xs:element name=”key”> </xs:element> 
  <xs:element name=”nextperceptualmotor”> </xs:element> 
  <xs:element name=”prerequest”> </xs:element> 
 </xs:element> 
</xs:element> 
 

 
Figure 4. The XML structure of the declarative memory elements and the structure of the 
Dismal spreadsheet task in the Herbal GUI.   

 

5.1 Novice model 

The novice model has 1,152 declarative memory elements (614 for the process of 

the task, and 538 for the characters to be entered) representing the task and 29 production 

rules. Each chunk of declarative memory about the task has a parent, first child subtask, 

next sibling task, and slots that contain perceptual-motor tasks to be performed. Using the 

relationship among the tasks, Herbal generates in ACT-R a Dismal spreadsheet model 



 28 

hierarchically as a specific sequence of tasks. Among the 29 production rules, 19 rules 

walk through the hierarchical tree structure, and retrieve the next node from the 

declarative memory elements according to a depth-first search algorithm to complete the 

task. The other 10 rules are applied when the model uses the perceptual-motor 

components of the ACT-R architecture. 

5.2 Expert model 

The expert model with 100% expertise does not use any of the declarative 

memory elements describing the task steps to perform the task.  It only uses 538 

declarative memory elements for recalling strings to type in the task. (The model already 

knows the whole process of the task and the sequence of each subtask and unit task in a 

proceduralized way.) The declarative memory elements for the process of the task could, 

of course, be included in the model, but would not be used by this model. The 617 

production rules follow the number of unit tasks in the Dismal spreadsheet task and the 

typing task, so the model follows these steps according to the sequence of the whole task.  

5.3 Levels of expertise models 

We have 10 different models between the novice and the expert. Each model has 

a different level of expertise, from 0% to 90%. We represent the expertise using different 

numbers of declarative memory chunks and the extent that declarative memory chunks 

are retrieved by production rules. Each declarative memory element contains the next 

task information, so the model can walk through the whole task. The model with 0% 

expertise has 1,152 declarative memory elements, the same as the novice model, and it 

has 617 production rules. This model always retrieves declarative memory chunks to 



 29 

move to the next step, but it knows which chunks to retrieve, and does not have to follow 

a tree to find the next action as the novice model does. 

The difference between the 0% expertise model and novice model is that the 0% 

expertise model has the exact information of the next step to do (the next declarative 

memory to retrieve), however, the novice model has to carry out more memory retrievals 

to walk through the hierarchical tree structure using a depth-first search algorithm. 

As expertise increases, the number of declarative memory elements used by the 

model decreases. This is because the meaning of expertise in a task is the amount of 

knowledge, information, and experience of that task already proceduralized, so the model 

does not need to retrieve the next steps from declarative memory. For example, the 10% 

expertise model uses 1,091 (614*0.9 +538) declarative memory elements (chunks), the 

30% expertise model uses 968 (614*0.7 + 538) chunks, the 50% model uses 845 

(614*0.5 + 538) chunks, and so on.  Table 4 shows the distribution of the number of 

declarative memory elements and production rules for the models.  

These 12 models (one novice, one normative expert, and 10 practicing expert 

models) use the ACT-R perceptual-motor modules to interact with the task simulation. 

Table 4. The distribution of the number of declarative memory elements and production 
rules for models. 

 Models with Expertise 

 Novice 0% 10% … 50% … 100% 

Decl. mem. elements used 1,152 1,152 1,091 … 845 … 538 

Production rules 29 617 
 



 30 

5.4 The models over multiple runs 

Running these 12 models, we confirmed that the novice, intermediate, and expert 

models perform the task. ACT-R includes a learning mechanism that joins rules that fire 

close enough to each other (production compilation) and strengthening declarative 

memories through use, so, all the models also learn, with the novice model learning the 

most and the 100% expert model the least.  Table 5 shows the number of initial rules, 

learned rules through the production compilation process in ACT-R, and declarative 

memory retrievals at the 1st and the 100th trial.  

As shown in Table 5, there are differences among the models in the number of 

rules and declarative memory retrievals. And these differences in task completion time 

(as predicted by the ACT-R trace, not wall clock time) are shown in Figure 5. 

The 12 kinds of ACT-R models show different times at the first trial; however, 

the task completion time decreases with practice in all models. Finally, all the models 

converge at around 400 sec. between trials 40 and 100.  

 



 31 

Table 5.  The number of initial rules, learned rules, and declarative memory retrievals at 
the first trial and 100th trial in each model (each declarative memory at Trial 1 has the 
same amount of the declarative memory elements, 538, related to the keystroke activity).  

