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ABSTRACT 

Studies on effective practice schedules have been generally investigated by comparing 

the performance of two relative extreme practice schedules, distributed and massed, at a retention 

test. The results of most of these studies have consistently shown that distributed practice 

schedules result in higher retention rates than massed practice schedules because of the spacing 

effect associated with human memory. These studies, however, failed to show either the optimal 

interval between learning sessions, or to consider the knowledge types used to perform tasks. 

Furthermore, these studies did not provide any theoretical supports except the spacing effect for 

predicting performance at the specific time of the schedules. To address these problems, I 

explored both theoretically and empirically. First, I investigated ACT-R’s learning and forgetting 

theories to help identify an optimal practice schedule. Second, psychological experiments were 

conducted to validate these theories. In the experiments, four kinds of tasks were tested using four 

practice schedules (distributed, massed, Hybrid1, and Hybrid2). Finally, models were developed 

using ACT-R, and then compared with empirical data. 

ACT-R’s learning theories suggest that hybrid practice schedules (schedules consisting of 

distributed and massed practice) could produce better performance than an exclusively distributed 

practice schedule. The results of empirical data indicated a more complex picture. Like previous 

studies, the results of experiments showed a higher correlation between retention and distributed 

practice schedules than retention and massed practice schedules. There were, however, no 

significant differences between distributed and hybrid practice schedules when testing a 

declarative memory task. Nevertheless, the results also suggested that some hybrid schedules 

might produce better performance than distributed practice schedules for perceptual-motor skills. 

Specifically, my results show that the Hybrid1 practice schedule produced greater skill retention 
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than the distributed practice schedule for the perceptual-motor task, indicating that the spacing of 

distributed and massed practiced with respect to each other also influences performance.  

When comparing the ACT-R models’ performance with that of the participants’, the 

models could predict the learning and forgetting trends of the participants in each group for 

declarative memory tasks; however, there were differences in the correct responses between the 

models’ prediction and the human data. These results indicated that ACT-R could be used to 

predict the learning and forgetting trends of practice schedules, however, revisions might be 

necessary to fully map the models’ predictions to the participants’ specific responses.  
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Chapter 1 
 

Introduction 

Training is important for all industries. The military and transportation industries invest 

enormous time and money to create well-qualified operators. Hospitals and medical schools 

continually train residents and nurses to not only improve surgery skills but also reduce medical 

mistakes. The cost of education and training is a large portion of the overall expenditure in many 

industries. According to the 2009 Industry Report, U.S. companies that have more than 100 

employees spent $52.2 billion on employees’ learning and development cost in 2009.  Figure 1-1 

shows that U.S. companies have invested more than $50 billion in employees’ training each year 

for the years 2003 to 2009. 

 

 
Figure 1-1: Training expenditure from 2003 to 2009 (Training Magazine, 2009) 
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Due to the importance of training (illustrated in figure 1.1’s training expenditures), 

scientists, especially in the fields of education and psychology, have studied training strategies. 

Training strategies for learning declarative and to some extent procedural skills have been 

researched, e.g., second-language vocabulary (Atkinson, 1972; Bloom & Shuell, 1981), 

computerized spelling drills test (Fishman, Keller, & Atkinson, 1968), pair-word memory (Pavlik 

& Anderson, 2005), and mathematical permutation (Rohrer & Taylor, 2006). Generally, this 

literature has compared the performance of two relatively extreme practice schedules, such as 

distributed practice schedule and massed practice schedule, at the retention test, and the results of 

most of these studies consistently indicated that the distributed practice schedule outperforms the 

massed practice schedule. 

Scientists in medicine also have studied training strategies for medical school students. 

To get better retention on testing for medical school students and surgeons, massed and 

distributed studies on trainings of surgical skills in laboratories (Moulton et al., 2006), as well as 

in virtual reality environments (Gallagher et al., 2005; Mackay, Morgan, Datta, Chang, & Darzi, 

2002) have been conducted. These complex tasks require not only declarative memory, but also 

perceptual-motor skill. The results also showed that a distributed practice schedule has better 

performance than a massed practice schedule on a retention test. 

According to the results of the previous studies, the training schedule should be designed 

to be a distributed schedule regardless of knowledge types. However, I think there may exist 

schedules that can produce better performance than a distributed practice schedule in retention. In 

the next section, I describe the problems of current learning, retention, and training studies, and 

present contributions of my dissertation.      

!
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1.1 Problems with Learning and Retention, and How to Train 

The results of these previous studies on the practice schedule may have lead many 

scientists who investigate learning and retention to compare two relatively extreme practice 

schedules without examining other options.!Recent work (Kim, Ritter, & Koubek, in press), 

however, suggests an alternative view, one that examines the relationship between task types and 

practice schedules. For perceptual-motor skill, Kim et al. suggest that a massed or somewhat 

massed way might be more effective. They cited a study that investigated the effects of massed 

practice on stroke patients (Vearrier, Langan, Shumway-Cook, & Woollacott, 2005). However, 

the study of Vearrier et al. did not compared a massed practice schedule with a distributed 

practice schedule, so they do not provide direct evidence for the relative benefits of massed 

practice schedules, although the results are consistent with a view that massed or semi-massed 

may be better than distributed. 

Kim et al. (in press) also argued that practice should be considered with learning and 

forgetting frameworks. Both frameworks divided learning and forgetting into three stages, 

declarative stage, transitional stage, and procedural stage, and if knowledge is procedurlized in 

one’s mind, he/she does not need to retrieve his/her declarative knowledge, and forgetting rarely 

happens. So, the studies on effective practice schedules should not compare two relatively 

extreme practice schedules, but be focused on transferring knowledge from the initial stage to the 

procedural stage.  !

We can more easily imagine perceptual-motor skill learning if we consider the steps 

involved in learning how to ski. I think to learn how to ski, a massed practice schedule, (e.g. five 

hours in a row in one day), might be a better schedule than a distributed practice schedule (one 

hour per day over five days), and if this is true, we need to consider the possibility of other 

practice schedules that might produce better performance in retention. It might even the best to 
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spend an hour for three days and two hours on the last day. Thus, we should not conclude that a 

distributed practice schedule is the best schedule in all kinds of tasks. !

Most of the previous studies comparing practice schedules have not examined the gap 

between training sessions, or the interval between the last training session and retention session. 

Those studies mainly depended on psychological experiments. Participants were divided into two 

groups, massed and distributed groups, and followed each schedule, so there was only one kind of 

gap between training sessions in each schedule, and there was also only one kind of interval 

between the last session of training and retention. However, recent work (Cepeda, Vul, Rohrer, 

Wixted, & Pashler, 2008; Pavlik & Anderson, 2005) showed that the performance on a retention 

test varied according to the degree of spacing between training sessions# and furthermore the 

optimal gap between the learning sessions depended on the interval between the last learning 

session and the retention session. 

We also need to consider theoretical aspects that most of the previous studies did not 

support. In the previous studies, participants were divided into two groups without any theoretical 

supports except spacing effect, and comparing two groups in a retention test. However, we can 

generate more than two training schedules using several training days. For example, eight hours 

training could be divided into one hour in a day over eight days, or two hours in a day over four 

days or any in between. Thus, we need to figure out the performances of the possible schedules 

by using learning and forgetting theories, and the result may help us to predict the most effective 

practice schedule.!

1.2 Preview of Contributions 

The scope of this dissertation encompassed both practical and theoretical contributions 

including measuring training efficiency, exploring the optimal training strategy based on the 
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knowledge type, and increasing our understanding of the theories of learning and decay process 

of a promising cognitive architecture. The results of this dissertation could produce a paradigm 

shift of how to design training programs in academy, industry, and the military with respect to 

knowledge types of tasks. The detailed contributions are presented below. 

The first contribution of this dissertation is to provide a new paradigm of training 

different from the widely used method in most training. Most of the previous studies have 

focused on massed practice and distributed practice schedules, but this dissertation shows a better 

practice schedule could exist, and it may produce better performance in knowledge and skills 

acquisition and retention. Furthermore, the later researchers who explore training schedules for 

better retention could consider testing a hybrid practice schedule in their research. 

The second contribution of this dissertation is to provide theoretical support for hybrid 

practice. The results of the base-level learning equation of ACT-R, and its extension, could 

predict performance of all possible practice schedules, and the results showed a hybrid practice 

schedule shows 2.5% better performance on retaining knowledge in a retention test than a 

distributed practice schedule.  

The third contribution of this dissertation is to explore the most efficient training 

schedule for three kinds of knowledge types with four tasks. A declarative memory task, two 

procedural memory tasks, and a perceptual-motor task were tested with four different practice 

regimens, and from the results of these experiments, most efficient practice regimen with respect 

to the specific task and knowledge type are provided. 

The fourth contribution of this dissertation is that ACT-R could predict the long-term 

learning and forgetting process of human memory. The most of the previous ACT-R models have 

focused on microscopic psychological tasks, such as modeling simple summation processes etc. 

However, model for learning, forgetting, and retaining aspects of human mind with long-term 

duration has not been verified in this area, and cognitive modeling could provide meaningful 
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implication for these kinds of practical problems (Gray & Altmann, 2001). Comparing the 

performance of ACT-R models with empirical data, I can validate whether the ACT-R cognitive 

architecture could represent learning, forgetting, and retaining knowledge according to the 

various training schedules with long-term duration or not. 

The fifth contribution of this dissertation is to start to examine a new theory of skill 

retention (Kim et al., in press). According to this theory of skill retention, the forms of forgetting 

are different in each learning stage, so learning should occurred with different manners and 

degrees with respect to the learning stages. The hybrid practice schedules that I used in the 

experiment of this dissertation might be the schedules that could be explored to test the skill 

retention theory.!

1.2 Introduction to the Chapters and Summary!

My dissertation consists of seven chapters. The first chapter includes a brief introduction 

for research topic, problem statements, and expected research contributions. The second chapter 

is a literature review for learning and forgetting theories, and possible tasks to use in my study. It 

starts with introducing the learning and forgetting framework, and describes relevant previous 

research on distributed and massed training schedules. Finally, it ends with reviewing possible 

tasks that have been used in previous research on learning. In chapter 3, I explore hybrid practice 

schedules that are supported by the base-level learning equation and revised equations of the 

ACT-R architecture. Chapter 4 describes the study methodology and its results to explore the 

topic of my dissertation. In chapter 5, I describe detailed information of the cognitive 

architecture, ACT-R 6.0. ACT-R models that were developed to represent human behavior for the 

tasks in the study are also introduced in this chapter. In chapter 6, I compare the results of human 
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data with ACT-R models. Finally, chapter 7 contains conclusions, summaries of the dissertation, 

and details on its contributions. 

 



 

 

Chapter 2 
 

Review of Theories and Tasks 

In this chapter, I review the theoretical foundations for knowledge and skill acquisition, 

and provide a forgetting theory that is recently developed. Reviews for the retention effects 

according to the training schedules and knowledge types are provided, and finally, the possible 

tasks that I could use in my thesis for exploring the retention effects according to the different 

kinds of schedules are presented.  

2.1 A Knowledge and Skills Acquisition Framework 

Citing Proctor and Dutta’s (1995) review of skill acquisition, Kim et al. (2008; in press) 

provide a good review of the acquisition and degradation of knowledge and skills with respect to 

declarative and procedural knowledge. Consequently, I will begin with Kim et al.’s review to 

discuss the learning framework featured in this study before segueing to a discussion of 

extensions to the framework, namely its application to other knowledge types.  

Studies on a framework of knowledge and skills have been conducted several scientists 

Fitts (1954, 1964) decomposed the knowledge and skills acquisition as three stages: cognitive, 

associative, and autonomous stages. In the cognitive stage, completion time for a task is slow and 

errors occur frequently, so task completion time is relatively long in this stage, however, in the 

autonomous stage, tasks are always proceduralized in this stage, so task completion time is short 

and errors occur rarely. Anderson (1982) also developed a theory of cognitive skill acquisition 

with three stages of declarative, transitional, and procedural, corresponding to Fitts’ three stage of 



9 

 

learning. Rasmussen (1986) also proposed a framework as knowledge-based, rule-based, and 

skill-based for pertaining to skilled performance.  

Recently Ohlsson (2011) showed a framework as getting-started, mastery, and 

optimization based on the formulation of Fitts. He argued that there are no sharp boundaries 

between the stages. Regardless of terms that they used, each stage of the framework corresponds 

to the stage of other framework, and figure 2-1 shows the framework of knowledge and skills 

acquisition"! !

For the first stage, the declarative stage, humans learn knowledge and skills from 

instruction and they are stored as declarative type in human memory. Therefore, humans need to 

retrieve this declarative type memory, so it takes relatively long time to complete a task and 

errors occur frequently. In the procedural stage, the knowledge and skills are mostly procedural, 

so humans do not need to retrieve the information of the task from the declarative memory. The 

completion time is relatively short and errors occur rarely in this stage. In the transitional stage, 

humans have knowledge and skills that are partially declarative and partially procedural, and with 

continuous practice, the knowledge and skills are gradually procedural. This stage is a transitional 

 

 
Figure 2-1:  Framework of knowledge and skills acquisition (taken from Anderson, 1982). 
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phase from declarative to procedural phase. Most of the cognitive architectures, such as a Soar 

and an ACT-R, have this transitional mechanism called knowledge compilation to represent 

knowledge and skills acquisition, and proceduralization. 

Newell and Rosenbloom (1981) proposed an impasse-driven learning mechanism called 

chunking, which is the foundation learning mechanism in the Soar cognitive architecture. Within 

Soar, learning takes place with impasses and subgoaling. If there is a lack of sufficient knowledge 

in a current problem space, Soar generates a subgoal to resolve the impasse. When this impasse is 

resolved, new procedural knowledge is created as a production. This process is called chunking, 

and if Soar encounters a similar condition in the future, it can apply this newly learned production 

to resolve it without any impasse.   

Anderson (1982) explained the knowledge compilation with proceduralization and 

composition in ACT* (Anderson, 1983), a predecessor of ACT-R. The proceduralization is the 

process of replacing domain-specific declarative knowledge with general knowledge. The 

composition is sequences of productions are collapsed into a single production. The 

proceduralization and composition processes convert declaratively encoded knowledge into 

production form. However, these two mechanisms are not enough to explain the speedup of 

performance by practice, so generalization and specialization are used to refine procedural 

knowledge. However, there is a lack of empirical evidence to support these process, and some 

problems that are caused by newly learned procedural knowledge brings the system to an endless 

loop, so Taatgen and Anderson (2002) proposed the production compilation that is based on 

knowledge compilation. It was developed to model complex skill acquisition within the ACT-R 

architecture. It combines both proceduralization and composition mechanism into a single 

mechanism. Two rules are combined into a single rule by eliminating the retrieval request in the 

first rule and the retrieval condition in the second rule. It enables a model to perform a specific 
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task more rapidly, because it reduces a two-steps retrieval into one step, so it can represent the 

speedup of performance by practice. 

2.2 Knowledge and Skills Degradation 

The knowledge and skills degradation, forgetting, has been studied, but not much 

compare to the learning, even if it had been studied, most of the studies focused on to the 

declarative memory decay or the procedural memory decay based on the extension of the 

declarative memory decay (Chong, 2004). Thus, there was no whole framework for knowledge 

and skills degradation.   

 Recently, researchers (Kim et al., in press) proposed a theory of skill retention with three 

stages of learning and forgetting based on Anderson’s learning theory. They added the three 

forgetting curves in each learning stage, and they showed the forms of forgetting are different 

according to the stages. They also argued that knowledge in declarative memory degrades with 

lack of use, and it leads to the inability to perform the task in the first stage (declarative stage). In 

the second stage, transitional, they argued with lack of use, the declarative knowledge can be 

forgotten, leading to miss steps, however, procedural memory is basically immune to decay. 

Finally, they suggested that task knowledge is available in both declarative and procedural forms, 

but procedural knowledge predominantly drives performance in the third stage, procedural. With 

lack of use, declarative knowledge may be degraded, however, learners can still perform the task.  

They also argued that different strategies should be applied to a training regime with 

regard to both the skill type and learning stages. That is, some tasks that require perceptual-motor 

skill should be trained with a massed way rather than a distributed way, and the training strategies 

should be different depending on the stage learners are in (i.e. distributed practice in the 
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declarative stage, and distributed with massed practice in the transitional stage). Figure 2-2 shows 

a graph that describes this theory. 

2.3 Training Strategies for Retaining Knowledge and Skills 

In previous sections, I have discussed the stages of knowledge and skills acquisition and 

degradation. To reach the final stage called the procedural stage, humans need to practice 

continually. However, humans forget their learned knowledge and skills as times go by because 

of decay process of human memory. Therefore, how to retain learned knowledge and skills has 

been an issue in filed of education and training.  

 

 
Figure 2-2:  A theory of skill retention with three stages of learning and forgetting (taken from 
Kim et al., in press). 
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Generally, the research on knowledge and skills acquisition has used two kinds of 

practice schedules; a) massed practice schedule, and b) distributed practice schedule. In a massed 

practice approach, the interval between training sessions is very short, however, in a distributed 

practice approach, the space between training sessions is wide. These intervals can be represented 

by a frequency of practice, therefore, if the frequency of practice is high at the beginning of 

learning session, this can be considered as massed practice, and if the frequency is low and 

uniformly distributed, it is thought of as distributed practice (Kim, 2008). 

Due to the spacing effects of human mind, it has noticed that the distributed practice 

approach provides longer retention of learned knowledge and skills regardless of task types. In 

next three consecutive sections, I review previous studies that were reviewed in Kim at al. (in 

press) paper, for spacing effects according to different kinds of knowledge types. 

2.3.1 Training Strategies for Declarative Tasks 

Bloom and Shuell (1981) studied effects of massed and distributed practice on the 

learning and retention of French vocabulary for high school students. In this study, the distributed 

practice consists of 10-minute units on each of three successive days; the massed practice consists 

of all three units being completed during a 30-minute period on a single day. The performance of 

two groups was almost identical on a test given immediately after completion of study, however, 

in the second test given 4 days later, the distributed practice group showed better (35%) 

performance than the massed practice group. 

Fishman et al. (1968) showed the same results in their Computerized Spelling Drills test. 

In this studied, conditions of massed and distributed practice were investigated using a within-

subjects design in a situation involving computerized spelling drills. Two sets of three words each 

were presented once every other day over a period of 6 days in the distributed condition. The six 
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other sets of words were presented one by one during 6 days. The probability of a correct answer 

for words in the massed condition was higher than that for the distributed condition during the 

learning sessions, but on 10 days and 20 days later retention tests, the distributed condition 

showed better performance that the massed one.   !

Bahrick et al. (1979; 1993) investigated the retention and spacing effect in learning 

foreign language vocabulary for a long-term period, 9-year longitudinal study. Four subjects 

learned and relearned 300 English-foreign language word pairs, and they participated in either 13 

or 26 relearning sessions with intervals of 14, 28, or 56 days. Then, retention was tested 1, 2, 3, or 

5 years after training terminated. The highest retaining performance was the closest spacing 

interval (14-day) at the last training session. However, after a year since the last training session, 

the highest retaining performance was the widest spacing of training (56-day), and the lowest 

retaining performance was found in the closest spacing interval. In the 2, 3, and 5 years retention 

test, the same pattern of results was shown, and this indicated that the more widely spaced 

training produced the greater retention performance on this vocabulary-learning task. 

Pavlik and Anderson (2003, 2004, 2005) investigated the effect of practice and spacing 

on retention of Japanese-English vocabulary paired associates. In their studies, they found that the 

relative benefit of spacing increased with increased practice and with longer retention intervals. 

From the experiment, they proposed an activation-based model that proposes that a declarative 

memory unit receives an increment of strength whenever it is activated, but that these increments 

decay as a power function of time. They found that the decay rate for each presentation depended 

on the activation at the time of the presentation.  

To sum up, the massed practice approach showed better performance than the distributed 

one at the training day, however, the distributed practice approach shows better performance than 

the massed approach in retention test for these tasks. According to Bahlick, the more widely 

spaced training showed the greater performance on this type of task. Pavlik and Anderson 
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proposed an activation-based model that predicts the spacing effect with the activation 

mechanism of ACT-R cognitive architecture. 

2.3.2 Training Strategies for Procedural Tasks 

Rohrer and Taylor (2006) investigated the effects of overlearning and distributed practice 

on the retention of mathematics knowledge. In this study, 216 college students learned to solve 

one kind of mathematics problem before completing one of various practice schedules. In the first 

experiment, students were divided into four groups: distributed practice with a 1-week retention 

interval, distributed practice with a 4-week retention interval, massed practice with a 1-week 

retention interval, and massed practice with a 4-week retention interval. The difference between 

massed and distributed practice with 1-week retention interval was almost, 75% and 70%, 

respectively, however, in the 4-week retention interval, the distributed practice showed better 

performance than massed practice (64% vs. 32%), suggesting long-term retention of mathematics 

knowledge is better achieved with largely spaced distributed practice. 

In their second experiment, they investigated the effects of overlearning on retention by 

varying the number of practice problems with a single session (massed practice). The result 

showed that there are no significant benefits of overlearning on retention of mathematics 

knowledge for 1-week and 4-week retention intervals. According to these results, Rohrer and 

Taylor insisted long-term retention was boosted by distributed practice and unaffected by 

overlearning, so the mathematics textbook should be modified, because most of the mathematics 

textbooks rely on overlearning and massed practice. 

Kim (2008) investigated effects of distributed practice on the retention of procedural 

motor skills using a novel spreadsheet task, called the Dismal spreadsheet task because it uses the 

dismal spreadsheet (Ritter & Wood, 2005). The Dismal spreadsheet task is a sequential task 
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consisting of 14 subtasks, and performing all of the subtasks takes about 40 minutes to do the first 

time, but with practice it takes about 25 minutes. In this study, participants were divided into six 

groups with two different interface modalities (mouse and keyboard), and three different retention 

intervals (6-day, 12-day, and 18-day). The results showed that there were no significant 

differences on learning performance by the two-modality groups. However, with regard to 

relearning, there is a significant difference of the mean task completion time on 6-day and 12-day 

retention, and 12-day and 18-day retention the in mouse users group, but there is no significant 

difference of the mean task completion time on those retentions in the keyboard users group. 

These indicate that there is statistical evidence that relearning effects can be affected by the 

modality and by the retention interval.!

To sum up, the distributed practice schedule appears to have better performance on 

knowledge and skills retention tests in procedural memory tasks. According to Rohrer and 

Taylor, the over-learning or over-training for this type of task did not lead to better performance. 

The procedural task using motor skills also indicated that relearning effects could be affected by 

the tool of user and retention interval. 

2.3.3 Training Strategies for Perceptual-Motor Tasks 

The studies on spacing effects of perceptual (or procedural) motor skills have been 

mainly conducted in medicine area for finding an efficacy of practice regimen.  

Mackay et al. (2002) investigated effects of practice distribution in procedural skills 

training. In this investigation, 41 novice subjects were recruited, and randomized to three groups 

(one massed practice group and two distributed practice groups with different rest periods) to 

receive training on the MIST VR surgical trainer (Wilson, Middlebrook, Sutton, Stone, & 

McCloy, 1997), a virtual reality trainer for laparoscopic surgery that also assesses performance. 
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The result demonstrated a benefit for distributed practice over massed practice in learning 

laparoscopic surgical skills on the MIST VR surgical trainer. 

Moulton et al. (2006) investigated approaches for teaching surgical skills. In their study, 

thirty-eight junior surgical residents, randomly assigned to either massed (1 day) or distributed 

(weekly) practice regimens, were trained in a new skill called microvascular anastomosis. Each 

group had the same amount of time (330 min.) in practice, and performance was gathered pre-

training, immediately post-training, and 1 month post-training. The anastomotic skill test for a 

live, anesthetized rat was conducted for final test, and to validate this test, computer-based and 

expert-based measures were used. The result of this study indicated the distributed group 

performed significantly better on the retention test in most outcome measures, stating current 

model of training skills using short courses should be modified. 

 To sum up, the spacing effect is proved in learning and retention of perceptual 

(procedural) motor skills task. The result of training on the MIST VR surgical trainer indicates 

that motor skills learning can be acquired effectively by distributed practice schedule. 

Furthermore Moulton et al. (2006) insisted that the current curriculum of surgical skills that 

follows massed form should be modified into distributed form. 

In this section, I describe studies on training. Those studies compare two relatively 

extreme schedules, distributed and massed schedules, and results consistently showed that the 

distributed schedule is better than the massed schedule regardless of knowledge types.  

2.4 Possible Tasks 

In this section, I present the candidate tasks that can be used to explore the learning and 

retention effects of declarative memory, procedural memory, and perceptual-motor skill.!
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2.4.1 Tasks to test Declarative Memory Learning and Retention 

Declarative memory represents the aspect of human memory that stores factual 

information. For instance, when we are using a web browser to find a specific web site, such as 

http://www.google.com, we need to know about command “Command + L” or “Ctrl + L” to jump 

to the URL window for typing the address. This kind of information is stored in declarative 

memory, and the knowledge of “Command + L” or “Ctrl + L” is considered as declarative 

knowledge.  

To investigate the effects of practice on learning and retention, various kinds of foreign 

vocabulary memory have been used. Bloom and Shuell (1981) used French, Bahrick et al. (1993) 

used French and German, and Pavlik and Anderson (2005) used Japanese vocabulary pairs. The 

foreign language vocabulary have been used by many researchers to find the effects of practice, 

so this task could be a candidate for exploring the effects of practice on declarative memory 

learning and retention. 

The nonsense syllable learning task that was developed by Ebbinghaus (1964) is a word-

like string of letters that is not intended to have any established meaning. This task has been 

extensively used in experimental psychology for measuring learning and retention. It is similar to 

the foreign vocabulary memory, because it demands that participants memorize a paired-associate 

(or stimulus-response) learning. For instance, the subject should response “BIX” when he/she saw 

a “@” mark (@-BIX pair). The lists of these pairs are practiced during the experiment, and 

subjects repeated the lists until they were memorized. The experiment shows the learning and 

retention of this paired-associate test, so the nonsense syllable experiment could be another 

candidate for exploring the effects of practices on declarative memory learning and retention. 
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2.4.2 Tasks to test Procedural Memory Learning and Retention 

Procedural memory indicates the process of specific task. This information is not easily 

verbalized, but can be used without consciously thinking about it. For instance, when we try to 

open web browser, such as IE, Firefox, and Safari, first we need to check the location of the icon, 

and move mouse to that location. Finally, by double-clicking the icon, we can open the browser.  

The Dismal spreadsheet task (Kim, Koubek, & Ritter, 2007) that was designed to study 

learning and forgetting consists of 14 subtasks, and was used to explore procedural knowledge 

degradation (Kim, 2008). This task has sequential process to do whole subtasks, and the task 

completion time could be decreased with practice. Therefore, the Dismal spreadsheet task can be 

a candidate task for exploring the effects of practice on learning and retention of procedural 

memory. 

The Tower of Hanoi game that is a mathematical game or puzzle has been used in 

psychological research on problem solving (Anzai & Simon, 1979). It consists of three rods, and 

a number of disks of different sizes that can be slide on to any rod. The disks are sorted by 

ascending order in one rod at the first time, and the objective of the game is moving all disks from 

the leftmost rod to the rightmost rod with following rules: (a) only one disk can be moved at one 

time, (b) the top disk among the whole stacks can be moved to another rod, and (c) a large disk 

cannot be placed on a small disk. Participant uses his/her procedural memory to solve this 

problem, and the completion time and the number of movements can be measured, and might be 

varied according to the schedules, so this task can be the one of the candidate tasks for learning 

and retention of procedural memory. 

The mathematic problems that were used in Rohrer and Taylor’s studies (2006) could be 

a candidate for a procedural memory task, because it requires procedural memory of human being 

to solve this particular kind of permutation problems. The problems, such as aaabbb, aabbbb, 
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aabbccc, etc., were shown to the participants, and participants solved these problems according to 

the way to solve them. For example, for the sequence of aabbbb (with six letter, two occurrence 

of a, and four occurrence of b), the solution is like below. 

! 

aabbbb =
6!
2!"4!

=
6 " 5 " 4 " 3 " 2 "1
(2 "1) " (4 " 3 " 2 "1)

=15
 

Judging alphabetic arithmetic problem (Zbrodoff, 1995) could be used as a procedural 

memory task. In this study, participants were presented with an equation like A + 2 = C and had 

to respond yes or no whether the equation was correct based on counting in the alphabet. So, A + 

2 = C is correct, but B + 3 = F is not. She designed 2 sets of each of 6 kinds of problem, and each 

problem has different addend, such as 2, 3, and 4. From the experiment, she found that 

participants could answer very fast in case of A + 2 = C, however, it took more time when the 

participants solved the large addend with later alphabet, F + 4 = K. 

More interestingly, the participants could memorize the answers of some problems, so 

they could provide correct answers without using counting. This means that participants used 

their procedural memory at first, then, with practice, they could use their declarative memory to 

solve problems.   

From the possible tasks that I presented above, the task completion time or the number of 

correct answers could be gathered, and these data could be used to compare the effectiveness of 

three kinds of learning regimens. 

2.4.3 Tasks for Perceptual-Motor Skill Learning and Retention 

Perceptual-motor skill indicates the process of transition from perceiving to movement of 

motor. When human being perceives something from the sensory input, the mental process 

selects and controls the movement, and then muscle effectors carry out the movement. For 
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instance, when we meet a confirm massage (ex. Yes or No) from a website, and we are willing to 

select “Yes”, our intention is transferred, so we can move our hand and finger, then click “Yes”.  

The complex tracking task, also called the Wicken’s task (Martin-Emerson & Wickens, 

1992) has been used in several psychological experiments to explore human multi-tasking. In this 

test, participants viewed upper and lower windows on a display screen. Participants performed a 

tracking task using their right hand joystick in upper window, and pressed the index or middle 

finger of left hand depending on the direction that an arrow appears in the lower window (right 

arrow – index finger, and left arrow – middle finger). This task is the one of the candidate tasks 

for perceptual-motor skill learning and retention. 

2.5 Summary 

In this chapter, I present the framework of knowledge and skill acquisition that has been 

insisted by various scientists. I also present a new theory of skill retention with three stages of 

learning and forgetting based on Anderson’s learning framework. All of the theories consistently 

showed that when humans procedurlize their learned knowledge through continuous practice, 

forgetting rarely happens, and even if it happens, it could not influence to complete tasks. 

Through examining these learning, forgetting, and retention theories, I found that the importance 

of training is not the training schedule itself, but the considering how to transfer learners into the 

procedural stage of the learning framework. I also show the previous research that compared two 

kinds of training schedules, a distributed practice schedule and a massed practice schedule, 

regardless of knowledge types, and concluded that training should occur in a distributed way 

because spacing effects exist in human memory. Finally, I show some possible tasks that were 

used in some previous studies, and can be used in my research.  
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In next chapter, I provide the new practice schedules that I found through examining and 

exploring in detail the learning and forgetting theories of ACT-R and its extension. 



 

 

Chapter 3 
 

Theoretical Study of Hybrid Practice 

Hybrid practice is a mixed training schedule that includes distributed and massed 

practice, however, it has not been investigated and examined in previous studies. In this chapter, I 

present several hybrid schedules that may be able to generate better performance than distributed 

and massed practice in retention test, and these schedules were found through the equations of 

ACT-R cognitive architecture and its extension.  

3.1 Hybrid Practice Schedules Based on the Baseline ACT-R model 

ACT-R uses chunks to present declarative knowledge in human mind. Every chunk has a 

numeric value that is called activation. The activation reflects the strength of chunk, and this 

value could increase with more presentation (retrieval request). The activation Ai of a chunk i is 

computed from two components, base-level and noise component, and the equations are 

described in equation 3.1 and 3.2. 

  

! 

Ai = Bi +"                                                                                                         Equation 3.1 

The base-level activation for a chunk i is: 

 

! 

Bi = ln( t j
"d )

j=1

n

#                                                                                                 Equation 3.2 

n: the number of presentations for chunk i 
tj: the time since the jth presentation 
d: the decay parameter that is set using the :bll (base-level learning) parameter 
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As we know from equation 3.2, the base-level activation values can be increased with 

high frequency and short interval between the presentations of the object. In contrast, this value 

could be decreased with low frequency and long interval.  

Another factor that decide the possibility of retrieval of chunk is a retrieval threshold. 

This value (!) is a constant and can be adjusted by modeler, and the probability of recall (equation 

3.3) is a function of chunk’s activation value and retrieval threshold. When a model makes a 

retrieval request and a matching chunk exists, that chunk will be retrieved only if its activation 

value exceeds the retrieval threshold. The equation 3.3 presented the probability of retrieval of 

each chunk, i. 

! 

P(Ai) =
1

1+ e
"#Ai
s

                                                                                             Equation 3.3 

Through the equations 3.1, 3.2, and 3.3, I am able to figure out the recall probabilities at 

the specific learning and retention sessions. To simplify the activation strength of each chuck, the 

noise component, ", in equation 3.1 is ignored, and the retrieval threshold, !, and the noise 

parameter, s, in equation 3.3 are set as constants (Pavlik & Anderson, 2005).   !

In my research, the total number of learning session is eight that could take place Monday 

through Thursday over two weeks, and the retention session takes place 21 days later from the 

end of the last learning session. Under these conditions (The schedules end on the last day of 

training, so the schedules never have 0 at the end), I can have 6,435 candidate schedules. Table 3-

1 presents the recall probabilities at each training session and retention session, and is sorted by 

the rank of value at 21st day retention based on these equations. 
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As we can see the table 3-1, the best massed practice schedule (0-0-0-0-0-0-0-8) could 

generate the best recall probability at the retention day, and the distributed practice schedule (1-1-

1-1-1-1-1-1) is by far not the best, its rank is 4,397 among 6,435 (68%). The differences between 

the massed practice and distributed practice are more than 3.2% in total recall probability at the 

retention day, and almost 17% in relatively. From this result, we can figure out that the baseline 

ACT-R model could not predict the spacing effect of human mind, so the needs for extending 

current learning and forgetting equation have risen.  

In next section, I present an extension of current ACT-R equation that was developed by 

Pavlik and Anderson (2005) for predicting the spacing effect of human mind.!

3.2 Hybrid Practice Schedules Based on an Activation-Based model 

Pavlik and Anderson (Pavlik, 2007; 2003, 2004, 2005) investigated the effect of practice 

and spacing on retention of Japanese-English vocabulary paired associates. In their studies, they 

found that the relative benefit of spacing increased with increased practice and with longer 

Table 3-1: Recall probabilities based on the base-level equation at training and retention days. 

"#$%! &'()*+,)-! .! /! 0! 1! 2! 3! 4! 5! ")6/.!

.! 77777775! 7! 89777! 89300! 8949.! 89525! 89591! 899.4! 8990/! 8//.9!
/! 777777.4! 7! 87524! 89.3.! 8934.! 89575! 89535! 89977! 899/.! 8//.7!
0! 77777.74! 7! 87114! 89..5! 89337! 89570! 89532! 89599! 899.9! 8//7.!
1! 777777/3! 7! 89777! 8/4.4! 89/53! 89471! 895/0! 89543! 89973! 8//77!
2! 7777.774! 7! 87070! 89795! 89323! 8957.! 89531! 89595! 899.9! 8/.9/!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
20! 77777711! 7! 89777! 8930/! 8949.! 82903! 89132! 89423! 89515! 8/.57!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
225! 7777/0/.! 7! 89777! 8/4.4! 89/53! 89471! 83104! 89192! 84/./! 8/755!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
//.7! .7...7.0! 7! 87114! 8.59.! 8.1.1! 8/050! 809/2! 89022! 894//! 8.953!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
1094! ........! 7! 87524! 8/.13! 80/53! 8/.95! 80523! 81534! 82242! 8.595!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
3102! 4777777.! 7! 89777! 8930/! 8949.! 89525! 89591! 899.3! 80.1.! 8.391! 
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retention intervals. From the experiment, they proposed an activation-based model based on the 

base-level learning equation of ACT-R 6.0. In this model, they argue a declarative memory unit 

receives an increment of strength whenever it is activated, but these increments decay as a power 

function of time. They found that the decay rate for each presentation depended on the activation 

at the time of the presentation. Equation 3.4 is a decay function that was originally a constant in 

ACT-R 6.0, and shows how the decay rate, di, is calculated for the ith presentation of an item as a 

function of the activation mi-1. !

! 

di(mi"1) = cemi"1 + a                                                                                         Equation 3.4 

c: decay scale parameter 
a: intercept of the decay function 
 

This equation results in a steady decrease in the long-run retention for more presentations 

in a sequence where presentations are closely spaced. As spacing gets wider in such as sequence, 

activation has time to decrease between presentations, decay is therefore lower for new 

presentations and long-run retention effects do not decrease as much (Pavlik & Anderson, 2008). 

Using the decay function from equation 3.4, the revised base-level learning equation is presented 

in equation 3.5.!

! 

mn (t1...n ) = ln ti
"d i

i=1

n

#
$ 

% 
& 

' 

( 
)                                                                                       Equation 3.5 

From the equation 3.5, an activation-based model, I can figure out the recall probabilities 

at the training day and retention day. The conditions are the same as the previous section, that is 

6,435 training schedules, and the decay scale parameter, c, is 0.217 and the intercept of the decay 

function, a, is 0.177. Those values have used by Pavlik and Anderson (2005, 2008). The noise 

component, ", in equation 3.1 is also ignored, and the retrieval threshold, !, and the noise 

parameter, s, in equation 3.3 are set as constants. Table 3-2 shows the recall probabilities at each 

training session and retention session, and is sorted by the rank of value at 21st day retention. 



27 

 

As we can see table 3-2, the hybrid practice schedule (1-0-1-1-1-0-1-3) could generate 

the best recall probability at the retention day, and the distributed practice schedule (1-1-1-1-1-1-

1-1) is not the best, its rank is 754 among 6,435 (11.7%). The differences between the best hybrid 

practice and distributed practice are more than 2.5% in total recall probability at the retention day, 

and 5.2% in relatively. However, the distributed schedule is better than the massed practice 

schedule (0-0-0-0-0-0-0-8) by almost 11%. Thus, the distributed practice schedule could produce 

better performance than the massed one at retention that have been shown in many previous 

studies, however, the distributed with cramming is the best.!!

Pavlik and Anderson also predicted the results of the previous canonical studies through 

their model like as Raaijmakers (2003) did. Raaijmakers extended the search of associateive 

memory (SAM) model (Raaijmakers & Shiffrin, 1981) to account for the spacing effect and 

successfully fit the model to the data sets of Rumelhart (1967), young (1971), and Glenberg 

(1976). In addition to these data sets, Pavlik and Anderson also predicted the data sets of Bahrick 

(1979) and Bahrick and Phelps (1987). To fit these data sets, Pavlik and Anderson used different 

Table 3-2: Recall probabilities based on the activation-based model at training and retention days. 

"#$%! &'()*+,)-! .! /! 0! 1! 2! 3! 4! 5! ")6/.!

.! .7...7.0! 7! 8712/! 87411! 8.574! 81/70! 8320.! "8093! 85355! 82740!
/! .77/.7.0! 7! 87012! 879.0! 8.534! 81.9.! 832.7! 85751! 85351! 8274.!
0! .7....70! 7! 8712/! 87411! 8.574! 819/7! 83.25! 84540! 85295! 82722!
1! .77/..70! 7! 87012! 879.0! 8.534! 81970! 83.04! 84531! 85291! 82720!
2! ..7..7.0! 7! 874./! 87307! 8.320! 81794! 83197! 85757! 8535/! 82719!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
421! ........! 7! 874./! 879.9! 80031! 8050.! 83/74! 840.3! 84910! 815.9!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
220/! 7777/0/.! 7! 8.799! 811.1! 84747! 840/0! 840/0! 85.91! 85.97! 81735!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
2405! 77777711! 7! 8./01! 8.431! 81911! 83719! 843/3! 85035! 854/.! 8095/!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
3.70! 77777775! 7! 8./01! 8.431! 81911! 84.27! 85747! 85270! 85424! 80452!
!!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!!
3102! 4777777.! 7! 8./01! 8.431! 81911! 84.27! 85747! 85270! 8151/! 80750! 
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values for the decay intercept (a) and decay scale (c) parameters, and table 3-3 shows these 

different values with respect to the previous studies. 