 
Initial 
rules 

Learned 
rules 

DMs used on 
Trial 1 

DM used on  
Trial 100 

Novice 29 253 1,152 1,073 
0% Expertise 617 197 1,152 1,036 

10% Expertise 617 199 1,091 987 
20% Expertise 617 197 1,030 940 
30% Expertise 617 199 968 890 
40% Expertise 617 199 908 843 
50% Expertise 617 199 845 793 
60% Expertise 617 196 784 745 
70% Expertise 617 199 723 697 
80% Expertise 617 199 661 647 
90% Expertise 617 198 600 600 
100% Expertise 617 197 538 538 

Note: The reason that the number of learned rules has slight fluctuations, 
e.g., 197, 199, 197, 199, etc., is that there is noise in the production 
compilation process of ACT-R. 

 

 

Figure 5.  The learning curves for the novice model and the expert models.  



 32 

 

5.5 Comparison of the models’ predictions with aggregate human data 

Figure 6 shows the human data (with SEM as error bars) compared to the 

prediction times of all the models and also the predicted time for a Keystroke-Level 

Model (KLM, Card, Moran, & Newell, 1983).  

Figure 6 shows that the aggregate human data starts close to the novice and 0% 

expertise model at the first trial and decreases at the second trial more than both of these 

models, but within the SEM error bars. After the 2nd trial, the human data decreases more 

gradually. The human data are between the 0% expertise (or novice) model and the 20% 

expertise model.  The best correlation is to the 80% model (r = .999), but all models (but 

for the 100% expert model) are r > .93 and the smallest RMS error is for the Novice 

model.    



 33 

 
 

Figure 6. Comparison between the ACT-R models, the KLM model, and the human data 
on the dismal spreadsheet task.  Error bars on the aggregate data are SEM. 

The KLM (solid line) predicts experts can complete the task in 765 sec., that is, 

around the 3rd trial of the human data and for the novice model. For the KLM constants, 

we use 1.1 sec for the (initial) mouse positioning times, 0.4 sec. for the homing times, 

1.35 sec. for the mental preparation times, and 0.6 sec. for the keystrokes. The 0.6 sec. is 

the average typing speed from 11 participants for this study (Kim, 2008). If we use 0.5 

sec. that is the “typing random letters” (see Card et al., 1983, p. 264), the task completion 

time is 674.6 sec. that is similar to the 4th trial of the human data. However, the KLM 

does not explain that learning occurs, and it is also the case that the performance of the 

expert model predicts that users will be faster than a KLM model with the fastest typing 

speed and with further practice users will move further away from the KLM’s 

predictions.  These ACT-R models may be too fast.  It has been pointed out that it is more 



 34 

conservative for models to under-predict time (Kieras, 1985).  Additional data would be 

needed to test or for the further development of ACT-R.  

Overall, the ACT-R models predict the aggregate human performance from our 

study. While the human data ends at the 4th trial, we can predict the human learning 

curve after the 4th trial from the models’ performance.   

5.6 Comparison of the models’ predictions with individual human data 

To understand the model better, we compared each subject’s performance with 

the models. Table 6 shows all the model predictions-time correlations. Figure 7 shows the 

best, worst, and average fits of the models to individual data.  Generally, the model fits 

are high, with the lowest best fit of r = .845, lowest worst fit of r = .832, and an average 

best fit of .976.  The novice model was the best fit for 17 subjects, the 0% expert model 

was best for 7 subjects, the 10% expert model for 3 subjects, the 20% expert model for 1 

subject, and 100% expert model for 2 subjects.   



 35 

Table 6.  Correlations (r) of the model predictions and subject times. (Best fit noted in the 
first column and in bold italics.) 