I also investigated practice schedules with these different decay parameters. For the 

results of the decay parameters of Bahrick, Bahrick and Phelps, and Glenberg showed that the 

best practice schedule is 1-0-1-1-1-0-1-3 like as previous table 3-2 showed, however the orders of 

rank are little bit different among the results. For the results of the decay parameters of Rumelhart 

and Young showed that 1-0-0-2-1-0-1-3 is the best training schedule, and 1-0-1-1-1-0-1-3 ranks 

at the 12th and 3rd in each result respectively. Both rank higher than the fully distributed practice 

schedule. From these results, we can assume that ACT-R theories support some hybrid practice 

schedules could produce better performance than a distributed practice schedule. However, this 

equation could not explain the relationship between retention interval (RI) and inter-study interval 

(ISI) that were found in recent experiment (Cepeda et al., 2009; Cepeda, Pashler, Vul, Wixted, & 

Rohrer, 2006; Cepeda et al., 2008). !

3.3 A Study on Optimal Study-Interval and Retention 

Several studies on predicting optimal spacing and retention for knowledge acquisition 

(Cepeda et al., 2009) have been explored to examine the relationship between retention interval 

and inter-study interval. To figure out this relationship, they use 32 obscure but true trivia facts 

(e.g., “What European nation consumes the most spicy Mexican food?” Answer: “Norway) with 

Table 3-3: Decay intercepts and Decay scales with respect to the previous studies. 

 Bahrick (1979); 
Bahrick and 

Phelps (1987) 
Rumelhart (1967) Young (1971) Glenberg (1976) 

Decay intercept (a) 0.217 0.149 0.300 0.058 

Decay scale (c) 0.143 0.495 0.419 0.283  
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two study sessions and one retention session. They used seven kinds!of inter-study interval 

(interval between the first and second study sessions) and four kinds of retention interval (interval 

between the second study session and the final test). Table 3-3 shows four kinds of retention 

interval, seven kinds of the inter-study interval, and the number of subjects in each experimental 

condition.!

Under these conditions, subjects participated two study sessions and one test session by 

following their schedules. The final test session consists of two tests, recall (subjective test) and 

recognition (objective test with five potential answers) tests. The results that are presented in 

figure 3-1 shows that the final performance increased with increasing inter-study interval initially 

and then decreased as inter-study interval was increased further. This shows that the spacing 

effect exists in humans, however, the more widely spacing could not generate better performance 

Table 3-3:  Number of subjects in each experimental condition.  

Retention 
Interval (days) 

Inter-Study 
Interval (days) 

Number of 
subjects 

7 0 60 
7 1 66 
7 2 79 
7 7 77 
7 21 70 
7 105 45 
35 0 72 
35 1 69 
35 4 75 
35 7 66 
35 11 41 
35 21 61 
35 105 23 
70 0 55 
70 1 67 
70 7 59 
70 14 51 
70 21 49 
70 105 37 
350 0 45 
350 1 34 
350 7 43 
350 21 25 
350 35 41 
350 70 26 
350 105 28  
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at retention test. It also showed that there might be a threshold with respect to each retention 

interval; so, we need to consider these thresholds in making training schedules"!

 

!

Figure 3-1:  Performance on the final (a) recall and (b) recognition tests as a function of gap, for 
each of the four retention intervals (taken from Cepeda et al., 2008). 
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3.4 Other Theories for Performance Prediction 

Lebiere and Best (2009) recently argued that many cognitive architectures have 

difficulties to predict the ability to imperfectly but robustly enumerate a set of alternatives that 

could be found in many human activities. They argued that the conflict between mechanisms of 

long-term reinforcement and the need for short-term inhibition of recent items is a primary source 

of the difficulties, so they revised the original base level learning equation to solve this problem. 

They added two new parameters: a short-term decay rate ds, and a time scaling parameter ts, and 

the equation is presented in equation 3.6.!

! 

Bi = log t j
"d " log 1+

tn
"ds

ts

# 

$ 
% 

& 

' 
( 

j=1

n

)                                                                          Equation 3.6 

Using the equation 3.6, they tested different ranges of the short-term decay rate and time 

scaling parameter. They found that this new mechanism not only prevents degenerate behavior in 

memory retrieval, but also emerges as a source of the power law distribution. However, it still 

needs to be validated with empirical data.  

The Predict Performance Equation (PPE, Jastrzembski, Addis, Krusmark, Gluck, & 

Rodgers, 2010; Jastrzembski & Gluck, 2009; Jastrzembski, Gluck, & Gunzelmann, 2006) is a 

mathematical model of learning and forgetting developed to capture performance across training 

histories, and to generate precise, quantitative point predictions of performance. The PPE is 

implemented in the Predictive Performance Optimizer (PPO, Jastrzembski, Gluck, Rodgers, & 

Krusmark, 2009) —a cognitive tool designed to help learners and instructors predict optimal 

spacing between the training sessions. The PPE equation can be presented in equation 3.7 and 

3.8.!

! 

Performance = S • St • NC • T "d                                                                   Equation 3.7 

S: a scalar to accommodate any variable of interest 
C: learning rate 



32 

 

d: decay rate 

! 

St =
lag"
P

•
Pi
Ti

•
i
j (lagmax i , j # lagmin i , j )"

Ni

$ 

% 
& 
& 

' 

( 
) 
) 
                                              Equation 3.8 

lag: amount of true time passed between training events 
P: true amount of time amassed in practice 

Jastrzembski et al. could validate these equations and their extension with a team 

coordination Unmanned Air Systems (UAS) reconnaissance task and F-16 simulator air-to-air 

combat data, and they found that the equations could predict the performance of their empirical 

data closely. However, I remain to explore these equations as future work.  !

3.5 Summary 

In this chapter, I show the theoretical study of hybrid practice. I use the base-level 

learning equation, and the revised base-level learning equation that are the theories of ACT-R for 

the declarative knowledge learning and forgetting, and I provide the best practice schedule that is 

supported by the ACT-R cognitive architecture. The results of the base-level learning equation 

predict that the massed practice schedule (0-0-0-0-0-0-0-8) is the best, however, the results of the 

revised base-level learning equation predict that the hybrid practice schedule (1-0-1-1-1-0-1-3) 

produce better performance than the other schedules. However, Cepeda et al. (2008) validated the 

revised base-level learning equation with their empirical data and found that the equation could 

not predict the performance of various learning interval and long term retention, so this equation 

might be needed to modified in some way.  

Lebiere and Best (2009) revised the base-level learning equation, and found that their 

new equation not only could prevent degenerate behavior in memory retrieval, but also emerge as 

a source of the power law distribution. However, it still needs to be validated with empirical data. !
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Jastrzembski et al. (2010) showed the Predictive Performance Equation, and by using this 

equation they provided how to predict the performance of learner at any specific time. 

In next chapter, I present the procedure and results of the empirical study to test these 

theories.  



 

 

Chapter 4 
 

Empirical Study: Exploring the Best Practice Schedule!

This chapter describes the detailed research design and method to explore a new 

paradigm of training strategy for knowledge and skills acquisition and retention. Participants 

conducted four sets of tasks with four kinds of training regimens. Dependent measures and results 

of the experiment are presented here. 

4.1 Method 

4.1.1 Participants 

Forty-six undergraduate students at the Pennsylvania State University were recruited in 

this experiment. Four participants did not show up at the training day, and two participants’ data 

were excluded because they studied during their rest periods. For the reimbursement, participants 

were provided extra course credit or $27. The participants did not have knowledge of Japanese 

vocabulary and Tower of Hanoi game.  

The required sample size, 40, were calculated and approximated from the power analysis 

for ANOVA design (Cohen, 1988). In this task, I used 0.8 as an effect size delta value, because 

its range is 0 to 3 typically, and 0.75 is medium effect size, so 0.8 is greater than the medium 

effect size. The sample size, delta values and power parameters specified in the analysis are 

presented in Table 4-1. 
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4.1.2 Materials 

To explore the objectives of this study, four kinds of experiment environments were 

developed. Each of the experiment environments satisfies the requirements of possible tasks that I 

mentioned in chapter 2. 

The web-based Japanese-English vocabulary test is based on Pavlik and Anderson’s 

(2005) Japanese-English vocabulary test. It was developed for declarative knowledge learning 

and retention. Pavlik and Anderson used 104 Japanese-English words that were from the Medical 

Research Council (MRC) Psycholinguistic database (Coltheart, 1981). Among these 104 

Japanese-English word pairs, fifteen Japanese-English word pairs were used. These words have 

Table 4-1:  Power analysis for the experiment design. 

N Delta 

2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
25 
30 
35 
40 
50 

0.067 
0.089 
0.111 
0.135 
0.159 
0.185 
0.211 
0.237 
0.264 
0.318 
0.371 
0.424 
0.475 
0.524 
0.634 
0.726 
0.799 
0.855 
0.929 

!"#$"%"&'$()*+,+-)./-01'2)"3)4546! 
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familiarity ratings between in English 406 and 621, with a mean of 565, and have imagability 

ratings between 343 and 566, with a mean of 480. These ratings are composed according to a 

procedure described in the MRC Psycholinguistic Database manual (Coltheart, 1981). The overall 

MRC database means for familiarity and imagability are 488 (SD 120) and 438 (SD 99) 

respectively, so the words had higher familiarity and imagability ratings than the database 

averages. Only four-letter English words were used (e.g. base, mail, date, etc.), and four-to-seven 

letter Japanese translations were used (e.g. dodai, yuubin, nendai, etc). Japanese words were 

presented using English characters. Word assignment to conditions was randomized for each 

participant and each trial. The problems were displayed one problem per one page, and the 

answer was displayed with “Correct” or “Wrong” sign. The number of correct answers and the 

task completion time of correct answer were recorded. Figure 4-1 is the screen shot of the web-

based Japanese-English vocabulary task that I used. 

 

 
Figure 4-1:  The web-based Japanese-English vocabulary task. 
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For procedural knowledge learning and retention, two tasks were used, one is a web-

based Tower of Hanoi puzzle, and the other is a web-based mathematical permutation problem-

solving task. A Tower of Hanoi puzzle that was modified from its original style has three rods 

with six disks. Participants were asked to move six disks from the leftmost rod to the rightmost 

rod with three rules: (a) only one disk can be moved at one time, (b) the top disk among the 

whole stacks can be moved to another rod, and (c) a large disk can not be placed on a small disk. 

The lowest number of movements, 63 moves, was displayed for motivational purposes, and a 

user’s moves were counted and displayed. Figure 4-2 is the screenshot of the web-based Tower of 

Hanoi puzzle. 

A web-based mathematical permutation problem-solving task that was used by Rohrer 

and Taylor (2006) is solving a series of particular kind of problem. Participants were asked to 

provide the number of possible unique ordering of different sequences. A sequence is a set of n 

letters including k different letters and at least one repeated letter (e.g. aabbbb, n =6, k = 2). The 

 

 
Figure 4-2:  The web-based Tower of Hanoi game. 
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number of possible unique ordering is equal to n!/n1!n1!...nk!, where ni is the number of 

repetitions of letter i.!This task consists of 12 problems that have particular form, such as aaabbb, 

aabbccc, etc, and these problems were displayed one-by-one per page, and the answer also was 

displayed with a “Correct” or “Wrong” sign. Participants were asked to solve all problems in each 

session, and the number of correct answers and the task completion time of each correct answer 

were presented when the task was completed. To calculate the problems, blank paper and pencil 

were provided. Figure 4-3 is the screenshot of the web-based mathematical permutation problem-

solving task. 

For the perceptual-motor learning and retention task, an Inverted Pendulum task was 

used. This is an iPhone or iPodtouch application that is controlled by accelerometer. Participants 

used an iPodtouch, and they needed to keep balancing a stick that is on the ball in the game 

through tilting the device. The time duration of balancing is provided by the application itself. 

Figure 4-4 shows the screen shot of this application. 

 

 
Figure 4-3:  The web-based mathematical permutation problem-solving task. 
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These experiments were held at the ACS (Applied Cognitive Science) Usability lab. A 

Mac desktop with wide screen monitor, keyboard and mouse were provided to conduct 

experiments. 

From the Japanese-English vocabulary test, the number of correct answers (accuracy) and 

the time taken for the correct answers (latency) were recorded in the system. The number of disk 

movements and the task completion time were recorded from the Tower of Hanoi puzzle. Like 

the Japanese-English vocabulary test, the number of correct answers (accuracy) and time taken 

for the correct answers (latency) were recorded in the system from the mathematical permutation 

problem-solving task. Finally, duration time was obtained for the inverted pendulum game. Table 

4-2 shows the dependent measures for each knowledge type in this study. 

 

 
Figure 4-4:  Screenshots of the iPodTouch based Inverted Pendulum task. 
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4.1.3 Design 

The experiment of this study is a between subjects experiment with one independent 

variable of four levels (massed, distributed, Hybrid1, and Hybrid2 schedules). The participants 

were randomly assigned to four groups with regard to training regimens. All of the regimens 

consist of eight learning sessions and one retention test session, and each session has four tests 

including the Japanese-English vocabulary test, the Tower of Hanoi puzzle, the Permutation 

problem-solving test, and the inverted pendulum. Therefore, all of the participants performed 36 

tests on a schedule according to their training regimen.  

The schedule of the distributed practice group was eight learning sessions in eight days 

over two weeks (four sessions per week). The schedule of the massed practice group was the 

same eight learning sessions in two days over one week (four sessions at the 1st day and another 

four session at the 2nd day). The Hybrid1 practice group performed eight learning sessions in 

Table 4-2:  The dependent measures according to the task type. 

Task Type Task Dependent Measure 

Number of Correct Answers 
Declarative Memory Japanese-English Vocabulary 

Task Completion Time 

Number of Disk Moves 
Tower of Hanoi 

Task Completion Time 

Number of Correct Answers 
Procedural Memory 

Mathematical Permutation 
Problem Task Completion Time 

Perceptual Motor Inverted Pendulum Task Time duration of Balancing 
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four days over one week with unevenly distributed (two sessions at the 1st day, three sessions at 

the 2nd day, two sessions at the 3rd day, and one session at the 4th day). The Hybrid2 practice 

group performed eight learning sessions in six days over two weeks (one session at the 1st, 3rd, 

4th, 5th, and 7th day, and three session at the 8th day). The retention test of the all regiments took 

place three weeks later (21 days retention) after the last session of each regimen. To obtain more 

accurate results, participants were asked not to do mental rehearsal or practice of the tasks during 

the rest period. Table 4-3 shows the four different training regimens for this study. 
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4.1.4 Procedure 

Before starting the experiments, participants were asked to read an implied informed 

consent form, and then they had explanation of the purpose of the study and performed the four 

Table 4-3:  Four different training schedules for the learning and retention experiments. 

  Mon. Tue. Wed. Thu. Fri. 

1st Week Distributed D1 D2 D3 D4  

 Hybrid1      

 Hybrid2 H21  H22 H23  

 Massed      

2nd Week Distributed D5 D6 D7 D8  

 Hybrid1 H11H12 H13H14H15!  H16 H17 H18  

 Hybrid2 H24  H25 H26H27H28  

 Massed   M1M2M3M4 M5M6M7M8  

3rd Week Distributed      

 Hybrid1      

 Hybrid2      

 Massed      

4th Week Distributed      

 Hybrid1      

 Hybrid2      

 Massed  M – Ret. Test    

5th Week Distributed      

 Hybrid1    H1 – Ret. Test  

 Hybrid2    H2 – Ret. Test  

 Massed    D – Ret. Test  
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tasks. The sequence of the four tasks was randomly assigned, and whenever participants complete 

one task, dependent measures, such as completion task time, number of movements, and so on, 

were presented automatically to the participants. 

4.2 Results and Discussion 

I present the experiment outcomes from the 40 participants who completed the tasks 

according to the practice schedules in this section. The performance test for the first learning 

session (before test) is shown in 4.2.1. In section 4.2.2, the general performance of each group 

with respect to the four tasks is presented. The comparing of performance improvement between 

the first learning session and the retention session is presented in 4.2.3. Finally, the learning 

trends for each group with respect to all tasks are presented in 4.2.4.!

4.2.1 Testing the Random Assignment of Groups 

In this section, I present the performance test on the first learning session of all practice 

schedules with respect to the whole tasks to validate the participants were randomly assigned to 

each group. A series of one-way analysis of variance (ANOVA) were conducted.  

4.2.1.1 The Japanese Vocabulary Test 

The accuracy and the latency of the Japanese vocabulary test are all zero at the first 

learning session. These results show that the participants in each group did not have any 

knowledge about Japanese words, and it reflects that there are no significant differences for 

recruited participants in each group. 



44 

 

4.2.1.2 The Permutation Problem-solving Task 

Two kinds of measurement, accuracy and latency, were analyzed to compare the practice 

schedules for the Permutation problem-solving task. There were little differences for accuracy 

and latency at the first learning session, so I performed a one-way analysis of variance 

(ANOVA). I assumed that all of the variables are normally distributed and have equal variance. 

Table 4-4 shows the results of ANOVA for the accuracy and latency for this task. 

There were no significant differences between groups for the accuracy of the Permutation 

problem-solving task at the first learning session, F(3,36) = 1.07, p >.05, and the latency of this 

task at the first learning session, F(3,36) = 2.21, p > .05. These results indicate that the 

participants were randomly assigned into each group, so the participants of each group did not 

lead to significant differences for performing the task during the learning and retention sessions. !  

4.2.1.3 The Tower of Hanoi Puzzle 

For the Tower of Hanoi puzzle, two kinds of measurement, task completion time and the 

number of disk movements, were analyzed to compare the practice schedules. A one-way 

analysis of variance (ANOVA) was conducted, and the results are presented in table 4-5. 

Table 4-4: ANOVA table for the accuracy and the latency of the Permutation problem-solving 
task.   

  df Sum of Squares Mean Square F P 
Between Groups 3 0.06 0.02 1.07 .38 
Within Groups 36 0.70 0.02   Accuracy 

Total 39 0.72    
Between Groups 3 1,372.72 457.57 2.21 .10 
Within Groups 36 7,440.51 206.68   Latency 

Total 39 8,813.23     
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The task completion time of the Tower of Hanoi puzzle at the first learning session is not 

significant between groups, F(3,36) = 0.92, p > .05, and the number of disk movements at the 

first learning session is not significant between groups either, F(3,36) = 0.81, p > .05. From the 

results of ANOVA, the participants were randomly divided into each group, so the participants of 

each group did not lead to significant difference for performing the task during the learning and 

retention sessions.  

4.2.1.4 The Inverted Pendulum Task 

For the Inverted Pendulum task, the duration time was analyzed to compare the practice 

schedules. A one-way analysis of variance (ANOVA) was conducted, and table 4-6 shows the 

results. 

Table 4-5: ANOVA table for the task completion time and the number of disk movements of the 
Tower of Hanoi puzzle.  !

 ! df Sum of Squares Mean Square F p 

Between Groups 3 302,438.64 100,812.88 0.92 .44 
Within Groups 36 3,928,955.65 109,137.66   

Task Completion 
Time 

Total 39 4,231,394.29    
Between Groups 3 48,924.20 16,308.07 0.81 .49 
Within Groups 36 720,937.40 20,026.04   Number of Disk 

Movements 
Total 39 769,861.60     

 

Table 4-6: ANOVA table for the duration time of the Inverted Pendulum task.   

  df Sum of Squares Mean Square F p 

Between Groups 3 363.53 121.17 0.81 .49 
Within Groups 36 5,392.96 149.80   Duration Time 

Total 39 5,756.49     
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The task duration time of the Inverted Pendulum task at the first learning session is not 

significant different between groups, F(3,36) = 0.81, p > .05. These results indicate that the 

participants in each group were randomly divided into each group, so participants of each group 

did not influence to the performance during the whole learning and retention sessions. 

4.2.2 General Performance for Each Group 

All of the participants conducted eight learning sessions and one-retention session. One 

session consists of four tasks, and the order of the tasks was decided randomly in each session. 

The statistical results are presented in the next section.  

Figure 4-5 shows the experiment results of the accuracy for the Japanese-English 

vocabulary task in each session with respect to the four practice schedules. As we can see, the 

proportion correct at the first learning session is zero (nobody knew this Japanese vocabulary), 

and it increases with practice. However, the increase and decrease rates are different by each 

session and each practice schedule. The massed practice schedule shows that the accuracy 

increases during the first four learning sessions, and there is almost no change between the fourth 

and fifth sessions. The reason is there was one-day rest period between those two sessions, so a 

little knowledge degradation might happen during the rest period. The distributed schedule shows 

that the accuracy increases during the first four learning sessions, and it decreases at the fifth 

session. There were four days rest period between the fourth and fifth sessions, so some amount 

of knowledge degradation happened during the rest period. The Hybrid1 practice schedule shows 

that the accuracy increases during the first two learning sessions, however, the large amount of 

knowledge degradation happened at the third learning session. It indicates that two concatenation 

learning sessions are not enough to retain learned vocabularies. The Hybrid2 practice schedule 
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shows that the accuracy increases during whole learning sessions, even though there are four days 

rest period between the third and fourth learning sessions. !

The average proportion correct for the massed practice schedule at the last learning 

session is .67, which is the highest, and for the distributed schedule shows the lowest 

performance, .56. However, the massed practice schedule has the lowest performance, .35, and 

the distributed practice schedule has the highest performance, .51, at the retention session (R-21). 

The other hybrid schedules, Hybrid1, and Hybrid2, have .41, and .43, respectively. The massed 

practice schedule shows the highest decrease (.67 to .35) among the schedules, and the distributed 

practice schedule shows the lowest decrease (.55 to .50). The Hybrid1 practice schedule decreases 

from .58 to .41, and the Hybrid2 practice schedule decreases from .65 to .43. These results are 

presented in table 4-7. 

 

 
Figure 4-5: The accuracy for the Japanese-English vocabulary test with respect to the four 
practice schedules. 
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Figure 4-6 shows the experiment results of the latency for correct answers of the 

Japanese-English vocabulary task in each session with respect to the four schedules. The latency 

at the first learning session is zero, because the number of correct answers is zero at that session. 

The latencies among the schedules are almost the same at the last learning session, however, the 

massed practice schedule shows the highest, 4.78 sec., and two of the hybrid practice schedules 

show similar latencies, 3.41 sec. and 3.51 sec., at the retention session. These results are 

presented in table 4-8.!

 

Table 4-7: The accuracy for the Japanese-English vocabulary test at the last learning session and 
the retention session with respect to the four practice schedules.   

 Last Learning Session Retention Session (R-21)!
Massed .67 .35 

Distributed .56 .51 
Hybrid1 .58 .41 
Hybrid2 .65 .43  

 

 

!

Figure 4-6:  The latency for the Japanese-English vocabulary test with respect to the four practice 
schedules. 
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The accuracy and latency were also used in the Permutation problem-solving task. Figure 

4-7 and 4-8 show the experiment results with respect to the four practice schedules. From the 

both figures, we can figure out that different kinds of practice schedules do not affect the 

accuracy and latency in this kind of task. The latency, of course, decreases with practice, but there 

is no difference among the practice schedules. These results are presented in table 4-9 and 4-10.!

 

Table 4-8: The latency (sec.) for the Japanese-English vocabulary test at the last learning session 
and the retention session with respect to the four practice schedules.   

 Last Learning Session Retention Session (R-21)!
Massed 2.99 4.78 

Distributed 3.09 4.00 
Hybrid1 3.17 3.41 
Hybrid2 3.04 3.51  

 

 

!

Figure 4-7:  The accuracy for the Permutation problem-solving task with respect to the four 
practice schedules. 
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!

Figure 4-8:  The latency for the Permutation problem-solving task with respect to the four 
practice schedules. 

Table 4-9: The accuracy for the Permutation problem-solving task at the last learning session and 
the retention session with respect to the four practice schedules.   

 Last Learning Session Retention Session (R-21)!
Massed .97 .91 

Distributed .98 .93 
Hybrid1 .97 .89 
Hybrid2 .97 .92  

 

Table 4-10: The latency (sec.) for the Permutation problem-solving task at the last learning 
session and the retention session with respect to the four practice schedules.   

 Last Learning Session Retention Session (R-21)!
Massed 8.93 12.92 

Distributed 10.44 13.91 
Hybrid1 8.57 12.13 
Hybrid2 8.46 12.99! 
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For the Tower of Hanoi puzzle, the task completion time (figure 4-9) and the number of 

disk movements (figure 4-10) were recorded and analyzed. The task completion times at the first 

learning session are somewhat different among the schedules. The participants in the massed 

practice group completed the task in 401.60 sec., ones in the distributed group completed the task 

in 465.22 sec., ones in the Hybrid1 group completed the task in 638.28 sec., and ones in the 

Hybrid2 group completed the task in 519.57 sec. at the first learning session. Those values 

decrease gradually with practice, and participants in the massed group completed the task in 

138.57 sec., ones in the distributed group in 153.38 sec., ones in the Hybrid1 group in 203.16 

sec., ones in the Hybrid2 group in 102.57 sec. at the final learning session. Finally, the task 

completion time of the massed group is 172.33 sec., the distributed group is 167.72 sec., the 

Hybrid1 group is 185.47 sec., and the Hybrid2 group is 124.44 sec. at the retention session. These 

results are presented in table 4-11. 

 

 

!

Figure 4-9:  The task completion time for the Tower of Hanoi puzzle with respect to the four 
schedules. 
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As we can see the figure 4-10, the shapes of graph for the number of disk movements are 

almost identical to the ones for the task completion time. The participants in the massed group 

moved disks 167.5 times, ones in the distributed group moved 183.90 times, ones in the Hybrid1 

group moved 248 times, and ones in the Hybrid2 group moved 241 times. Those values are 

gradually decrease with practice, and the massed group moved disks 73.40 times, the distributed 

group moved 84.10 times, the Hybrid1 group moved 115.70 times, and the Hybrid2 group moved 

78.2 times at the final training session. At the retention session, the number of disk movements 

for the massed group is 84.20 times, for the distributed group is 81.40 times, for the Hybrid1 

group is 108.50 times, and for the Hybrid2 group is 94 times. Table 4-12 shows these results.!

Table 4-11: The task completion time (sec.) for the Tower of Hanoi puzzle at the last learning 
session and retention session with respect to the four schedules. 

 Last Learning Session Retention Session (R-21)!
Massed 138.57 172.33 

Distributed 153.38 167.72 
Hybrid1 203.16 185.47 
Hybrid2 102.57 124.44  

 

 

!

Figure 4-10:  The number of disk movements for the Tower of Hanoi puzzle with respect to the 
four schedules.   
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There are very little differences between the last learning session and the retention 

session for the task completion time and the number of disk movement in the Tower of Hanoi 

puzzle regardless of the different practice schedules" It shows that the knowledge for solving the 

Tower of Hanoi puzzle was proceduralized in the declarative and procedural memories of the 

participants during the learning sessions. It is also consistent with that when the proceduralized 

happens in human mind, the degradation rarely happens.  !

For the Inverted Pendulum task, the duration time was recorded and analyzed. Figure 4-

11 shows the experiment results of the duration time for the Inverted Pendulum task in each 

session with respect to the four practice schedules. The average duration time for the participants 

in the massed group is 13.68 sec., for ones in the distributed group is 17.54 sec., for ones in the 

Hybrid1 group is 11.68, and for ones in the Hybrid2 group is 9.32 sec. at the first learning 

session. These duration times increase with practice, and participants in the massed group reached 

74.12 sec., ones in the distributed group reached 29.87 sec., ones in the Hybrid1 group reached 

148.26 sec., and ones in the Hybrid2 group reached 98.32 sec. at the final learning session. At the 

retention session, the massed group kept balancing during 109.00 sec., the distributed group kept 

balancing during 25.39 sec., the Hybrid1 group kept balancing during 146.36 sec., and the 

Hybrid2 group kept balancing during 76.67 sec. These results are presented in table 4-13. 

Table 4-12: The number of disk movements for the Tower of Hanoi puzzle at the last learning 
session and retention session with respect to the four schedules. 

 Last Learning Session Retention Session (R-21)!
Massed 73.4 84.2 

Distributed 84.1 81.4 
Hybrid1 115.7 108.5 
Hybrid2 78.2 94.0! 
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The participants in the massed group performed better balancing at the retention session 

than the last learning session, and ones in the Hybird1 group shows almost the same performance 

between the retention session and the last learning session. It shows that the perceptual-motor 

skills of participants in those groups were procedurlized in their minds during the learning 

sessions. In contrast, the participants in the distributed group could not proceduralized their 

perceptual-motor skills through the distributed practice schedule.!

 

!

Figure 4-11:  The duration time of the Inverted Pendulum task with respect to the four schedules.  

Table 4-13: The duration time (sec.) of the Inverted Pendulum task at the last learning session and 
retention session with respect to the four schedules. 

 Last Learning Session Retention Session (R-21)!
Massed 74.12 109.00 

Distributed 29.87 25.39 
Hybrid1 148.26 146.36 
Hybrid2 98.32 76.67! 
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4.2.3 Comparison of Performance Improvement 

To examine the efficiency of each practice schedule, I analyzed the performance 

improvement that is described the equation 4.1, by comparing the performance at the first 

learning session to the performance at the retention session. The performance improvement of 

each group is compared using analysis of variance and a t-test.  

!
           Equation 4.1 

 4.2.3.1 The Japanese Vocabulary Test 

The performance improvement for the accuracy and latency of the Japanese vocabulary 

test are the same as the accuracy and the latency at the retention session, because, the accuracy 

and latency of this task at the first training session were zero. Figure 4-12 shows the boxplots for 

the accuracy and latency of the Japanese vocabulary test with respect to the practice schedules. !
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Two one-way analyses of variances were also conducted to check the performance 

improvement according to the practice schedules, and these results are presented in Table 4-14. 

The accuracy and latency for the correct answers of the Japanese vocabulary test for the 

performance improvement are not significant different among the groups, F(3,36) = .61, p > .05, 

and F(3,36) = 1.33, p > .05 respectively.  

 These results are different from the results of the previous works that showed a 

distributed practice schedule provides better performance at the retention session than a massed 

practice schedule. I think the outliers in the massed group and two hybrid schedules that were 

 

! !

Figure 4-12: Boxplots (N = 10 per groups) showing the accuracy and latency for the correct 
answers of the Japanese vocabulary test at the retention session with respect to all groups (There 
are outliers in the massed practice group for the results of accuracy and latency).  

Table 4-14: ANOVA table for the accuracy and the latency for the correct answers of the 
Japanese vocabulary test for the performance improvement.   

  df Sum of Squares Mean Square F p 

Between Groups 3 0.13 0.04 0.61 .61 
Within Groups 36 2.57 0.07   Accuracy 

Total 39 2.69    
Between Groups 3 11.72 3.91 1.33 .28 
Within Groups 36 105.87 2.94   Latency 

Total 39 117.59     
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compared together cause little difference among the schedules. So, I exclude the outlier that 

shows perfect accuracy (1.0) at the retention session in the massed group, and did the analysis of 

variance again, and the results are presented in table 4-15. There were still no significant different 

among groups, F(3,35) = 1.44, p > .05 for accuracy, and F(3,35) = 1.71, p > .05 for latency of 

correct answers. 

To examine the difference between each pair of groups, I performed a series of 

independent-sample t-tests. Each group compared with the other groups, so six in total 

independent t-tests were conducted. There are no significant differences in the accuracy and 

latency on the retention session between all of the groups; between the massed and the distributed 

groups, t(18) = -1.31, p > .05 for accuracy and t(18) = 0.83, p > .05 for latency, between the 

massed and the Hybrid1 groups, t(18) = -0.48, p > .05 for accuracy and t(18) = 1.52, p > .05 for 

latency, between the massed and the Hybrid2 groups, t(18) = -0.66, p > .05 for accuracy and t(18) 

= 1.46, p > .05 for latency, between the distributed and the Hybrid1 groups, t(18) = 0.9, p > .05 

for accuracy and t(18) = 0.91, p > .05 for latency, between the distributed and the Hybrid2 

groups, t(18) = 0.62, p > .05 for accuracy and t(18) = 0.82, p > .05 for latency, and between the 

Hybrid1 and the Hybrid2 groups, t(18) = -0.22, p > .05 for accuracy and t(18) = -0.17, p > .05 for 

latency. These results are presented in table 4-16. 

  

Table 4-15: ANOVA table for the accuracy and the latency for correct answers of the Japanese 
vocabulary test for the performance improvement excludes outlier in the massed group.   

  df Sum of Squares Mean Square F p 
Between Groups 3 0.26 0.08 1.44 .25 
Within Groups 35 2.10 0.06   Accuracy 

Total 38 2.36    
Between Groups 3 14.83 4.94 1.71 .18 
Within Groups 35 101.39 2.89   Latency 

Total 38 116.22     
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As I did the second ANOVA that excludes outlier in the massed group, I performed the 

three independent-sample t-tests (massed vs. distributed, massed vs. Hybrid1, and massed vs. 

Hybrid2) without the outlier in the massed group. As we see from table 4-17, there is significant 

difference between the massed and the distributed groups in accuracy, t(18) = -2.23, p < .05, two-

tailed, and there is no significant difference in latency, t(18) = 1.04, p > .05. There are no 

significant differences between the massed and the Hybrid1 group, and between the massed and 

the Hybrid2 group with respect to the accuracy and the latency. These results show that the 

distributed schedule provides better performance than the massed schedule, and those results are 

consistent with the previous studies. !

Table 4-16: Independent-sample t-tests for the accuracy and the latency for correct answers of the 
Japanese vocabulary test.   

95% CI of the 
Difference 

!
Schedules! Mean 

Diff. 
SE 

Diff df t p 
LB UB 

Massed Distributed -0.16 0.12 18 -1.31 .21 0.41 0.10!

Massed Hybrid1 -0.05 0.11 18 -0.48 .63 -0.29 0.18 

Massed  Hybrid2 -0.08 0.12 18 -0.65 .52 -0.37 0.18 

Distributed! Hybrid1 0.11 0.12 18 0.90 .38 -0.14 0.35 

Distributed! Hybrid2 0.08 0.13 18 0.62 .54 -0.19 0.35 

Accuracy 

Hybrid1! Hybrid2! 0.03 0.11 18 -0.22 .83 -0.27 0.22 

Massed Distributed 0.78 0.93 18 0.83 .42 -1.18 2.74 

Massed Hybrid1 1.37 0.90 18 1.52 .15 -0.53 3.26 

Massed Hybrid2 1.27 0.87 18 1.46 .16 -0.56 3.10 

Distributed! Hybrid1 0.59 0.64 18 0.91 .37 -0.76 1.94 

Distributed! Hybrid2 0.49 0.60 18 0.82 .42 -0.77 1.76 

Latency 

Hybrid1! Hybrid2! -0.09 0.55 18 -0.17 .86 -1.26 1.06 
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However, I found an interesting result between the distributed and the Hybrid2 schedules. 

As I explained in chapter 4, the distributed schedule has one session per one day over eight days, 

and between the fourth and fifth sessions there are four days rest period, so the training session 

ends at the 11th day from the first training session. The Hybrid2 schedule also ends its last 

training session at the 11th day from the first training session. So, we can compare the decrease 

rate of each schedule according to days between the last training session and the retention session. 

Figure 4-13 shows the accuracy of the distributed and the Hybrid2 schedule according to days, 

and I assumed that forgetting of the Japanese vocabulary follows a linear relation. We can find 

that the Hybrid2 schedule may provide better retention when the retention session takes place 

within 12 days from the end of the training day (before day 24). It also shows that the effective 

schedule varies according to the length of retention interval. 

Table 4-17: Three independent-sample t-tests for the accuracy and the latency for correct answers 
of the Japanese vocabulary test without the outlier in the massed group.   

95% CI of the 
Difference 

!
Schedules! Mean 

Diff. 
SE 

Diff df t p 
LB UB 

Massed Distributed -0.23 0.10 17 -2.23 .04* -0.45 -0.01 

Massed Hybrid1 -0.12 0.09 17 -1.40 .18 -0.32 0.06 Accuracy 

Massed  Hybrid2 -0.15 0.10 17 -1.45 .16 -0.37 0.07 

Massed Distributed 1.00 0.96 17 1.04 .31 -1.02 3.02 

Massed Hybrid1 1.59 0.92 17 1.72 .10 -0.36 3.54 Latency 

Massed Hybrid2 1.49 0.89 17 1.68 .11 -0.39 3.38 
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4.2.3.2 The Permutation Problem-Solving Task 

The performance improvement for the accuracy and latency of the Permutation problem-

solving task are calculated according to the equation 4.1. Figure 4-14 shows the results of the 

performance improvement (equation 4.1) of accuracy and latency for the correct answers of the 

Permutation problem-solving task with respect to the practice schedules. There are outliers in the 

distributed group of accuracy graph, and in the distributed, Hybrid1, and Hybrid2 groups of 

latency graph. I think those outliers are not from the different schedules, but from mistakes during 

the sessions or individual differences to solve the problems, because, as we see the figures 4-7 

and 4-8 in the previous section, the shapes of the graphs for all groups are very similar"!!

!

 

!

Figure 4-13: The accuracy of the distributed and Hybrid2 schedules for the Japanese vocabulary 
test. 
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To examine the differences in performance improvement among the groups, a series of 

one-way analyses of variance were conducted, and these results are presented in Table 4-18. The 

performance improvement of the accuracy and latency for the correct answers of the Permutation 

problem-solving task are not significantly different among the groups, F(3,36) = 0.27, p > .05, 

and F(3,36) = 1.26, p > .05 respectively.  

To examine the difference between each pair of groups, I performed a series of 

independent-sample t-tests. Each group compared with the other groups with respect to the 

 

! !

Figure 4-14: Boxplots showing the performance improvement rate of accuracy and latency for 
correct answers of the Permutation problem-solving task with respect to all groups (There are 
outliers in the distributed, Hybrid1, and Hybrid2 practice groups. !

Table 4-18: ANOVA table for the improved performance rate of the accuracy and the latency for 
correct answers of the Permutation problem-solving task.   

  df Sum of Squares Mean Square F p 

Between Groups 3 0.01 0.00 0.27 .85 
Within Groups 36 0.28 0.01   Accuracy 

Total 39 0.29    
Between Groups 3 0.09 0.03 1.26 .30 
Within Groups 36 0.83 0.02   Latency 

Total 39 0.92     
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accuracy and the latency, so totally 12 of the independent t-tests were conducted. Table 4-19 

shows the results of the independent-sample t-tests. 

There are no significant differences between all groups in performance improvement of 

accuracy and latency for the correct answers in the Permutation problem-solving task as 

described in the table 4-19. These results are different with the previous study (Rohrer & Taylor, 

2006) that showed the distributed practice schedule produces better performance than the massed 

practice schedule in similar permutation problem-solving task. The reason of these differences is 

maybe because the study of Rohrer and Talyor had just one learning session for the massed group 

(participants in this group solved 10 problems) and one retention test, and two learning session 

for the distributed group (participants in this group solved five problems in each session) and one 

retention test, so it was not enough to learn this kind of permutation problems. However, there 

Table 4-19: Independent-sample t-tests for the performance improvement of the accuracy and the 
latency for the correct answers of the Permutation problem-solving task.   