    BestFit Nov   0   10   20   30   40   50   60   70   80   90   100  
 s7  Nov   .992 .987 .989 .987 .988 .988 .990 .989 .989 .988 .988 .988  
 s9  Nov   .976 .968 .973 .971 .970 .971 .973 .972 .972 .972 .972 .971 
s11  Nov   .992 .987 .989 .988 .988 .988 .989 .989 .989 .988 .988 .988  
s15  Nov   .977 .970 .973 .971 .972 .972 .974 .973 .973 .972 .972 .971 
s16  Exp20 .996 .996 .997 .998 .996 .996 .996 .996 .997 .997 .997 .997 
s17  Nov   .968 .959 .965 .963 .961 .962 .965 .964 .964 .963 .964 .964  
s26  Nov   .960 .950 .957 .955 .952 .954 .956 .955 .956 .955 .956 .955 
s27  Nov   1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
s29  Nov   .996 .993 .996 .995 .994 .995 .995 .995 .995 .995 .995 .995  
s30  Nov   .990 .986 .987 .985 .987 .987 .988 .988 .987 .986 .986 .986  
s31  Exp0  .986 .991 .987 .987 .990 .989 .988 .988 .988 .988 .987 .987  
s32  Nov   .976 .968 .972 .970 .970 .970 .973 .972 .972 .971 .971 .971   
s33  Exp0  .996 .998 .997 .998 .998 .998 .997 .998 .998 .998 .998 .998  
s34  Exp0  .882 .887 .880 .876 .887 .883 .882 .883 .881 .879 .878 .877   
s40  Exp30 .962 .964 .960 .957 .964 .961 .961 .962 .960 .959 .959 .958   
s48  Exp0  .960 .968 .964 .967 .966 .966 .964 .964 .965 .966 .966 .967  
s42  Exp30 .873 .875 .870 .864 .876 .871 .871 .872 .870 .868 .867 .866  
s43  Exp0  .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
s44  Nov   .999 .999 .999 .998 .999 .999 .999 .999 .999 .998 .998 .998   
s45  Nov   .997 .995 .997 .997 .995 .996 .997 .996 .997 .997 .997 .997  
s49  Nov   .999 .997 .999 .999 .998 .998 .998 .998 .998 .998 .999 .999 
s54  Nov   1.00 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999  
s57  Exp40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
s60  Exp0  .998 .999 .998 .998 .999 .999 .998 .998 .998 .998 .998 .998  
s63  Nov   .975 .968 .972 .969 .970 .970 .972 .971 .971 .970 .970 .970 
s64  Nov   .999 .998 .998 .997 .998 .998 .998 .998 .998 .998 .998 .998 
s69  Exp0  .978 .984 .981 .983 .982 .982 .981 .981 .982 .982 .982 .982 
s66  Exp20 .836 .832 .839 .845 .832 .837 .837 .837 .839 .841 .842 .843 
s72  Exp30 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
s75  Nov   .981 .975 .980 .980 .976 .978 .979 .979 .979 .979 .980 .980 

 

 



 36 

   

   

   

Figure 7.  Best (top row), median (middle row), and worst (bottom row) model 

fits to individual data.  

There are some individual differences, but overall, the novice model fits the 30 

subjects performance fairly accurately, with a very high r and a relatively small RMS in 

nearly all cases.  The models appear to capture both the average performance and in this 

case, the individual performances.   



 37 

6.  Discussion and Conclusions 

In this article, we briefly reviewed the history of user modeling beginning with 

GOMS-type engineering models. Although the GOMS-type models have been widely 

used in HCI for designing user interfaces and predicting human behavior, GOMS-type 

models have known limitations predicting the performance of novice users and their 

learning processes. Cognitive architectures such as ACT-R and Soar can predict human 

behavior more precisely than GOMS models do. However, creating cognitive models of 

complex HCI tasks is often impeded by their usability. Herbal may present a solution to 

this concern.  

We have developed the Herbal/ACT-R compiler that enables users to decompose 

a task into hierarchical or sequential subtasks and have this knowledge become 

proceduralised to generate 12 kinds of ACT-R models: novice, intermediate experts (0% 

~ 90%), and normative expert models that perform a complex real world task (i.e., the 

Dismal spreadsheet task).  The models we have developed with Herbal suggest new types 

of models and new uses for models. One model we noted, Herbal/Soar/Diag includes a 

large number of strategies (Friedrich & Ritter, 2009).  Models of language use will have 

far more declarative memories about words, but are not likely to have more DMs about 

task knowledge (e.g., Douglass & Myers, 2010).   

Most of the spreadsheet models have 617 rules and the total across levels of 

expertise is 6,787 rules, and the average number of rules across the 12 models over 100 

learning trials is 771.  This is also larger than the model reported created with the G2A 

compiler (St. Amant, Freed, & Ritter, 2005), which had about 100 rules and did not use 



 38 

ACT-R’s learning mechanisms. The model presented here (Herbal/ACT-R/Dismal) is 

thus perhaps the largest ACT-R model (as measured by rule count) created so far based 

on the models on the ACT-R website (http://act.psy.cmu.edu/models). 

Our models are large, partly because they perform a non-repetitive task. Many 

previous models designed to perform a task taking minutes execute a repetitive task (e.g., 

handle 100 airplanes each in the same way). Doing a long non-repetitive task, on the 

other hand, requires creating a large, complex procedural knowledge set where each piece 

of knowledge is used less often.   

They are also large because they can learn for a long time (up to 100 trials).  

Across 100 trials, we found that the novice model’s task time decreases the most and the 

expert model’s task time decreases the least, which is to be expected. Models at all levels 

of expertise use less declarative memory over time, which may help them avoid a scaling 

problem of DM, which can be encountered in ACT-R and Soar (Kennedy & Trafton, 

2007).   