95% CI of the 
Difference 

!
Schedules! Mean 

Diff. 
SE 

Diff df t p 
LB UB 

Massed Distributed -0.02 0.04 18 -0.46 .65 -0.11 0.07 

Massed Hybrid1 -0.13 0.09 18 -1.40 .18 -0.32 0.06 

Massed  Hybrid2 -0.15 0.10 18 -1.45 .16 -0.37 0.07 

Distributed! Hybrid1 0.03 0.34 18 0.93 .37 -0.04 0.11 

Distributed! Hybrid2 0.01 0.05 18 0.20 .85 -0.09 0.10 

Accuracy 

Hybrid1! Hybrid2! -0.03 0.04 18 -0.66 .52 -0.10 0.05 

Massed Distributed -0.05 0.06 18 -0.82 .42 -0.18 0.08 

Massed Hybrid1 1.59 0.92 18 1.72 .10 -0.36 3.54 

Massed Hybrid2 1.49 0.89 18 1.68 .11 -0.39 3.38 

Distributed! Hybrid1 0.06 0.05 18 1.12 .28 -0.05 0.18 

Distributed! Hybrid2 0.13 0.08 18 1.67 .11 -0.03 0.30 

Latency 

Hybrid1! Hybrid2! 0.07 0.07 18 0.95 .35 -0.08 0.22 
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were eight learning sessions in my experiment, so the knowledge to solve this kind of problem 

might be proceduralized in the memory of participants in all groups as we can see in figure 4-7 

and 4-8.!

4.2.3.3 The Tower of Hanoi Puzzle 

The performance improvements for the task completion time and the number of disk 

movements of Tower of Hanoi puzzle are calculated according to the equation 4.1. Figure 4-15 

shows the boxplots of the performance improvements of the task completion time and the number 

of disk movements for this task with respect to the practice schedules. There is an outlier in the 

Hybrid1 group of the task completion time graph. The reason for this outlier is this subject 

showed good performance at the first learning session, so the improved performance rate was low 

at the retention test. However, there is no effect of training schedule on learning the Tower of 

Hanoi puzzle that I present in section 4.2.1, so I leave it without any further analysis.!!

 

! !

Figure 4-15:  Boxplots showing the performance improvement of the task completion time and the 
number of disk movements for the Tower of Hanoi puzzled with respect to all groups (There is an 
outlier in the Hybrid1 practice group). !
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To examine the differences in performance improvement among the groups, two times of 

one-way analyses of variance were conducted, and these results are presented in Table 4-20. The 

performance improvements of the task completion time and the number of disk movements for 

this task are not significantly different among the groups, F(3,36) = 0.72, p > .05 for the task 

completion time, and F(3,36) = 0.26, p > .05 for the number of disk movements. 

To examine the difference between each pair of groups, I performed a series of 

independent-sample t-tests. Each group compared with the other groups with respect to the task 

completion time and the number of disk movements, so 12 in total independent t-tests were 

conducted. Table 4-21 shows the results of the independent-sample t-tests. 

Table 4-20: ANOVA table for the performance improvements of the task completion time and the 
number of disk movements for the Tower of Hanoi puzzle.   

  df Sum of Squares Mean Square F p 

Between Groups 3 0.15 0.05 0.72 .55 
Within Groups 36 2.42 0.07   Accuracy 

Total 39 2.56    
Between Groups 3 0.11 0.04 0.26 .85 
Within Groups 36 5.12 0.14   Latency 

Total 39 5.23     
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There are no significant differences between all groups in performance improvements of 

the task completion time and the number of disk movements in the Tower of Hanoi puzzle as 

described in the table 4-21. These results may show that learning and forgetting for the task that 

requires procedural knowledge are not related with the different training schedules, but related 

with the amount of practice, or the effect of different practice schedules could not be found in my 

experiment. 

4.2.3.4 The Inverted Pendulum task 

The performance improvement for the duration time of the Inverted Pendulum task is 

calculated according to the equation 4.1. Figure 4-16 shows the boxplot of the performance 

improvement of the duration time for this task with respect to the practice schedules. !!

Table 4-21: Independent-sample t-tests for the performance improvements of the task completion 
time and the number of disk movements for the Tower of Hanoi puzzle.   

95% CI of the 
Difference 

!
Schedules! Mean 

Diff. 
SE 

Diff df t p 
LB UB 

Massed Distributed -0.15 0.08 18 -1.91 .08 -0.32 0.02 

Massed Hybrid1 -0.14 0.10 18 -1.37 .19 -0.35 0.08 

Massed  Hybrid2 -0.08 0.14 18 -0.57 .58 -0.38 0.20 

Distributed! Hybrid1 0.01 0.08 18 0.15 .88 -0.15 0.18 

Distributed! Hybrid2 0.07 0.13 18 0.56 .59 -0.19 0.34 

Task 
Completion 

Time 

Hybrid1! Hybrid2! 0.06 0.14 18 0.41 .69 -0.24 0.36 

Massed Distributed -0.12 0.11 18 -1.05 .31 -0.35 0.12 

Massed Hybrid1 -0.08 0.132 18 -0.64 .53 -0.36 0.19 

Massed Hybrid2 0.00 0.02 18 0.02 .99 -0.44 0.45 

Distributed! Hybrid1 0.03 0.11 18 0.31 .76 -0.19 0.26 

Distributed! Hybrid2 0.12 0.19 18 0.62 .55 -0.29 0.54 

Number of 
Disks 

Movements 

Hybrid1! Hybrid2! 0.09 0.21 18 0.42 .68 -0.35 0.53 
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To examine the differences in performance improvement among the groups, a one-way 

analysis of variance was conducted, and the results are presented in Table 4-22. The performance 

improvement of the duration time for this task is significantly different among the groups, F(3,36) 

= 3.35, p < .05. 

To examine the difference between each pair of groups, I performed a series of 

independent-sample t-tests. Each group compared with the other groups with respect to the 

duration time, so totally six of the independent t-tests were conducted. Table 4-23 shows the 

results of the independent-sample t-tests. 

 

!

Figure 4-16:  A boxplot showing the improved performance rate of the duration time for the 
Inverted Pendulum task with respect to all groups (N=10 per schedule, 40 total, and there is 
significant difference between the distributed and Hybrid1 practice groups). !

Table 4-22: ANOVA table for the performance improvement of the duration time for the Inverted 
Pendulum task.   

  df Sum of Squares Mean Square F p 

Between Groups 3 843.16 281.05 3.35 .03 
Within Groups 36 3021.85 83.94   Accuracy 

Total 39 3865.03     
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As we can see from table 4-23, there is significant difference between the distributed and 

Hybrid1 groups in duration time, t(18) = -2.57, p < .05, two-tailed, and marginally significant 

difference between the massed and distributed group, and there are no significant differences 

between all other groups" These results show that the Hybrid1 schedule provides better 

performance than the distributed schedule in this task that requires perceptual-motor skill. We can 

also assume that the massed or somewhat early massed practice schedules provide better learning 

effects in the task that requires perceptual-motor skills. These results prove the assumption that I 

mentioned in the chapter 1 that the task required the perceptual-motor skill should be trained in a 

massed way rather than a distributed way. !

4.2.4 Learning Trends for Each Group 

In this section, I present the estimated learning trends in each group with respect to the 

task measurements. I estimated to the curve with power, exponential, linear, log, and quadratic 

models. By doing this estimation, I can figure out the learning trends of each training schedule 

and each task, thus it enables us to estimate the performance of further learning sessions.  

Table 4-23: An Independent-sample t-test for the performance improvement of the duration time 
for the Inverted Pendulum task.   

95% CI of the Difference Schedules! Mean 
Diff. 

SE 
Diff 

df t p 
LB UB 

Massed Distributed 5.54 2.60 18 2.13 .06 0.07 10.99 

Massed Hybrid1 -6.94 5.47 18 -1.27 .23 -18.70 4.82 

Massed  Hybrid2 2.41 3.16 18 0.76 .46 -4.26 9.09 

Distributed! Hybrid1 -12.47 4.86 18 -2.57 .03* -23.43 -1.52 

Distributed! Hybrid2 -3.12 1.91 18 -1.64 .13 -7.37 1.13 

Hybrid1! Hybrid2! 9.35 5.18 18 1.81 .09 -1.98 20.67 
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 4.2.4.1 Massed Practice Group 

Figure 4-17 shows the estimated learning trends for the proportion correct answers of the 

Japanese vocabulary test for the massed practice group. The linear, logarithmic, and quadratic 

models are significant (p < .05) to the estimated learning trend, and shown in table 4-24.!

!

 

!
!

Linear: 

! 

y = 0.087x + 0.043, 

! 

R2 = 0.50 
Logarithmic: 

! 

y = 0.317ln(x) + 0.015, 

! 

R2 = 0.54  
Quadratic: 

! 

y = "0.011x 2 + 0.189x " 0.128, 

! 

R2 = 0.53!

Figure 4-17: Learning trends for the proportion correct answers of the Japanese vocabulary test for 
the massed practice group (N=10). !
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Figure 4-18 shows the estimated learning trends for the latency per correct answer of the 

Japanese vocabulary test for the massed practice group. The linear, logarithmic, and quadratic 

models are significant (p < .05) to the estimated learning trend, and shown in table 4-25.!

!

Table 4-24: Statistical output of curve estimation for the proportion correct answers of the 
Japanese vocabulary test for the massed practice group.   

Model R2 df F p 
Linear .50 78 77.41 .00 

Logarithmic .54 78 92.56 .00 
Quadratic .53 77 43.74 .00  

 

 

!
Linear: 

! 

y = 0.21x + 2.267, 

! 

R2 = 0.07 
Logarithmic: 

! 

y =1.175ln(x) +1.656, 

! 

R2 = 0.18 
Quadratic: 

! 

y = "0.203x 2 + 2.037x " 0.777, 

! 

R2 = 0.33 

Figure 4-18: Learning trends for the latency per correct answer of the Japanese vocabulary test for 
the massed practice group (N=10). !
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Figure 4-19 shows the estimated learning trends for the proportion correct answer of the 

Permutation problem-solving task for the massed practice group. The linear, logarithmic, 

quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend 

and shown in table 4-26.!

Table 4-25: Statistical output of curve estimation for the latency per correct answer of the Japanese 
vocabulary test for the massed practice group.   

Model R2 df F p 
Linear .07 78 5.93 .02 

Logarithmic .18 78 17.33 .00 
Quadratic .33 77 19.27 .00  

 

 

!
Linear: 

! 

y = 0.12x + 0.889, 

! 

R2 = 0.12 
Logarithmic: 

! 

y = 0.046ln(x) + 0.883,  

! 

R2 = 0.14  
Quadratic: 

! 

y = "0.003x 2 + 0.038x + 0.847, 

! 

R2 = 0.14  
Power: 

! 

y = x 0.056 + 0.873,  

! 

R2 = 0.14  
Exponential: 

! 

y = 0.881e0.015x, 

! 

R2 = 0.12 

Figure 4-19: Learning trends for the proportion correct answers of the Permutation problem-solving 
task for the massed practice group (N=10). !
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!

Figure 4-20 shows the estimated learning trends for the latency per correct answer of the 

Permutation problem-solving task for the massed practice group. The linear, logarithmic, 

quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend, 

and shown in table 4-27.!

Table 4-26: Statistical output of curve estimation for the proportion correct answer of the 
Permutation problem-solving task for the massed practice group.   

Model R2 df F p 
Linear .12 78 10.33 .02 

Logarithmic .14 78 12.44 .00 
Quadratic .14 77 6.36 .00 

Power .14 78 12.91 .00 
Exponential .12 78 10.37 .00  
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!

Figure 4-21 shows the estimated learning trends for the task completion time of the 

Tower of Hanoi puzzle for the massed practice group. The linear, logarithmic, quadratic, power, 

 

!
Linear: 

! 

y = "2.437x + 25.581, 

! 

R2 = 0.41 
Logarithmic: 

! 

y = "9.613ln(x) + 27.358,  

! 

R2 = 0.14  
Quadratic: 

! 

y = 0.625x 2 " 8.064x + 34.96, 

! 

R2 = 0.52 
Power: 

! 

y = x "0.549 + 26.468, 

! 

R2 = 0.14  
Exponential: 

! 

y = 24.8361e"0.148x, 

! 

R2 = 0.46 

Figure 4-20: Learning trends for the latency per correct answer of the Permutation problem-solving 
task for the massed practice group (N=10). !

Table 4-27: Statistical output of curve estimation for the latency per correct answer of the 
Permutation problem-solving task for the massed practice group.   

Model R2 df F p 
Linear .41 78 54.28 .02 

Logarithmic .53 78 86.75 .00 
Quadratic .52 77 41.44 .00 

Power .52 78 84.15 .00 
Exponential .46 78 65.06 .00  
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and exponential models are significant (p < .05) to the estimated learning trend, shown in table 4-

28.!

!

 

!
Linear: 

! 

y = "67.291x + 581.587, 

! 

R2 = 0.13 
Logarithmic: 

! 

y = "270.141ln(x) + 636.87 

! 

R2 = 0.17 
Quadratic: 

! 

y = 20.155x 2 " 248.69x + 883.919, 

! 

R2 = 0.17 
Power: 

! 

y = x "0.577 + 417.524, 

! 

R2 = 0.28 
Exponential: 

! 

y = 396.651e"0.159x, 

! 

R2 = 0.25 

Figure 4-21: Learning trends for the task completion time of the Tower of Hanoi Puzzle for the 
massed practice group (N=10). !

Table 4-28: Statistical output of curve estimation for the task completion time of the Tower of 
Hanoi puzzle for the massed practice group.   

Model R2 df F p 
Linear .13 78 54.28 .00 

Logarithmic .17 78 86.75 .00 
Quadratic .17 77 41.44 .00 

Power .28 78 84.15 .00 
Exponential .25 78 65.06 .00  
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Figure 4-22 shows the estimated learning trends for the number of disk movements of the 

Tower of Hanoi puzzle for the massed practice group. The linear, logarithmic, quadratic, power, 

and exponential models are significant (p < .05) to the estimated learning trend, shown in table 4-

29.!

!

 

!
Linear: 

! 

y = "15.595x +187.779, 

! 

R2 = 0.20 
Logarithmic: 

! 

y = "53.507ln(x) +188.528 

! 

R2 = 0.20 
Quadratic: 

! 

y =1.295x 2 " 27.252x + 207.207, 

! 

R2 = 0.17 
Power: 

! 

y = x "0.362 +165.626, 

! 

R2 = 0.25 
Exponential: 

! 

y =167.292e"0.109x, 

! 

R2 = 0.27 

Figure 4-22: Learning trends for the number of disk movements of the Tower of Hanoi Puzzle for 
the massed practice group (N=10). !
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Figure 4-23 shows the estimated learning trends for the duration time of the BalanceMe 

Game for the massed practice group. The power and exponential models are significant (p < .05) 

to the estimated learning trends; however, the linear, logarithmic, and quadratic models are not 

significant (p < .05), shown in table 4-30.!

Table 4-29: Statistical output of curve estimation for the number of disk movements of the Tower 
of Hanoi puzzle for the massed practice group.   

Model R2 df F p 
Linear .20 78 20.00 .00 

Logarithmic .20 78 19.27 .00 
Quadratic .17 77 10.22 .00 

Power .25 78 25.62 .00 
Exponential .27 78 29.01 .00  
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!

!

 

!
Linear: 

! 

y = 5.508x + 22.232, 

! 

R2 = 0.03 
Logarithmic: 

! 

y = 20.198ln(x) + 20.243  

! 

R2 = 0.03 
Quadratic: 

! 

y = "0.631x 2 +11.182x +12.775, 

! 

R2 = 0.03 
Power: 

! 

y = x 0.509 +11.224,  

! 

R2 = 0.09 
Exponential: 

! 

y =11.573e0.143x,  

! 

R2 = 0.09 

Figure 4-23: Learning trends for the duration time of the Inverted Pendulum task for the massed 
practice group (N=10). !

Table 4-30: Statistical output of curve estimation for the duration time of the Inverted Pendulum 
task for the massed practice group.   

Model R2 df F p 
Linear .03 78 2.34 .13 

Logarithmic .03 78 2.61 .11 
Quadratic .03 77 1.22 .30 

Power .09 78 7.92 .00 
Exponential .09 78 7.56 .00  
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4.2.4.2 Distributed Group 

Figure 4-24 shows the estimated learning trends for the proportion correct answers of the 

Japanese vocabulary test for the distributed practice group. The linear, logarithmic, and quadratic 

models are significant (p < .05) to the estimated learning trend, and shown in table 4-31.!

!

 

!
Linear: 

! 

y = 0.068x + 0.038, 

! 

R2 = 0.25 
Logarithmic: 

! 

y = 0.252ln(x) + 0.01, 

! 

R2 = 0.29 
Quadratic: 

! 

y = "0.012x 2 + 0.175x " 0.14, 

! 

R2 = 0.29 

Figure 4-24: Learning trends for the proportion correct answers of the Japanese vocabulary test for 
the distributed practice group (N=10). !

Table 4-31: Statistical output of curve estimation for the proportion correct answers of the 
Japanese vocabulary test for the distributed practice group.   

Model R2 df F p 
Linear .25 78 26.60 .00 

Logarithmic .29 78 31.55 .00 
Quadratic .29 77 15.38 .00  
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Figure 4-25 shows the estimated learning trends for the latency per correct answer of the 

Japanese vocabulary test for the distributed practice group. The quadratic model is significant (p 

< .05) to the estimated learning trend; however, the linear and logarithmic models are not 

significant (p < .05), and shown in table 4-32.!

!

 

!
Linear: 

! 

y = 0.102x + 3.108, 

! 

R2 = 0.01 
Logarithmic: 

! 

y = 0.941ln(x) + 2.318, 

! 

R2 = 0.08 
Quadratic: 

! 

y = "0.244x 2 + 2.301x " 0.557, 

! 

R2 = 0.26 

Figure 4-25: Learning trends for the latency per correct answer of the Japanese vocabulary test for 
the distributed practice group (N=10). !

Table 4-32: Statistical output of curve estimation for the latency per correct answer of the Japanese 
vocabulary test for the distributed practice group.   

Model R2 df F p 
Linear .01 78 .84 .36 

Logarithmic .08 78 6.31 .14 
Quadratic .26 77 13.20 .00  
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Figure 4-26 shows the estimated learning trends for the proportion correct answer of the 

Permutation problem-solving task for the distributed practice group. The linear, logarithmic, 

quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend 

and shown in table 4-33.!

!

 

!
Linear: 

! 

y = 0.014x + 0.869, 

! 

R2 = 0.11 
Logarithmic: 

! 

y = 0.057ln(x) + 0.856, 

! 

R2 = 0.15 
Quadratic: 

! 

y = "0.003x 2 + 0.041x + 0.823, 

! 

R2 = 0.13 
Power: 

! 

y = x 0.073 + 0.84,  

! 

R2 = 0.15 
Exponential: 

! 

y = 0.855e0.018x, 

! 

R2 = 0.10 

Figure 4-26: Learning trends for the proportion correct answers of the Permutation problem-solving 
task for the distributed practice group (N=10). !
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Figure 4-27 shows the estimated learning trends for the latency per correct answer of the 

Permutation problem-solving task for the distributed practice group. The linear, logarithmic, 

quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend, 

and shown in table 4-34.!

Table 4-33: Statistical output of curve estimation for the proportion correct answer of the 
Permutation problem-solving task for the distributed practice group.   

Model R2 df F p 
Linear .11 78 9.47 .00 

Logarithmic .15 78 13.59 .00 
Quadratic .13 77 5.70 .00 

Power .15 78 13.50 .00 
Exponential .10 78 9.06 .00  
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!

Figure 4-28 shows the estimated learning trends for the task completion time of the 

Tower of Hanoi puzzle for the distributed practice group. The linear, logarithmic, quadratic, 

 

!
Linear: 

! 

y = "3.099x + 31.517, 

! 

R2 = 0.30 
Logarithmic: 

! 

y = "12.474 ln(x) + 34.105, 

! 

R2 = 0.41 
Quadratic: 

! 

y = 0.907x 2 "11.264x + 45.124, 

! 

R2 = 0.41 
Power: 

! 

y = x "0.562 + 31.489, 

! 

R2 = 0.51 
Exponential: 

! 

y = 29.21e"0.149x, 

! 

R2 = 0.43 

Figure 4-27: Learning trends for the latency per correct answer of the Permutation problem-solving 
task for the distributed practice group (N=10). !

Table 4-34: Statistical output of curve estimation for the latency per correct answer of the 
Permutation problem-solving task for the distributed practice group.   

Model R2 df F p 
Linear .30 78 34.12 .02 

Logarithmic .41 78 53.42 .00 
Quadratic .41 77 26.60 .00 

Power .51 78 80.49 .00 
Exponential .43 78 59.32 .00  

 



82 

 

power, and exponential models are significant (p < .05) to the estimated learning trend, shown in 

table 4-35.!

!

 

!
Linear: 

! 

y = "43.04x + 452.803, 

! 

R2 = 0.32 
Logarithmic: 

! 

y = "156.616ln(x) + 466.731 

! 

R2 = 0.35 
Quadratic: 

! 

y = 6.452x 2 "101.107x + 569.581, 

! 

R2 = 0.34  
Power: 

! 

y = x "0.534 + 448.304, 

! 

R2 = 0.43 
Exponential: 

! 

y = 440.208e"0.153x, 

! 

R2 = 0.43 

Figure 4-28: Learning trends for the task completion time of the Tower of Hanoi Puzzle for the 
distributed practice group (N=10). !

Table 4-35: Statistical output of curve estimation for the task completion time of the Tower of 
Hanoi puzzle for the distributed practice group.   

Model R2 df F p 
Linear .32 78 36.00 .00 

Logarithmic .33 78 41.05 .00 
Quadratic .34 77 20.21 .00 

Power .43 78 59.44 .00 
Exponential .43 78 59.32 .00  
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Figure 4-29 shows the estimated learning trends for the number of disk movements of the 

Tower of Hanoi puzzle for the distributed practice group. The linear, logarithmic, quadratic, 

power, and exponential models are significant (p < .05) to the estimated learning trend, shown in 

table 4-36.!

!

 

!
Linear: 

! 

y = "14.78x +190.271, 

! 

R2 = 0.21 
Logarithmic: 

! 

y = "52.047ln(x) +192.754  

! 

R2 = 0.21 
Quadratic: 

! 

y =1.561x 2 " 28.832x + 213.691, 

! 

R2 = 0.17 
Power: 

! 

y = x "0.346 +174.169, 

! 

R2 = 0.26 
Exponential: 

! 

y =174.256e"0.102x, 

! 

R2 = 0.28 

Figure 4-29: Learning trends for the number of disk movements of the Tower of Hanoi Puzzle for 
the distributed practice group (N=10). !
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Figure 4-30 shows the estimated learning trends for the duration time of the Inverted 

Pendulum task for the distributed practice group. The power and exponential models are 

marginally significant (p < .05) to the estimated learning trends; however, the linear, logarithmic, 

and quadratic models are not significant (p < .05), shown in table 4-37.!

Table 4-36: Statistical output of curve estimation for the number of disk movements of the Tower 
of Hanoi puzzle for the distributed practice group.   

Model R2 df F p 
Linear .21 78 20.24 .00 

Logarithmic .21 78 20.82 .00 
Quadratic .22 77 10.56 .00 

Power .26 78 27.50 .00 
Exponential .28 78 29.57 .00  
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!

 

 

!
Linear: 

! 

y = 0.899x +17.223, 

! 

R2 = 0.01 
Logarithmic: 

! 

y = 3.472ln(x) +16.666  

! 

R2 = 0.10 
Quadratic: 

! 

y = "0.213x 2 + 2.813x +14.032, 

! 

R2 = 0.10 
Power: 

! 

y = x 0.230 +11.265, 

! 

R2 = 0.04  
Exponential: 

! 

y =11.216e0.069x, 

! 

R2 = 0.04  

Figure 4-30: Learning trends for the duration time of the Inverted Pendulum task for the distributed 
practice group (N=10). !

Table 4-37: Statistical output of curve estimation for the duration time of the Inverted Pendulum 
task for the distributed practice group.   

Model R2 df F p 
Linear .0$! 78 .69 .42 

Logarithmic .01 78 .82 .37 
Quadratic .01 77 .40 .67 

Power .04 78 3.34 .07 
Exponential .04 78 3.62 .06  
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4.2.4.3 Hybrid1 Group 

Figure 4-31 shows the estimated learning trends for the proportion correct answers of the 

Japanese vocabulary test for the Hybrid1 practice group. The linear, logarithmic, and quadratic 

models are significant (p < .05) to the estimated learning trend, and shown in table 4-38.!

!

 

!
Linear: 

! 

y = 0.074x + 0.04, 

! 

R2 = 0.37 
Logarithmic: 

! 

y = 0.271ln(x) + 0.016, 

! 

R2 = 0.40 
Quadratic: 

! 

y = "0.01x 2 + 0.165x " 0.111, 

! 

R2 = 0.39 

Figure 4-31: Learning trends for the proportion correct answers of the Japanese vocabulary test for 
the Hybrid1 practice group (N=10). !

Table 4-38: Statistical output of curve estimation for the proportion correct answers of the 
Japanese vocabulary test for the Hybrid1 practice group.   

Model R2 df F p 
Linear .37 78 44.79 .00 

Logarithmic .40 78 51.59 .00 
Quadratic .39 77 24.78 .00  
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Figure 4-32 shows the estimated learning trends for the latency per correct answer of the 

Japanese vocabulary test for the Hybrid1 practice group. The logarithmic and quadratic models 

are significant (p < .05) to the estimated learning trend, however, the linear model is not 

significant (p < .05), and shown in table 4-39.!

!

 

!
Linear: 

! 

y = 0.095x + 2.811, 

! 

R2 = 0.01 
Logarithmic: 

! 

y = 0.816ln(x) + 2.157, 

! 

R2 = 0.07 
Quadratic: 

! 

y = "0.184x 2 +1.749x + 0.054, 

! 

R2 = 0.17 

Figure 4-32: Learning trends for the latency per correct answer of the Japanese vocabulary test for 
the Hybrid1 practice group (N=10). !

Table 4-39: Statistical output of curve estimation for the latency per correct answer of the Japanese 
vocabulary test for the Hybrid1 practice group.   

Model R2 df F p 
Linear .01 78 .84 .36 

Logarithmic .07 78 5.41 .02 
Quadratic .17 77 7.89 .00  
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Figure 4-33 shows the estimated learning trends for the proportion correct answer of the 

Permutation problem-solving task for the Hybrid1 practice group. The linear, logarithmic, 

quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend 

and shown in table 4-40.!

!

 

!
Linear: 

! 

y = 0.011x + 0.88, 

! 

R2 = 0.07 
Logarithmic: 

! 

y = 0.047ln(x) + 0.869, 

! 

R2 = 0.10 
Quadratic: 

! 

y = "0.003x 2 + 0.041x + 0.831 

! 

R2 = 0.01 
Power: 

! 

y = x 0.058 + 0.858, 

! 

R2 = 0.10 
Exponential: 

! 

y = 0.869e0.014 x,  

! 

R2 = 0.07 

Figure 4-33: Learning trends for the proportion correct answers of the Permutation problem-solving 
task for the Hybrid1 practice group (N=10). !
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Figure 4-34 shows the estimated learning trends for the latency per correct answer of the 

Permutation problem-solving task for the Hybrid1 practice group. The linear, logarithmic, 

quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend, 

and shown in table 4-41.!

Table 4-40: Statistical output of curve estimation for the proportion correct answer of the 
Permutation problem-solving task for the distributed practice group.   

Model R2 df F p 
Linear .07 78 6.25 .01 

Logarithmic .10 78 9.03 .00 
Quadratic .01 77 4.21 .02 

Power .10 78 8.72 .00 
Exponential .07 78 6.12 .02  
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!

Figure 4-35 shows the estimated learning trends for the task completion time of the 

Tower of Hanoi puzzle for the Hybrid1 practice group. The linear, logarithmic, quadratic, power, 

 

!
Linear: 

! 

y = "2.087x + 22.908, 

! 

R2 = 0.51 
Logarithmic: 

! 

y = "7.99ln(x) + 24.108, 

! 

R2 = 0.41 
Quadratic: 

! 

y = 0.436x 2 " 6.011x + 29.448, 

! 

R2 = 0.59 
Power: 

! 

y = x "0.529 + 24.517, 

! 

R2 = 0.59 
Exponential: 

! 

y = 23.408e"0.146x, 

! 

R2 = 0.54  

Figure 4-34: Learning trends for the latency per correct answer of the Permutation problem-solving 
task for the Hybrid1 practice group (N=10). !

Table 4-41: Statistical output of curve estimation for the latency per correct answer of the 
Permutation problem-solving task for the Hybrid1 practice group.   

Model R2 df F p 
Linear .51 78 79.71 .00 

Logarithmic .61 78 122.44 .00 
Quadratic .59 77 56.24 .00 

Power .59 78 113.57 .00 
Exponential .54 78 91.13 .00  
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and exponential models are significant (p < .05) to the estimated learning trend, shown in table 4-

42.!

!

 

!
Linear: 

! 

y = "52.323x + 543.729, 

! 

R2 = 0.23 
Logarithmic: 

! 

y = "202.793ln(x) + 577.093, 

! 

R2 = 0.29 
Quadratic: 

! 

y =12.2x 2 "162.127x + 726.736, 

! 

R2 = 0.29 
Power: 

! 

y = x "0.547 + 498.035, 

! 

R2 = 0.29 
Exponential: 

! 

y = 467.919e"0.147x, 

! 

R2 = 0.26 

Figure 4-35: Learning trends for the task completion time of the Tower of Hanoi Puzzle for the 
Hybrid1 practice group (N=10). !

Table 4-42: Statistical output of curve estimation for the task completion time of the Tower of 
Hanoi puzzle for the Hybrid1 practice group.   

Model R2 df F p 
Linear .23 78 23.88 .00 

Logarithmic .29 78 31.91 .00 
Quadratic .29 77 15.37 .00 

Power .29 78 32.34 .00 
Exponential .26 78 27.06 .00  
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Figure 4-36 shows the estimated learning trends for the number of disk movements of the 

Tower of Hanoi puzzle for the Hybrid1 practice group. The linear, logarithmic, quadratic, power, 

and exponential models are significant (p < .05) to the estimated learning trend, shown in table 4-

43.!

!

 

!
Linear: 

! 

y = "16.756x + 223.639, 

! 

R2 = 0.16 
Logarithmic: 

! 

y = "64.854 ln(x) + 234.207,  

! 

R2 = 0.20 
Quadratic: 

! 

y = 4.132x 2 " 53.94x + 285.612, 

! 

R2 = 0.20 
Power: 

! 

y = x "0.354 + 201.999, 

! 

R2 = 0.19 
Exponential: 

! 

y =193.835e"0.095x, 

! 

R2 = 0.17 

Figure 4-36: Learning trends for the number of disk movements of the Tower of Hanoi Puzzle for 
the Hybrid1 practice group (N=10). !
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Figure 4-37 shows the estimated learning trends for the duration time of the Inverted 

Pendulum task for the Hybrid1 practice group. The linear, logarithmic, quadratic, power and 

exponential models are significant (p < .05) to the estimated learning trends, shown in table 4-44.!

Table 4-43: Statistical output of curve estimation for the number of disk movements of the Tower 
of Hanoi puzzle for the Hybrid1 practice group.   

Model R2 df F p 
Linear .16 78 14.65 .00 

Logarithmic .20 78 18.94 .00 
Quadratic .20 77 9.42 .00 

Power .19 78 18.19 .00 
Exponential .17 78 15.47 .00  

 

 

!
Linear: 

! 

y =18.3x " 5.243, 

! 

R2 = 0.20 
Logarithmic: 

! 

y = 62.105ln(x) " 5.219,  

! 

R2 = 0.19 
Quadratic: 

! 

y = "0.452x 2 + 22.366x "12.021, 

! 

R2 = 0.20 
Power: 

! 

y = x 0.968 + 9.487, 

! 

R2 = 0.23 
Exponential: 

! 

y =10.183e0.269x,  

! 

R2 = 0.22 

Figure 4-37: Learning trends for the duration time of the Inverted Pendulum task for the Hybrid1 
practice group (N=10). !
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!

4.2.4.4 Hybrid2 Group 

Figure 4-38 shows the estimated learning trends for the proportion correct answers of the 

Japanese vocabulary test for the Hybrid2 practice group. The linear, logarithmic, and quadratic 

models are significant (p < .05) to the estimated learning trend, and shown in table 4-45.!

Table 4-44: Statistical output of curve estimation for the duration time of the Inverted Pendulum 
task for the Hybrid1 practice group.   

Model R2 df F p 
Linear .20 78 19.13 .00 

Logarithmic .19 78 17.95 .00 
Quadratic .20 77 9.47 .60 

Power .23 78 23.75 .00 
Exponential .22 78 21.91 .00  
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!

Figure 4-39 shows the estimated learning trends for the latency per correct answer of the 

Japanese vocabulary test for the Hybrid2 practice group. The linear, logarithmic and quadratic 

models are significant (p < .05) to the estimated learning trend, and shown in table 4-46.!

 

!
Linear: 

! 

y = 0.092x " 0.094, 

! 

R2 = 0.55 
Logarithmic: 

! 

y = 0.307ln(x) " 0.086,  

! 

R2 = 0.50 
Quadratic: 

! 

y = 0.001x 2 + 0.086x " 0.083, 

! 

R2 = 0.55 

Figure 4-38: Learning trends for the proportion correct answers of the Japanese vocabulary test for 
the Hybrid2 practice group (N=10). !

Table 4-45: Statistical output of curve estimation for the proportion correct answers of the 
Japanese vocabulary test for the Hybrid2 practice group.   

Model R2 df F p 
Linear .55 78 95.34 .00 

Logarithmic .50 78 78.70 .00 
Quadratic .55 77 47.09 .00  
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!

 

Figure 4-40 shows the estimated learning trends for the proportion correct answer of the 

Permutation problem-solving task for the Hybrid2 practice group. The linear model is marginally 

significant (p < .05) to the estimated learning trend; however, logarithmic, quadratic, power, and 

exponential models are not significant (p < .05), and shown in table 4-47.!

 

!
Linear: 

! 

y = 0.245x +1.9, 

! 

R2 = 0.09 
Logarithmic: 

! 

y =1.261ln(x) +1.328, 

! 

R2 = 0.20 
Quadratic: 

! 

y = "0.197x 2 + 2.018x "1.056, 

! 

R2 = 0.33 

Figure 4-39: Learning trends for the latency per correct answer of the Japanese vocabulary test for 
the Hybrid2 practice group (N=10). !

Table 4-46: Statistical output of curve estimation for the latency per correct answer of the Japanese 
vocabulary test for the Hybrid2 practice group.   

Model R2 df F p 
Linear .09 78 7.86 .00 

Logarithmic .20 78 19.59 .00 
Quadratic .33 77 18.89 .00  
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!

Figure 4-41 shows the estimated learning trends for the latency per correct answer of the 

Permutation problem-solving task for the Hybrid2 practice group. The linear, logarithmic, 

 

!
Linear: 

! 

y = 0.009x + 0.897, 

! 

R2 = 0.05 
Logarithmic: 

! 

y = 0.03ln(x) + 0.897,  

! 

R2 = 0.04  
Quadratic: 

! 

y = "0.001x 2 + 0.017x + 0.883 

! 

R2 = 0.05 
Power: 

! 

y = x 0.035 + 0.888, 

! 

R2 = 0.04  
Exponential: 

! 

y = 0.888e0.011x,  

! 

R2 = 0.04  

Figure 4-40: Learning trends for the proportion correct answers of the Permutation problem-solving 
task for the Hybrid2 practice group (N=10). !

Table 4-47: Statistical output of curve estimation for the proportion correct answer of the 
Permutation problem-solving task for the Hybrid2 practice group.   

Model R2 df F P 
Linear .05 78 3.88 .05 

Logarithmic .04 78 3.56 .06 
Quadratic .05 77 1.99 .14 

Power .04 78 3.28 .07 
Exponential .04 78 3.60 .06  
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quadratic, power, and exponential models are significant (p < .05) to the estimated learning trend, 

and shown in table 4-48.!

!

 

!
Linear: 

! 

y = "2.012x + 22.716, 

! 

R2 = 0.37 
Logarithmic: 

! 

y = "7.457ln(x) + 23.547, 

! 

R2 = 0.42 
Quadratic: 

! 

y = 0.366x 2 " 5.308x + 28.209, 

! 

R2 = 0.42 
Power: 

! 

y = x "0.484 + 22.846, 

! 

R2 = 0.42 
Exponential: 

! 

y = 22.133e"0.136x, 

! 

R2 = 0.40 

Figure 4-41: Learning trends for the latency per correct answer of the Permutation problem-solving 
task for the Hybrid2 practice group (N=10). !

Table 4-48: Statistical output of curve estimation for the latency per correct answer of the 
Permutation problem-solving task for the Hybrid2 practice group.   

Model R2 df F p 
Linear .37 78 46.39 .00 

Logarithmic .42 78 57.06 .00 
Quadratic .42 77 28.15 .00 

Power .42 78 56.82 .00 
Exponential .40 78 52.17 .00  
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Figure 4-42 shows the estimated learning trends for the task completion time of the 

Tower of Hanoi puzzle for the Hybrid2 practice group. The linear, logarithmic, quadratic, power, 

and exponential models are significant (p < .05) to the estimated learning trend, shown in table 4-

49.!

!

 

!
Linear: 

! 

y = "46.456x + 430.709, 

! 

R2 = 0.29 
Logarithmic: 

! 

y = "177.963ln(x) + 457.562, 

! 

R2 = 0.35 
Quadratic: 

! 

y = 9.405x 2 "131.103x + 571.788, 

! 

R2 = 0.34  
Power: 

! 

y = x "0.621 + 403.308, 

! 

R2 = 0.44  
Exponential: 

! 

y = 395.021e"0.178x, 

! 

R2 = 0.44  

Figure 4-42: Learning trends for the task completion time of the Tower of Hanoi Puzzle for the 
Hybrid2 practice group (N=10). !
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Figure 4-43 shows the estimated learning trends for the number of disk movements of the 

Tower of Hanoi puzzle for the Hybrid2 practice group. The linear, logarithmic, quadratic, power, 

and exponential models are significant (p < .05) to the estimated learning trend, shown in table 4-

50.!

Table 4-49: Statistical output of curve estimation for the task completion time of the Tower of 
Hanoi puzzle for the Hybrid2 practice group.   

Model R2 df F p 
Linear .29 78 32.03 .00 

Logarithmic .35 78 42.43 .00 
Quadratic .34 77 19.73 .00 

Power .44 78 62.29 .00 
Exponential .44 78 62.28 .00  
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!

 

 

!
Linear: 

! 

y = "18.55x + 208.775, 

! 

R2 = 0.25 
Logarithmic: 

! 

y = "70.1ln(x) + 218.223,  

! 

R2 = 0.30 
Quadratic: 

! 

y = 3.389x 2 " 49.054x + 259.614, 

! 

R2 = 0.29 
Power: 

! 

y = x "0.435 +192.505, 

! 

R2 = 0.33 
Exponential: 

! 

y =188.140e"0.123x, 

! 

R2 = 0.32 

Figure 4-43: Learning trends for the number of disk movements of the Tower of Hanoi Puzzle for 
the Hybrid2 practice group (N=10).!

Table 4-50: Statistical output of curve estimation for the number of disk movements of the Tower 
of Hanoi puzzle for the Hybrid2 practice group.   

Model R2 df F p 
Linear .25 78 26.38 .00 

Logarithmic .30 78 33.05 .00 
Quadratic .29 77 15.46 .00 

Power .33 78 38.04 .00 
Exponential .32 78 36.37 .00  
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Figure 4-44 shows the estimated learning trends for the duration time of the BalanceMe 

Game for the Hybrid2 practice group. The linear, logarithmic, quadratic, power and exponential 

models are significant (p < .05) to the estimated learning trends, shown in table 4-51.!

!

 

!
Linear: 

! 

y =13.234x +14.371, 

! 

R2 = 0.07 
Logarithmic: 

! 

y = 50.927ln(x) + 6.416, 

! 

R2 = 0.08 
Quadratic: 

! 

y = "3.755x 2 + 47.026x " 41.95, 

! 

R2 = 0.09 
Power: 

! 

y = x 0.76 + 6.716,  

! 

R2 = 0.10 
Exponential: 

! 

y = 7.215e0.208x,  

! 