We also compared those models with human data, where we found that the human 

data are very similar to the 0% expertise model and the novice model at the first trial and 

sharply decreases at the second trial (almost to the 10% expertise model). In the third and 

fourth trials, the curve gradually decreases with practice and ends up between the 0% and 

novice models again. This result might reveal that humans learn more through the first 

trial than our ACT-R models, or the variation of the human performance is difficult to 

predict using the rule learning and declarative strengthening mechanisms of the ACT-R 

cognitive architecture.    



 39 

There are some limitations to this work. An improved fit might be achieved by a 

more precise estimate of the intercept of the model, and perhaps the model not learning as 

fast.  Errors could be examined, as could changes in unit task performance, the time 

course of the match of model and human performance within a trial, and task retention. 

Note that the model is simplified in that training and associated proceduralization occurs 

in four consecutive trials that are not separated by a 23-hour break, as was the case for 

our human participants. But, despite these limitations these results give rise to several 

summary comments of interest.  

6.1 Going beyond the KLM to model individuals from novices to experts 

Comparing the human data with KLM, we found that KLM predicts the task 

completion time of experts to be around 765 sec., which is about the performance at the 

3rd trial of the human data.  By adjusting the keystroke time, from 0.6 sec/keystroke 

(average keystroke time for participants in this study) to 0.5 sec/keystroke (typing 

random letter), we can get 674.6 sec. for the task completion time of experts, and it is 

similar to the 4th trial of human data, however, the KLM does not predict the task 

completion time after the 4th trial of human data nor predict the learning process of our 

subjects up to that point.   

Figure 6 also shows that any model with a fixed task prediction time will have 

problems predicting expert performance because even expert performance appears to 

change with learning. From trial 5 to 100 the model’s response times decrease.  We 

believe that most users’ response times will also decrease, based on learning theory and 

previous learning data (e.g., Newell & Rosenbloom, 1981; Ritter & Schooler, 2001).  The 

model predicts that the time at trial 100 will vary from 410 to 400 seconds—In any case, 



 40 

the users vary with level of practice and will get faster than the KLM will predict, and 

will have a distribution of times based on previous learning.  Existing tools like the KLM 

and GOMS do not explain learning or the distribution we see based on previous practice.   

6.2 Representing Expertise in Herbal and the Cognitive Complexity 

Model 

The representation of expertise in Herbal differs from the one in the Cognitive 

Complexity Model (CCM) (Bovair, Kieras, & Polson, 1990).  We represented expertise 

as a function of the model’s number of declarative memory chunks and retrievals. 

Consequently (at least as presently created), the number of retrieved declarative memory 

chunks gradually decrease as expertise increases, but the numbers of production rules 

(617 at the first trial) does not differ between the intermediate models and the normative 

expert model. In the CCM, however, the differences between the novice and expert are 

represented by the number of production rules to perform a task (Bovair, Kieras, & 

Polson, 1990). Novice models have more production rules than expert models to 

complete the same task, and the number of rule firings makes a difference in task 

completion time between the two. To reduce the number of rules in expert models, CCM 

assumes practice makes the novice rules set more compact. To compact the rules, CCM 

excludes rules that are related with checking prompts from the system, and CCM also 

uses a similar mechanism to production compilation, where rules are composed into a 

single rule when those rules are always executed in a fixed order.  

More concretely, CCMs require modelers to determine which rules can be 

composed into a single rule by investigating the contents of each rule, then combine those 



 41 

rules to reduce the number of production for representing experts. However, the models 

generated using Herbal are basically ACT-R models, so they represent that mechanism 

(production compilation) easily when simulating models in ACT-R because ACT-R’s 

learning mechanisms does the compilation automatically. Herbal also has great efficiency 

in terms of representing expertise. As we noted in the previous section, we made one very 

simple procedural task in a sequential/hierarchical manner, then Herbal generates 12 

kinds of expertise models that can be simulated in various trials to predict the 

intermediate level of expertise. However, CCMs require making different models (novice 

and expert) by reducing the production rules, and cannot predict the intermediate level of 

expertise. 

The basic approaches of CCM for representing novices and experts by 

investigating which tasks could be and should be learned are not easy to learn for novice 

modelers (Bovair, Kieras, & Polson, 1990); yet, they are very cognitively plausible. The 

current version of Herbal does not consider these aspects in generating expertise models. 

It remains as future work, and it could be used for modeling a wide range of users that 

vary by expertise. 