R2 = 0.09 

Figure 4-44: Learning trends for the duration time of the Inverted Pendulum task for the Hybrid2 
practice group (N=10). !
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4.2.5 Summary of Results 

All of the participants (N=40) were divided into four groups and performed four tasks 

according to the training schedule of each group. There were eight learning sessions and one-

retention test for each schedule. Participants showed improved performance with practice and 

knowledge degradation at the retention test. The average performances of all tasks with respect to 

the practice schedule were analyzed. All of the tasks except the Japanese vocabulary test showed 

little knowledge degradation at the retention test. These results indicate that the tasks that mainly 

depend on the procedural knowledge or perceptual-motor skill did not be influenced by the 

memory decay, because the required knowledge for these tasks might be proceduralized in the 

memory of participants during the entire learning sessions. Thus, the rest period between the last 

learning session and the retention test could not influence to the memory decay for these tasks. 

These results also show that the decay of declarative memory knowledge (Japanese vocabularies 

in my experiment) may be more strongly influenced by rest period compared to the other 

knowledge types. 

To examine whether the participants in each group were randomly divided or not, the 

performance test at the first learning session was conducted using the analysis of variance. The 

Table 4-51: Statistical output of curve estimation for the duration time of the Inverted Pendulum 
task for the Hybrid2 practice group.   

Model R2 df F p 
Linear .07 78 5.39 .02 

Logarithmic .08 78 6.68 .01 
Quadratic .09 77 3.59 .03 

Power .10 78 8.70 .00 
Exponential .09 78 7.82 .00  
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results showed that there was no significant difference among groups in all tasks, so I could 

assume the participants in this experiment could not influence the performance during the whole 

learning sessions and the retention test. 

I also analyzed the improved performance rate that is the performance differences 

between the last learning session and the retention test (see equation 4.1). The improved 

performance rates of each group with respect to each task were compared through analyses of 

variance and t-tests. For the Japanese vocabulary test, there was no significant difference among 

the groups. These results were somewhat different from the previous studies that showed the 

distributed practice schedule is better than the massed practice schedule at a retention test. So, I 

conducted analysis of variance again without the outlier in the massed practice group. The results 

still showed there was no significant difference among the groups. To compare between the two 

groups, I also analyzed the results using t-tests. The results of t-test showed that there was 

significant difference between the distributed and massed groups in accuracy, t(18) = -2.227, *p < 

.05, however, there was no significant different between the other groups. 

The Permutation problem-solving task and Tower of Hanoi puzzle resulted in no 

significant difference among the groups. There results indicate that the different practice 

schedules may not be influenced to the performance for solving these kinds of tasks. 

 The Inverted Pendulum task, however, showed significant different among groups on 

duration time, F(3,36) = 3.348, *p < .05. The t-tests resulted in significant difference between the 

distributed and the Hybrid1 groups, t(18) = 02.566, *p < .05. These results showed that the task 

that requires perceptual-motor skill produce better learning and retention performance with a 

massed or somewhat early massed way rather than a distributed way. 

To see the learning trends for each group with respect to the tasks, a series of learning 

graphs are presented. By doing this estimation, I can figure out the learning trends of each 

training schedule and each task, thus it enables us to estimate the performance of further learning 
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sessions. From the results of these estimation, I found that some of the graphs follow the Power 

law of learning (Ritter & Schooler, 2001), and others has a linear relationship.  

 



 

 

Chapter 5 
 

ACT-R model 

In this chapter, I provide an overview of the ACT-R architecture that I used to make 

cognitive models for representing the human behavior in my experiments. The explanation of 

ACT-R models and their considerations are also provided. 

5.1 Overview of the ACT-R Architecture 

ACT-R (Anderson, 2007; Anderson et al., 2004; Anderson & Lebiere, 1998; Anderson, 

Matessa, & Lebiere, 1997), which stands for Adaptive Character of Thought – Rational, is a 

cognitive architecture that contains theories about how human cognition works. The history of 

ACT-R that is presented in figure 5-1, can be found in a book, How can the human mind occur in 

the physical universe? (Anderson, 2007). It started from Human Associative Memory (Anderson 

& Bower, 1973) that is a founding theory of human’s declarative memory that includes spreading 

activation and retrieval of information from memory. Anderson developed the ACT theory 

(Anderson, 1976) by combining the declarative system of HAM theory and Newell’s symbolic 

representation system. He also proposed the subsymbolic system by extending symbolic 

representation. The ACT* system that contained the modern ACT-R theory was proposed, and it 

included goal-oriented processing (goal module) and production learning mechanism (production 

compilation). ACT-R came into being in 1993 with Lisp programming language. The “R” 

denoted the influence of rational analysis (Anderson, 1993). Furthermore, ACT-R included 

perceptual and motor capabilities, inspired from the EPIC architecture (Meyer & Kieras, 1997), to 

represent the perceptual-motor component of human (Byrne & Anderson, 1998), and the 

perceptual-motor module enabled ACT-R models to represent tasks that require human’s 
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perceptual-motor components. The current version of ACT-R is continuously evolving and 

expanding its research areas to the brain imaging with fMRI (Qin et al., 2004). It can be a 

candidate unified theory of cognition (Newell, 1990), by validating human’s cognition process 

(e.g. learning and forgetting) and human behaviors in various tasks (Pew & Mavor, 1998).  

Figure 5-2 shows a schematic view of the ACT-R architecture. ACT-R consists of seven 

modules; goal module, declarative module, imaginal module, motor module, visual modules, 

aural module and vocal module, and one production system. Each module has each corresponding 

buffer that enables a model to make a request from the production system and to hold a chunk as 

a result of such a request. !

 

 
Figure 5-1: The history of ACT-R, taken from Anderson (2007).!

HAM 
(Anderson & Bower, 1973)

Symbolic Declarative

PSG 
(Newell, 1973)

Symbolic Procedural

ACTE (Anderson, 1976)
Subsymbolic Declarative
Subsymbolic Procedural

Interactive Activation Model
(McClelland & Rumelhart, 1981)
Neurally Inspired Subsymbolic

ACT* (Anderson, 1983)
Goal Directed Processing
Production Compilation

Rational Analysis
(Anderson, 1990)

Bayesian Adaption

ACT-R 2.0 
(Anderson, 1993)

Public Simulation System

ACT-RN
(Lebiere & Anderson, 1993)
Limited Pattern Matching

ACT-R 4.0
(Anderson, 1998)

End-to-End Simulation

EPIC
(Meyer & Kieras, 1997)

Perceptual-Motor Modules

ACT-R 6.0 (current)
Brain Mapping

Instructable Production System
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The production system that is a rule-based system communicates with buffers of each 

module, so it could generate and coordinate behaviors according to the functions of each module. 

It represents cognition as a sequence of recognize-decide-act cycles (Gunzelmann, Gross, Gluck, 

& Dinges, 2009). On each cycle, all productions are compared to the current state that is 

represented by the contents of buffers. Among the productions that match the current statue, one 

production is selected by the utility function and then fired. The results of this process might 

modify the current state. Finally, it begins to recognize again for next cycle. 

The goal module enables a model to maintain the current task state and to hold relevant 

information for the current task. It also serves as a source of activation for retrievals by default.  

 

 
Figure 5-2: A schematic view of the ACT-R architecture, taken from Anderson (2007) and Byrne 
(2001)" 

Imaginal & imaginal-action
buffers

Production System

External World

Goal Module

Goal buffer

Imaginal Module Declarative Module

Retrieval buffer

Visual Module

Visual & Visual-location 
buffers

Aural Module

Aural & Aural-location 
buffers

Manual Module

Manual buffer

Vocal Module

Vocal buffer
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The declarative module represents the process of retrieving facts from human memory. It 

stores chunks that are generated by models. The retrieval process of chunks from the declarative 

memory depends on many factors that affect the accuracy and speed with which a chunk can be 

retrieved, and this process is based on research of human memory performance. 

The imaginal module has two kinds of buffers, one is an imaginal buffer, and the other is 

imaginal-action buffer. The imaginal buffer typically is used to create and hold task relevant 

information. It operates similar to the goal buffer, but there is a time cost (0.2 sec) to create and 

manipulate the chunks. 

The rest of four modules belong to the perceptual-motor modules in ACT-R (Byrne, 

2001; Byrne & Anderson, 1998). They enable models to interact with an external world. ACT-R 

models could attend to visual and aural stimuli using visual and aural modules (perceptual). 

Motor modules (manual and vocal) enable ACT-R models to send outputs to the world.  In my 

thesis, I describe visual and motor modules, because I only used these two modules to develop 

models.  

The visual module provides a model with information about what can be seen in the 

current environment. It has two subsystems, a “where” system and a “what” system. Each system 

has its own buffer and accepts specific requests from the production system. The “where” system 

generally provides the location information according to conditions, such as x-coordinate, y-

coordinate, color, etc. The production system could request these conditions to let a model to see. 

The “what” system takes request through the visual buffer. It stores contents in chunks according 

to the location which have been found using the where system. 

The motor module that is based on EPIC’s Manual Motor Processor (Kieras & Meyer, 

1996) serves as a model’s hands. It enables a model to operate a virtual keyboard and mouse with 

two-dimensional layout (Figure 5-3). 
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For the assumption of a virtual mouse, it has one button and is controlled by a model’s 

right hand. Its location is (28 2) relative to the virtual keyboard layout. The starting positions of 

virtual keyboard are F, (4 4) for the left hand, and J, (7 4) for the right hand. Before using a 

keyboard and mouse, model’s hands should be located its default position using (hand-to-home) 

or (hand-to-mouse) requests. Further information for the ACT-R modules are provided by ACT-

R’s official website at http://act-r.psy.cmu.edu. 

5.1.1 Declarative Memory Learning and Forgetting in ACT-R 

In this section, I present ACT-R’s declarative memory learning and forgetting 

mechanisms. The declarative memory learning mechanism is based on base-level learning 

equation that has a decay value to represent a forgetting mechanism" The features of the equations 

for declarative memory learning and forgetting consist of sub-symbolic construct of the ACT-R 

architecture.!

 

 
Figure 5-3:  A virtual keyboard in ACT-R (taken from ACT-R 6.0 manual). 
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5.1.1.1 Activation of Chunks and Base-Level Learning 

Every chunk in ACT-R’s declarative memory has associated with it a numerical value 

that is called activation. The activation of a chunk i is represented as Ai. It consists of the base-

level learning, and a noise component. 

! 

Ai = Bi +"                                                                                                         Equation 5.1 

The base-level activation for a chunk i is: 

! 

Bi = ln( t j
"d )

j=1

n

#                                                                                                  Equation 5.2 

n: the number of presentations for chunk i 
tj: the time since the jth presentation 
d: the decay parameter which is set using the :bll (base-level learning) parameter 

The base-level equation describes a process in which each time an item is presented there 

is an increase in its base-level activation, which decays away as a power function of time since 

that presentation.  !

5.1.1.2 Optimized Learning 

To calculate the base-level activation of each chunk is computationally expensive as we 

can see in the equation 5.2. To reduce this computational cost, ACT-R provides an optimized 

learning equation that assumes the presentations follow uniform distribution over the time since 

the item was created.  

! 

Bi = ln( n
1" d

) " d # ln(L)                                                                                Equation 5.3 

n: the number of presentations for chunk i 
L: the lifetime of chunk i (the time since its creation) 
d: the decay parameter 
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5.1.1.3 Recall Probability 

When a model makes a retrieval request and a matching chunk exists, that chunk will be 

retrieved only if its activation value exceeds the retrieval threshold, !. The probability of retrieval 

is represented by the recall probability in equation 5.4. 

! 

P(Ai) =
1

1+ e
"#Ai
s

                                                                                            Equation 5.4 

From equation 5.4, the activation of chunk, Ai, tends higher, the recall probability 

approaches 1, whereas, as ! tends higher, the probability decreases. When ! equals Ai, the 

probability is 0.5. The noise parameter, s, controls the sensitivity of recall to changes in 

activation. 

5.1.1.4 Retrieval Latency 

The activation of chunk determines retrieval latency. When a model requests retrieval of 

a chunk, the time taken until the chunk is available in the retrieval buffer is calculated using 

equation 5.5.  

! 

Time = Fe"Ai                                                                                                    Equation 5.5 

A: the activation of the chunk that is retrieved 
F: the latency factor parameter 

5.1.2 Procedural Memory Learning and Forgetting in ACT-R 

ACT-R has procedural memory learning mechanisms that include production compilation 

(Taatgen & Lee, 2003) and utility learning. However, there is no mechanism that predicts 

forgetting for procedural memory in the ACT-R architecture.  
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5.1.2.1 Production Compilation 

Production compilation (Taatgen & Lee, 2003) is a mechanism that represents procedural 

learning in ACT-R by collapsing two productions into a single production. To determine whether 

two productions can be combined into one production, compatible usage between the two 

productions for all buffers is checked. Compatible usage depends on the “compilation type” of 

the buffer, and there are four kinds of compilation type in ACT-R. Table 5-1 shows compilation 

types for each buffer. 

The motor style buffers, such as manual and vocal buffers, never hold a chunk. To avoid 

jamming, the production compilation process rarely occurs between these buffers. For example, if 

the first production makes a request to a motor buffer in the action side, then to compose it with a 

second production that also makes request of that buffer is impossible.  

The perceptual style buffers that include aural, aural-location, visual, and visual-location 

hold chunks generated by their modules, and these modules could interact with the external 

world, that is, conditions and actions in productions could be changed by the external world. So, 

the production compilation process between these buffers rarely occurs. 

Table 5-1:  Compilation types with respect to buffers in ACT-R. 

Buffer Name Compilation Type 

goal 
imaginal 
retrieval 

aural 
aural-location 

visual 
visual-location 

manual 
vocal 

Goal 
Goal 

Retrieval 
Perceptual 
Perceptual 
Perceptual 
Perceptual 

Motor 
Motor  
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The retrieval style buffer only has the retrieval buffer. Because the retrieval buffer is an 

internal buffer, it is easy to predict and thus gives chances to compile between productions. For 

example, if the action of the first production requests retrieval and the condition of the second 

production tests the outcome of this retrieval request. In this case, the request and test processes 

could be deleted, and these processes could be replaced by any variables in the retrieval process. 

Figure 5-4 shows the example of the production compilation process in retrieval style buffer. 

The goal and imaginal buffers are also internal buffers, so their production compilation 

processes are similar to the retrieval style buffer’s process. When the first production does not 

make a request, two productions could be combined. However, when the first production makes a 

request, the production compilation could be happened only if the second production does not 

make a request. 

 

 
Figure 5-4:  An example of the production compilation process in the retrieval style buffer. 

(p read-probe
     =goal>
          isa          goal
          state       attending-probe
     =visual>
          isa          text
          value      =val
==>
      +imaginal>
          isa          pair
          probe     =val
      +retrieval>
          isa          pair
          probe     =val
      =goal>
          state       testing)

(p recall
      =goal>
          isa          goal
          state       testing
     =retrieval>
          isa          pair
          answer   =ans
     ?manual>
          state       free
==>
      +manual>
          isa          press-key
          key         =ans
      =goal>
          state       read-study-item
      +visual>
          isa          clear)

(P PRODUCTION0
    "READ-PROBE & RECALL - PAIR0-0 
     =GOAL>
          ISA          GOAL
          STATE     ATTENDING-PROBE
     =VISUAL>
          ISA          TEXT
          VALUE    "zinc"
     ?MANUAL>
          STATE     FREE
==>
      =GOAL>
          state       READ-STUDY-ITEM
      +VISUAL>
          ISA         CLEAR
      +MANUAL>
          ISA         PRESS-KEY
          KEY        "9"
      +IMAGINAL>
          ISA         PAIR
          PROBE  "zinc")
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5.1.2.2 Utility Learning 

In this section, I present the process of how the created rules are selected. Every 

production in ACT-R has a utility value, and a new production that is created by production 

compilation also has its own value. When two productions, new production and old production, 

satisfy the specific condition, so both of them could apply, they are compared by their utility 

values. The old production has larger value than the new one at the first time, however, whenever 

the new one is recreated, its utility value is updated with a reward, and finally, the new one could 

be greater than the old one, so in this case new one could apply in that condition. Consequently, 

the new production that is created by production compilation stands for the learning process of 

procedural memory, and when the new production applied, it leads to decrease the overall task 

completion time, so it could show the learning effect for a task. Equation 5.6 shows the utility 

learning equation. If Ui(n-1) is the utility of a production i after its n-1st application and Ri(n) is 

the reward the production receives for its nth application, then its utility Ui(n) after its nth 

application could be calculated by this equation. 

! 

Ui(n) =Ui(n "1) +#[Ri(n) "Ui(n "1)]                                                        Equation 5.6 

The # indicates the learning rated, and it could be changed by adjusting the :alpha parameter in 

the ACT-R architecture. According to this equation, the utility value of each production will be 

changed until it matched the average reward that the production receives.!

5.2 The Model Predictions 

The Japanese vocabulary test was modeled among the four tasks using the ACT-R 6.0 

architecture. The current version of ACT-R supports two kinds of base-level learning equations, 

the original base-level learning equation (equation 3.2) and the revised based-level equation 
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(equation 3.5). So, two ACT-R models were developed based on the two equations with respect 

to the four practice schedules. 

The experiment environment for the ACT-R models is different from the one for the 

human participants. As I described in figure 4-1, the experiment environment for the participants 

is a web-based experiment. However, ACT-R models could not interact with web browsers 

directly, so I developed the experiment environment for the ACT-R models by using the Lisp 

language and an ACT-R environment. Figure 5-5 shows the ACT-R models’ experiment 

environment. 

Like human participants, when a model sees a problem through its visual module, it tries 

to find an answer. If it succeeds to find and retrieve, it types what it retrieves with the enter key 

through its manual module to go on to the next page. If it fails to find or retrieve the answer, it 

just hits the enter key and the next problem is presented. Each page has the answer to the previous 

 

 
Figure 5-5: Experiment environment for ACT-R models. 

… 
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problem except for the first page, and a model could store these pairs of problems and answers 

using its imaginal buffer. Finally, when a model sees the “task complete” sign, it terminates the 

task. !

The other consideration for making a model is a time factor. Anderson, Finchman, and 

Douglass introduced psychological time in modeling long term period of practice (1999). In their 

study, participants received as many as 240 trials of practice distributed over intervals as long as 

400 days. To fit the human data with ACT-R models, they used and assumed a psychological 

time factor that indicates the psychological time slowed after the experiment session. 

Pavlik and Anderson (2003, 2005) also used the psychological time factor when 

validating practice and forgetting effects on vocabulary memory. They introduced a scaling 

parameter, h, which is 0.025 in their recall equation. So, I used the same psychological factor 

when modeling Japanese vocabulary test models, therefore, the one-day rest period is 2,160 sec. 

in the model simulation. 

I ran two models for 100 times (Ritter, Schoelles, Quigley, & Klein, in press) with 

respect to the four practice schedules, and the average proportion correct and latency were 

gathered. Figure 5-6 shows the proportion correct of the model based on the original base-level 

equation and the model based on the revised base-level equation for the massed practice schedule 

of the Japanese vocabulary test.!
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The proportion correct increased with practice in both models during the entire learning 

sessions. However, There is no increase or little bit between increases between the fourth and 

fifth sessions, because between those sessions there was one-day rest interval. Like as human 

participants, memory decay occurs during the rest period. Both models also forget a lot between 

the last learning session and the retention session. 

Figure 5-7 shows the proportion correct of the two models that follow the distributed 

practice schedule for the Japanese vocabulary test. As we see, there are big differences between 

the two models in performance prediction. The model based on the original equation shows less 

increasing between the sessions; however, the model based on the revised equation shows 

relatively sharp increase during the first four sessions. Both models show the memory decay 

between the fourth and fifth learning sessions and between the last learning session and the 

retention session.!

 

!

Figure 5-6: The proportion correct of the original and revised models for the massed practice 
schedule of the Japanese vocabulary test.  
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Figure 5-8 shows the proportion correct of the two models that follow the Hybrid1 

practice schedule for the Japanese vocabulary test. The proportion correct of revised-equation 

based model shows relatively sharp increase during the first five sessions, however, the original-

equation base model shows relatively less increasing during the entire learning sessions. Both 

models show memory decay between the last learning session and the retention session. 