6.3 Herbal for Rapid Developing of Complex User Models 

We have presented a high-level cognitive modeling language that allows for the 

rapid development of complex user models. As we noted in the introduction, one reason 

why cognitive architecture user models have not been more widely adopted is perhaps 

because of the relative difficulty associated with developing them. Cognitive 

architectures such as ACT-R and Soar use a low-level knowledge representation 

language that makes developing user models appear intractable to non-experts. Herbal, in 



 42 

contrast, offers a more lucid means of visualizing sequential and hierarchical tasks and 

creating corresponding models. In addition, Herbal is designed to provide models that 

explain themselves by providing answers to questions that users frequently ask (Haynes 

et al., 2009).  

6.4 Designing GOMS-like Learning Models with Herbal 

GOMS provides the estimated task completion time for the specific system when 

performed by an expert user, however, GOMS has the limitation that it does not predict 

the task completion time of novice users and the learning process.  We created learning 

GOMS-like models through the declarative memory pane of Herbal. The ACT-R models 

created here predict the task completion time of novice, expert, and intermediate users, 

and they also can provide the learning process of each level of user in each trial through 

GOMS-like hierarchical task analysis, but one where the model learns to reduce the 

mental operations and their times.   

The results here suggest that for this task users are experts in some way after the 

4th practice trial based on the comparison to the predicted time from a simple 

KLM/GOMS model.  The results further illustrate the problem with modeling behavior. 

With practice, users get faster. Here the KLM predictions are most accurate for trial 4, 

and then users get faster. (So, we can suggest having users practice a novel task with a 

known apparatus, i.e., a personal computer, three times for comparison with the KLM 

model.)  But for any value of the KLM, there would be either a mismatch with less expert 

or more expert users—experts can have a range of expertise, at least in this task, 

depending on their level of expertise and then with practice.  



 43 

6.5 Further Understanding of Learning Stages 

This model also predicts that the learning behind the learning curve is not smooth 

on a small scale.  This model does not learn the whole task in a completely smooth and 

uniform way—when it learns, it learns in small steps—the learning happens for particular 

subtasks within the hierarchy.  Each sub task, thus, is not in the same partially learned 

state, but might vary widely in level of expertise with some subtasks still being in 

declarative retrieval and some tasks being fully automatized.  The learning curve for this 

model that results when averaging across participants is thus an average of these discrete 

levels of skill.   

A microgenetic analysis of the data might help show how the different sub-skills 

are in different learning stages, and one might even find that the different skills have 

different rates of learning or that different sub skills are learned on average earlier or later 

in the process.  This task has several different subtasks, so it would make a reasonable 

place to start such an analysis.   

Understanding when the sub-skills are learned could be useful for building 

instructional material broadly defined, including the interface itself to support more even 

learning or to shift critical tasks to more easily or early learned skills.  And this 

knowledge could help build tutors as well, based on knowledge about how subtasks were 

learned. 

6.6 Limitation of the Herbal/ACT-R compiler and future work 

We acknowledge that the Herbal/ACT-R compiler is far from mature.  It is not yet 

as easy to use as most end-user environments. It requires familiarity with Eclipse or 



 44 

XML. The Herbal/ACT-R compiler does not use all of the features of the target 

architecture, for example, it does not directly include the other learning mechanisms in 

ACT-R of blending and reinforcement learning.   

There remain differences between the support for the different architectures. For 

example, the declarative model only compiles into ACT-R models. We believe that a 

Soar compiler could be designed to use declarative memory in Soar, however, differences 

of learning mechanisms between Soar and ACT-R may pose challenges. Finally, the 

Herbal/ACT-R compiler uses trees for representing the task, not a graph.  This means that 

when different subtasks are used repeatedly, the model under-predicts the learning that 

will occur.  Herbal still needs more testing with more types of tasks and users that might 

bring more previous knowledge, but despite these limitations it may be useful beyond this 

task illustrated here.  

There are also limitations that the current Herbal/ACT-R compiler does not 

address, such as transferring skills across unit task nodes.  Users might transfer their 

knowledge across the subsubtasks that are repeated. However, the current version of the 

Herbal/ACT-R compiler does not provide any way to represent this transfer. The time 

gap between the training sessions was also not examined either. These remain as 

interesting, near future work.  

Taatgen proposed Actransfer (2013), which is an extension of the ACT-R 

cognitive architecture, to explain the transfer of cognitive skills. The study shows that the 

production rules in ACT-R models can be broken down into primitive information 

processing elements, which are context-independent units, and these primitive elements 

can be not only learned in a particular task, but transferred into or used in the other tasks. 



 45 

The Herbal/ACT-R compiler also uses hierarchical task analysis by decomposing a task 

into subtasks and unit tasks. This suggests that the Herbal/ACT-R compiler can be further 

utilized in studying the transfer of cognitive skills.  

Taatgen et al. (2008) also studied learning from instruction (Taatgen, Huss, 

Dickison, & Anderson, 2008) in Flight Management Systems, and argued that list-style 

instructions are bad for learning and suggested an alternative operator-style instructions 

that provides not only the steps that participants follow, but also the purpose of the steps 

are better for learning. Our Dismal task uses list-style instructions only, so it would be 

interesting we have a different experiment with operator-style instructions and compare 

performance between two groups. Furthermore, if the Herbal/ACT-R compiler provides 

an additional component for operator-style instructions, and if we compare the different 

results from both instructions, it would be of interest.  

The errors that participants did while they were performing the task might be 

interesting to analyze, because errors happen frequently in this kind of task. As we 

decomposed the task into several subtasks, we can figure out subtasks that error happens 

more frequently, analyze the reason, and suggest some guidelines.  

6.7 Practical implications of this work 

These results underline our increased ability to model individual users—for some 

tasks, that is. The models here were created fairly quickly. Even without actually running 

the models, we believe that they can be helpful at the design stage of user interfaces as a 

shared representation of the user’s knowledge of the task (Pew & Mavor, 2007).   



 46 

This model provides some general implications for many interfaces, including 

that users will get faster with practice. Thus, designers should provide them opportunities 

to practice and base their testing on experienced users.  We saw that users in this task 

become about as fast the KLM predictions after trial 3, so the KLM will provide guidance 

as well, although the KLM’s predictions may be a slightly high for users with extensive 

practice.   

Different user models speed up differently.  However, they always end up around 

the same performance—the greatest variance was found in the first trial.  This might well 

lead to a greater variance in their first impressions.  As a consequence, we expect that 

impressions and evaluations of interfaces and systems would best be taken after some 

practice. So, to test interfaces with usability studies, one probably should not just have 

the users perform the task once, but at least several times. 

Finally, this model reminds us to that to create easier-to-use and also faster 

interfaces, the users have to know what to do, that they have to practice doing it, and that 

regularities and reduced steps help in these areas.  For experts, it appears that keystrokes 

are more costly than the mental representations, which are either automated or removed.  

With models built with the Herbal framework, we can quantify how much such changes 

help more broadly and easily.  

Acknowledgements.  This research was supported by ONR (N00014-06-1-0164, 
N00014-11-1-0275) and N00014-10-1-0401, and DTRA (HDTRA1-09-1-0054).  Mark 
Cohen, Stephen Haynes, three anonymous reviewers, and readers and reviewers at the 
HCI Consortium and at the International Conference on Cognitive Modeling provided 
useful comments on earlier versions of the manuscript.  

 



 47 

References    

Anderson, J. R. (2007). How can the human mind exist in the physical universe? New 
York, NY: Oxford University Press. 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). 
An integrated theory of the mind. Psychological Review, 111(4), 1036-1060. 

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance of 
text-editing skill: A cognitive complexity analysis. Human-Computer Interaction, 5, 
1-48. 

Brooks, F. P. (1975). The mythical man-month: Essays on software  engineering. 
Reading, MA: Addison-Wesley Pub. Co. 

Burton, R. (1998). Validating and docking: An overview, summary and challenge. In M. 
Prietula, K. Carley & L. Gasser (Eds.), Dynamics of organizations (pp. 215-228). 
Menlo Park, CA: AAAI. 

Card, S. K., Moran, T., & Newell, A. (1983). The psychology of human-computer 
interaction. Hillsdale, NJ: Erlbaum. 

Cohen, M. A. (2005). Teaching agent programming using custom environments and Jess. 
AISB Quarterly, 120(Spring), 4.   

Cohen, M. A. (2008). A theory-based environment for creating reusable cognitive 
models. Unpublished PhD thesis, Penn State. 

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2007). Using reflective learning to master 
opponent strategy in a competitive environment. In Proceedings of the 8th 
International Conference on Cognitive Modeling, 157-162.  Taylor & 
Francis/Psychology Press: Oxford, UK. 

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2010). Applying software engineering to 
agent development. AI Magazine, 31(2), 25-44. 

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2012). Discovering and analyzing usability 
dimensions of concern. ACM Transactions on CHI, 19(2), Article 9. 18 pages. 

Corbett, A. T., & Koedinger, K. R. (1997). Intelligent tutoring systems. In M. Helander, T. K. 
Landauer & P. Prabhu (Eds.), Handbook of human-computer interaction. Amsterdam: 
Elsevier Science B.V. 

 Dancy, C. L., & Abuomar, A. M. (2012). Building a computational adversarial 
commander model for a warfare simulation. University Park, PA: Applied Research 
Lab [unpublished technical report]. 

Douglass, S. A., & Myers, C. W. (2010). Concurrent knowledge activation calculation in 
large declarative memories. In Proceedings of the 10th International Conference on 
Cognitive Modeling. 55-60.  Drexel University: Philadelphia, PA. 

Friedrich, M. B. (2008). Implementierung von schematischen Denkstrategien in einer 
höheren Programmiersprache: Erweitern und Testen der vorhandenen Resultate 
durch Erfassen von zusätzlichen Daten und das Erstellen von weiteren Strategien 
(Implementing diagrammatic reasoning strategies in a high level language: 
Extending and testing the existing model results by gathering additional data and 
creating additional strategies). Faculty of Information Systems and Applied 
Computer Science, University of Bamberg, Germany. 

Friedrich, M. B., Cohen, M. A., & Ritter, F. E. (2007). A gentle introduction to XML 
within Herbal. University Park, PA: ACS Lab, The Pennsylvania State University. 



 48 

Friedrich, M. B., & Ritter, F. E. (2009). Reimplementing a diagrammatic reasoning 
model in Herbal. In Proceedings of ICCM - 2009- Ninth International Conference on 
Cognitive Modeling, 438-439.  Manchester, England. 

Gray, W. D. (2002). Simulated task environments: The role of high-fidelity simulations, 
scaled worlds, synthetic environments, and microworlds in basic and applied 
cognitive research. Cognitive Science Quarterly, 2(2), 205-227. 

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a 
GOMS analysis for predicting and explaining real-world task performance. Human-
Computer Interaction, 8(3), 237-309. 

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009). Designs for explaining intelligent 
agents. International Journal of Human-Computer Studies, 67(1), 99-110. 

Haynes, S. R., Kannampallil, T. G., Cohen, M. A., Soares, A., & Ritter, F. E. (2008). 
Rampart: A service and agent-based architecture for anti-terrorism planning and 
resource allocation. In Proceedings of the First European Conference on Intelligence 
and Security Informatics, EuroISI 2008 (Esbjerg, Denmark, 2008), 260-270.  
Springer: Berlin. 

John, B. E., & Kieras, D. E. (1996a). The GOMS family of user interface analysis 
techniques: Comparison and contrast. ACM Transactions on Computer-Human 
Interaction, 3(4), 320-351. 

John, B. E., & Kieras, D. E. (1996b). Using GOMS for user interface design and 
evaluation: Which technique? ACM Transactions on Computer-Human Interaction, 
3(4), 287-319. 

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive human 
performance modeling made easy. In Proceedings of CHI 2004 (Vienna, Austria, 
April 2004), 455-462.  ACM: New York, NY. 

Jones, R. M., Crossman, J. A. L., Lebiere, C., & Best, B. J. (2006). An abstract language 
for cognitive modeling. In Proceedings of the 7th International Conference on 
Cognitive Modeling, 160-165.  Erlbaum: Mahwah, NJ. 

Kennedy, W. G., & Trafton, J. G. (2007). Long-term symbolic learning. Cognitive 
Systems Research, 8 (3), 237-247(3), 237-247. 

Kieras, D. E. (1985). The why, when, and how of cognitive simulation. Behavior 
Research Methods, Instrumentation, and Computers, 17, 279-285. 

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition 
and performance with application to human-computer interaction. Human-Computer 
Interaction, 12, 391-438. 

Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based 
on the EPIC architecture for a multimodal high-performance human-computer 
interaction task. Transactions on Computer-Human Interaction, 4(3), 230-275. 

Kim, J. W. (2008). Procedural skills: From learning to forgetting. Department of 
Industrial and Manufacturing Engineering, unpublished PhD Thesis, The 
Pennsylvania State University, University Park, PA. 

Kim, J., & Ritter, F. E. (2007). Automatically recording keystrokes in public clusters with RUI: 
Issues and sample answers. In Proceedings of the 29th Annual Conference of the Cognitive 
Science Society, 1787.  Cognitive Science Society: Austin, TX. 



 49 

 Kim, J. W., & Ritter, F. E. (2015). Learning, forgetting, and relearning for keystroke- 
and mouse-driven tasks: Relearning is important. Human-Computer Interaction, 
30(1), 1-33. 

Kukreja, U., Stevenson, W. E., & Ritter, F. E. (2006). RUI—Recording User Input from 
interfaces under Windows and Mac OS X. Behavior Research Methods, 38(4), 656–
659. 

Laird, J. E. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press. 
Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues 

and challenges. Cognitive Systems Research, 10, 141-160. 
Morgan, J. H., Cheng, C.-Y., Pike, C., & Ritter, F. E. (2013). A design, tests, and considerations 

for improving keystroke and mouse loggers. Interacting with Computers, 25(3), 242-258. 
Morgan, G. P., Cohen, M. A., Haynes, S. R., & Ritter, F. E. (2005). Increasing efficiency 

of the development of user models. In Proceedings of the IEEE System Information 
and Engineering Design Symposium. IEEE and Department of Systems and 
Information Engineering, University of Virginia: Charlottesville, VA. 

Morrison, J. E. (2003). A review of computer-based human behavior representations and 
their relation to military simulations (IDA Paper P-3845). Alexandria, VA: Institute 
for Defense Analyses. 

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University 
Press. 

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of 
practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1-51). 
Hillsdale, NJ: Erlbaum. 

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., & Altmann, E. (1991). 
Formulating the problem space computational model. In R. F. Rashid (Ed.), Carnegie 
Mellon Computer Science: A 25-Year commemorative (pp. 255-293). Reading, MA: 
ACM-Press (Addison-Wesley). 

Olson, J. R., & Olson, G. M. (1990). The growth of cognitive modeling in human-
computer interaction since GOMS. Human Computer Interaction, 5(2 &3), 221-265. 

Pew, R. W., & Mavor, A. S. (Eds.). (1998). Modeling human and organizational 
behavior: Application to military simulations. Washington, DC: National Academy 
Press. books.nap.edu/catalog/6173.html. 

Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system integration in the system 
development process: A new look. Washington, DC: National Academy Press.  
books.nap.edu/catalog.php?record_id=11893. 

Pirolli, P. L. T. (2007). Information foraging theory: Adaptive interaction with 
information. New York, NY: Oxford. 

Reitter, D., Keller, F., & Moore, J. D. (2011). A computational cognitive model of 
syntactic priming. Cognitive Science, 35(4), 587–637. 

Reitter, D., & Lebiere, C. (2010). Accountable modeling in ACT-UP, a scalable, rapid-
prototyping ACT-R implementation. In Proceedings of the 10th International 
Conference on Cognitive Modeling, 199-204.  Drexel University: Philadelphia, PA. 

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Supporting cognitive 
models as users. ACM Transactions on Computer-Human Interaction, 7(2), 141-173. 

Ritter, F. E., & Bibby, P. A. (2008). Modeling how, when, and what learning happens in 
a diagrammatic reasoning task. Cognitive Science, 32, 862-892. 



 50 

Ritter, F. E., Haynes, S. R., Cohen, M. A., Howes, A., John, B., Best, B., et al. (2006). 
High-level behavior representation languages revisited. In Proceedings of ICCM - 
2006- Seventh International Conference on Cognitive Modeling, 404-407.  Edizioni 
Goliardiche: Trieste, Italy. 

Ritter, F. E., & Schooler, L. J. (2001). The learning curve. In W. Kintch, N. Smelser & P. 
Baltes (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 
13, pp. 8602-8605). Amsterdam: Pergamon. 

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R. M., Gobet, F., & Baxter, G. D. 
(2003). Techniques for modeling human performance in synthetic environments: A 
supplementary review. Wright-Patterson Air Force Base, OH: Human Systems 
Information Analysis Center (HSIAC). 

Rosenbloom, P. S. (2009). Towards a new cognitive hourglass: Uniform implementation 
of cognitive architecture via factor graphs. In Proceedings of ICCM - 2009- Ninth 
International Conference on Cognitive Modeling, 114-119.  Manchester, England. 

Schoelles, M. J., & Gray, W. D. (2001). Argus: A suite of tools for research in complex 
cognition. Behavior Research Methods, Instruments, & Computers, 33(2), 130-140. 

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005). Specifying ACT-R models of user 
interaction with a GOMS language. Cognitive Systems Research, 6(1), 71-88. 

Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 
120(3), 439-471. 

Taatgen, N. A., Huss, D., Dickison, D., & Anderson, J. R. (2008). The acquisition of 
robust and flexible cognitive skills. Journal of Experimental Psychology: General, 
137(3), 548-565. 

Yost, G. R. (1992). TAQL: A Problem Space Tool for Expert System Development. Unpublished 
PhD, School of Computer Science, Carnegie-Mellon University. 

Yost, G. R. (1993). Acquiring knowledge in Soar. IEEE Expert, 8(3), 26-34. 
Zhao, C., Paik, J., Morgan, J. H., & Ritter, F. E. (2010). Validating a high level behavioral 

representation language (Herbal): A docking study between for ACT-R. In Biologically 
Inspired Cognitive Architectures, Proceedings of the First Annual Meeting of the BICA 
Society, 181-188.  IOS Press. 

 
 
 
 