 

!

Figure 5-6: The proportion correct of the original and revised models for the distributed practice 
schedule of the Japanese vocabulary test. 
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Figure 5-9 shows the proportion correct of the two models that follow the Hybrid2 

practice schedule for the Japanese vocabulary test. The proportion correct of revised-equation 

base model shows relatively sharp increase during the first three sessions, and almost no increase 

between the third and the fourth session (4-day rest period). After the fourth session, the 

proportion correct increases again until the last learning session. However, the original-equation 

base model shows little increase during the first six sessions, and reaches around .4 at the last 

learning session. Both models show the memory decay between the last learning session and the 

retention session. 

 

!

Figure 5-8: The proportion correct of the original and revised models for the Hybrid1 practice 
schedule of the Japanese vocabulary test. 
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Figure 5-10 shows the results of the model based on the original equation for the 

Japanese vocabulary test with respect to the all practice schedule. The original-equation base 

model predicts the massed practice schedule is the most effective schedule among all the 

schedules. The Hybrid1 practice schedule ranks second place among the schedules. The 

distributed and the Hybrid2 practice schedules are almost identical performance at the last 

learning session and the retention session. Thus, we can assume that the original-equation base 

model cannot predict the spacing effects of human mind as I mentioned in chapter 3, so this 

model predicts massed or early massed practice schedule produce better performance than the 

distributed practice schedule. 

 

!

Figure 5-9: The proportion correct of the original and revised models for the Hybrid2 practice 
schedule of the Japanese vocabulary test. 
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Figure 5-11 shows the proportion correct of the model based on the revised base-level 

equation for the Japanese vocabulary test with respect to the all practice schedules. This model 

predicts the Hybrid2 practice schedule is the most effective schedule, and the Hybrid1 practice 

schedule is the least effective schedule in the retention session. However, the performances 

among the practice schedules are almost identical at the retention session. So, we may assume 

that the model based on the revised base-level learning equation may not be able to predict the 

performances of different schedules with long term period, although it can predict the spacing 

effects of human mind. To explore this, I present the comparison between the human data and the 

models prediction in the next chapter.!

 

!

Figure 5-10: The proportion correct of the model with the original base-level learning equation 
for the Japanese vocabulary test with respect to the four practice schedules. 
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5.3 Summary of the Model 

The two kinds of Japanese vocabulary test models, the model based on the original base-

level learning and the model based on the revised base-level learning were developed by using 

ACT-R 6.0. Both models were run for 100 times with psychological time base, and the average 

proportion correct of each model with respect to the four practice schedules was gathered, and the 

models predictions were compared. The model based on the original base-level learning equation 

showed relatively slow learning effect during the entire learning sessions and low performance at 

the retention session, however, the one based on the revised base-level learning equation showed 

quick learning effect during the entire learning sessions and high performance at the retention 

session.       

The results of the model based on the original base-level learning equation showed that 

the massed practice schedule is the most effective one among the four practice schedules at the 

 

!

Figure 5-11: The proportion correct of the model with the revised base-level learning equation for 
the Japanese vocabulary test with respect to the four practice schedules.   
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retention session. It indicated that the original base-level learning equation could not predict the 

spacing effect of human mind, and this is the reason the needs of the revised base-level learning 

equation (Pavlik & Anderson, 2005).  

The model based on the revised base-level learning equation showed that the Hybrid2 

practice schedule is the most effective practice schedule among all the schedules at the retention 

session, and it also showed that the distributed practice schedule is better than the massed and the 

Hybrid1 practice schedules. It indicated that the revised base-level learning equation supports the 

spacing effect of human mind. However, we need to figure out that the model prediction fits with 

the human data for the model validation. In the next chapter, I present the comparison between 

the human data and the models.   



 

 

Chapter 6 
 

Comparison of the Human data with the ACT-R Models 

I presented the empirical data in chapter 4, and the models prediction in chapter 5. In this 

chapter, I validate the models’ predictions by comparing the human data to the models with 

respect to the four practice schedules. !

6.1 Comparison of the Human Data with the Models 

Figure 6-1 shows the proportion correct of the human data, the model based on the 

original base-level learning equation, and the model based on the revised base-level learning 

equation for the Japanese vocabulary test of the massed practice schedule. 

 

!

Figure 6-1: The massed practice schedule: The proportion correct of the human data, the model 
based on the original base-level learning equation, and the model based on the revised base-level 
learning equation for the Japanese vocabulary test. 
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As we see in the graph, the original-equation base model predicts the human data more 

closely than the revised-equation base model in the massed practice schedule. However, the 

revised-equation base model also predicts the learning and forgetting trends of the human data for 

the massed practice schedule. To validate models with the human data, r2 and RMSD (root mean 

square deviation) for both models were calculated and the results are presented in table 6-1. 

The original-equation base model predicts the human data with R2=0.98 and RMSD=0.03 

through the linear and quadratic models. The revised-equation base model predicts the human 

data with R2=0.96 and RMSD=0.04 through the linear model and R2=0.97 and RMSD=0.04 

through the quadratic model. Thus, both of the models predict the learning performance of the 

massed practice schedule very closely. 

Figure 6-2 shows the proportion correct of the human data, the model based on the 

original base-level learning equation, and the model based on the revised base-level learning 

equation for the Japanese vocabulary test of the distributed practice schedule. 

As we see the figure 6-2, the human data of the distributed practice schedule is located 

between the original-equation base model and the revised-equation base model. However, the 

revised one predicts the human data more closely than the original one. To validate models with 

the human data, r2 and RMSD (root mean square deviation) for both models were calculated and 

the results are presented in table 6-2. 

Table 6-1: The prediction results of the original-equation base model and the revised-equation 
base model for the Japanese vocabulary test of the massed practice schedule. 

ACT-R Model Model R2 RMSD 
Linear .98 0.03 Original-equation 

base Model Quadratic .98 0.03 
Linear .96 0.04 Revised-equation 

base Model Quadratic .97 0.04 
!
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The original-equation base model predicts the human data with R2=0.92 and RMSD=0.05 

through the linear model, and R2=0.98 and RMSD=0.03 through the quadratic model. The 

revised-equation base model predicts the human data with R2=0.98 and RMSD=0.03 through the 

linear model and R2=0.99 and RMSD=0.03 through the quadratic model. Thus, both of the models 

predict the learning performance of the distributed practice schedule very closely. 

 

 

!

Figure 6-2: The distributed practice schedule: The proportion correct of the human data, the 
model based on the original base-level learning equation, and the model based on the revised 
base-level learning equation for the Japanese vocabulary test  

Table 6-2: The prediction results of the original-equation base model and the revised-equation 
base model for the Japanese vocabulary test of the distributed practice schedule. 

ACT-R Model Model R2 RMSD 
Linear .92 0.05 Original-equation 

base Model Quadratic .98 0.03 
Linear .98 0.03 Revised-equation 

base Model Quadratic .99 0.03 
!
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Figure 6-3 shows the proportion correct of the human data, the model based on the 

original base-level learning equation, and the model based on the revised base-level learning 

equation for the Japanese vocabulary test of the Hybrid1 practice schedule. 

As we see the figure 6-3, the original-equation base model predicts the human data more 

closely than the revised-equation base model in the massed practice schedule. However, the 

revised-equation base model also predicts the learning and forgetting trends of the human data for 

the Hybrid1 practice schedule. To validate models with the human data, r2 and RMSD (root mean 

square deviation) for both models were calculated and the results are presented in table 6-3. 

The original-equation base model predicts the human data with R2=0.96 and RMSD=0.04 

through the linear model, and R2=0.97 and RMSD=0.03 through the quadratic model. The 

revised-equation base model predicts the human data with R2=0.92 and RMSD=0.06 through the 

linear and quadratic models. Thus, we can conclude both of the models predict the learning 

performance of the distributed practice schedule very closely. 

 

!

Figure 6-3: The Hybrid1 practice schedule: The proportion correct of the human data, the model 
based on the original base-level learning equation, and the model based on the revised base-level 
learning equation for the Japanese vocabulary test. 
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Figure 6-4 shows the proportion correct of the human data, the model based on the 

original base-level learning equation, and the model based on the revised base-level learning 

equation for the Japanese vocabulary test of the Hybrid2 practice schedule. 

As we see the figure 6-4, the human data of the Hybrid2 practice schedule is located 

between the original-equation base model and the revised-equation base model. However, the 

original one predicts the learning trends of the human data more closely than the revised one. To 

Table 6-3: The prediction results of the original-equation base model and the revised-equation 
base model for the Japanese vocabulary test of the Hybrid1 practice schedule. 

ACT-R Model Model R2 RMSD 
Linear .96 0.04 Original-equation 

base Model Quadratic .97 0.03 
Linear .92 0.06 Revised-equation 

base Model Quadratic .92 0.06 
!

 
 

 

!

Figure 6-4: The Hybrid2 practice schedule: The proportion correct of the human data, the model 
based on the original base-level learning equation, and the model based on the revised base-level 
learning equation for the Japanese vocabulary test.!
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validate models with the human data, r2 and RMSD (root mean square deviation) for both models 

were calculated and the results are presented in table 6-4. 

The original-equation base model predicts the human data with R2=0.97 and RMSD=0.04 

through the linear model, and R2=0.99 and RMSD=0.03 through the quadratic model. The 

revised-equation base model predicts the human data with R2=0.94 and RMSD=0.05 through the 

linear model and R2=0.99 and RMSD=0.03 through the quadratic model. Thus, we can conclude 

both of the models predict the learning performance of the distributed practice schedule very 

closely. 

6.2 Summary of Comparison 

Two ACT-R models with respect to the four practice schedules were validated against the 

human data of the Japanese Vocabulary test. Both models predict the learning performance of 

each trial with respect to the four practice schedules very closely, and the prediction results with 

R2 and RMSD are presented in table 6-1, 6-2, 6-3, and 6-4. The original-equation base model 

predicts the human data with massed (4-4-0-0-0-0-0-0) and somewhat massed (2-3-2-1-0-0-0-0) 

practice schedules more closely than the revised one, however, the revised-equation base model 

predicts the human data with distributed (1-1-1-1-1-1-1-1) and somewhat distributed (1-0-1-1-1-

0-1-3) practice schedules more closely than the original one.  

Table 6-4: The prediction results of the original-equation base model and the revised-equation 
base model for the Japanese vocabulary test of the Hybrid2 practice schedule. 

ACT-R Model Model R2 RMSD 
Linear .97 0.04 Original-equation 

base Model Quadratic .99 0.03 
Linear .94 0.05 Revised-equation 

base Model Quadratic .99 0.03 
!
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These results are consistent with the arguments of Pavlik and Anderson (2003, 2005) that 

the original base level learning equation cannot predict the spacing effect of human. However, the 

model based on the revised base-level learning equation could not predict the human data exactly 

either, so a new base-level learning equation is still needed to represent this kind of long-term 

learning and forgetting tasks.!

The revised base-level learning equation by Lebiere and Best (2009) that I described in 

equation 3.6 can predict the long-term learning and forgetting processes of human, because this 

equation considers to balance long-term reinforcement and short-term inhibition. Using this 

equation, we can predict the recall probabilities at any specific time as I showed in chapter 3, and 

then the best practice schedule can be tested through the psychological experiment. Finally, we 

can predict the performance of candidate schedules using ACT-R models.  

The other consideration for revising the base-level learning equation is about sleep 

deprivation. There is an extensive literature for the negative cognitive consequences associated 

with less-than-adequate amounts of sleep (Dinges, Rogers, & Baynard, 2005; Durmer & Dinges, 

2005; Gunzelmann et al., 2009), however, most of the cognitive architectures do not reflect the 

effect of sleep deprivation in their architectures. The approach to represent this effect was just 

changing the associated parameters to operate less effectively or efficiently in existing 

mechanisms (Gunzelmann, Cluck, Price, Van Dongen, & Dinges, 2007; Gunzelmann, Gluck, Van 

Dongen, O'Conner, & Dinges, 2005; Gunzelmann et al., 2009). It is good start to predict the 

effect of sleep deprivation by adjusting ACT-R parameters, however, the adequate amount of 

sleep is the one of the most important factors in performance of human cognition, this factor 

should not be presented as a parameters, but be located in the basic theory of the ACT-R 

cognitive architecture. This can be presented with the decay function (the decay value is a 

constant in the current version of ACT-R 6.0) like as Pavlik and Anderson did in their revised 

base-level learning equation, or it also can be presented as an added equation like as Lebiere and 
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Best did in their revised equation. Whichever we choose, it can provide more accurate prediction 

of human behaviors. I remain a new equation as a future work.!

 



 

 

Chapter 7 
 

Conclusions and Discussions 

In this chapter, I present summaries of findings, contributions, insights, and future works 

for this dissertation. The goal of my dissertation is exploring new training paradigms that could 

produce better performance than a distributed practice schedule at retention. To achieve this goal, 

I have approached in the three ways. First, I investigated the learning and forgetting theories of 

the ACT-R cognitive architecture that is called base-level learning equation, and I could find the 

best practice schedule that is supported by the theory. Second, this practice schedule was 

investigated with the massed and distributed practice schedules through the psychological 

experiment in a laboratory setting. Finally, ACT-R cognitive models were made to predict human 

behavior and compared with the results of the human data. By following these steps, I can 

provide theoretical and practical contributions in investigating practice schedules, and these are 

presented in next section. 

The results of the prediction by the ACT-R theories showed that the hybrid practice 

schedule (1-0-1-1-1-0-1-3) could produce 2.5% better performance than the distributed practice 

schedule (1-1-1-1-1-1-1-1) at the retention test in my experiment setting (8 learning session 

across two weeks and retention test after 21 days). I also found that the distributed practice 

schedule ranks at the 754th and the massed practice schedule ranks ate the 6,103th among the 

6,345 candidate practice schedules. 

Among the 6,345 candidate practice schedules, four practice schedules include 

distributed (1-1-1-1-1-1-1-1), semi-massed (4-4-0-0-0-0-0-0), Hybrid1 (1-0-1-1-1-0-1-3), and 

Hybrid2 (2-3-2-1-0-0-0-0), were used in the experiment. Three kinds of knowledge types, 

declarative, procedure, and perceptual-motor skill, were investigated with four kinds of tasks, the 
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Japanese-English vocabulary test, the Tower of Hanoi test, the simple Permutation problem-

solving test, and the iPodtouch based inverted pendulum test.  

The results of human data showed that the distributed practice schedule is better than the 

massed practice schedule in the Japanese vocabulary test (declarative knowledge), however, there 

are no significant differences among the other practice schedules in this task. There are no 

significant differences among the four practice schedules in the two procedural tasks 

(Permutation problem-solving task and the Tower of Hanoi puzzle), and I could find that the 

knowledge of all of the participants in each group was proceduralized in their memory during the 

entire learning sessions.  

There is significant difference between the Hybrid1 and the distributed practice schedules 

in the perceptual-motor skill task. The participants in the Hybrid1 and massed practice schedules 

showed better performance than the distributed and the Hybrid2 practice schedules, and these 

results indicated that massed and somewhat early massed practice schedules could help the 

knowledge proceduralized in this kind of task. Table 7-1 shows the results of the human data that 

I found in my experiment.!!

!

Table 7-1: The effective practice schedules with respect to knowledge types. 

Knowledge Types Tasks Effective Practice Schedules 

Declarative Knowledge The Japanese Vocabulary Task D > H2 > H1 > M 

The Permutation Problem-Solving 
Task M $ D $ H1 $ H2 

Procedural Knowledge 
The Tower of Hanoi Task M $ D $ H1 $ H2 

Perceptual-Motor Skill Inverted Pendulum Task H1 > M > H2 > D 
!

Note: D stands for the distributed practice schedule, M stands for massed practice schedule, H1 
stands for the Hybrid1 practice schedule, and H2 stands for Hybrid2 practice schedule.  
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Two kinds of the ACT-R models, the model based on the original base-level learning 

equation and the model based on the revised base-level learning equation, were developed to 

predict the human behavior of the Japanese vocabulary test. Those models were simulated for 100 

trials, and the average proportion correct were gathered and compared with the human data. Both 

models followed the learning and forgetting trends of the human data, however, they could not 

predict the human data exactly.                

7.1 Contributions 

The results of this study could shift a training paradigm of how to design training 

programs in the fields of education, industry, and military with respect to the knowledge types of 

tasks. The detailed contributions are presented below. 

The first contribution of this dissertation is to provide a new paradigm of training 

different from the widely used method in most training. Most of the previous studies have 

focused on massed practice and distributed practice schedules, but this dissertation shows new 

hybrid training paradigm could exist, and it can produce better performance in knowledge and 

skills acquisition and retention. Furthermore, the later researchers who explore training schedules 

for better retention could consider testing a hybrid practice schedule in their research. 

The second contribution of this dissertation is to provide a theory of how to investigate 

practice schedules that are supported by the theory. In this dissertation, I used the base-level 

learning equation of the ACT-R cognitive architecture (original), and its extension (revised), and 

I could predict the activation strength at each learning session and the retention session. 

Throughout the results of the prediction, I could find that the best practice schedule is not a 

distributed schedule, but a hybrid practice schedule.  
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The third contribution of this dissertation is to explore the most efficient training 

schedule for three kinds of knowledge types. The previous studies investigated two practice 

schedules with the specific knowledge type, such as declarative or procedural knowledge, or 

perceptual-motor skill. However in this study, I investigated the three knowledge types with the 

four kinds of practice schedules, and from the results of these experiments, most efficient practice 

regimen with respect to the specific knowledge type was provided. 

The fourth contribution of this dissertation is to examine the ability of the ACT-R 

cognitive architecture. The most of the previous ACT-R models have focused on microscopic 

psychological tasks, however, model for learning, forgetting, and retaining aspects of human 

mind with long-term duration has not been verified. By comparing the ACT-R models with the 

human data, I could show that models could predict the learning trends of the human data, 

however, they could not predict the human data exactly or somewhat exactly. These results 

indicate that ACT-R needs some extensions to predict long-term learning and forgetting process 

of humans. 

The fifth contribution of this dissertation is to start for examining the theory of skill 

retention (Kim et al., in press). According to the theory of skill retention, the forms of forgetting 

are different in each learning stage, so learning should occur with different manners and degrees 

with respect to the learning stages. The hybrid practice schedules that I used in this study might 

be the schedules that could be explored to test this theory.  

7.2 Future Work 

Although this dissertation gives insight the needs of paradigm shifting for the training, 

there still remain several things to investigate as future works. I present the list of future work in 

this section.  
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I tested four practice schedules in this study. According to Pavlik and Anderson’s revised 

learning equation showed in chapter 3, the Hybrid2 practice schedule provides the best 

performance at retention. However, the results of the human data were not consistent with 

equation (The distributed practice schedule is the best and the Hybrid2 practice schedule is the 

second). Although the sample size (N = 40) of the experiment is not enough, this result is almost 

identical to the findings of the recent study (Cepeda et al., 2008) that showed the Pavlik and 

Anderson’s equation could not predict their human data either. That is, the revised base-level 

learning equation is not enough to predict various learning interval and retention interval, so it 

still needs to be revised as I mentioned in chapter 3. The revised equation of Lebiere and Best 

(2009) that have not been validated with empirical data may produce better prediction for long-

term learning and forgetting processes of human than the revised equation of Pavlik and 

Anderson (2003, 2004, 2005). The recall probabilities of the entire candidate practice schedules 

(6,435) will be explored by using the equation, and the results will be compared with the human 

data and the results of Pavlik and Anderson’s revised base-level learning equation. 

The Predict Performance Equation (Jastrzembski et al., 2010) will be also explored to 

predict the best practice schedule among the candidates practice schedules, and the results will be 

compared with the human data. !

Between the two hybrid schedules, the Hybrid2 schedule is the best, and the Hybrid1 

schedule ranks 5,532 among the 6,435 candidate schedules. The reason I tested the Hybrid1 

practice schedule is not by theory, but by the recent work (Kim et al., in press) and my thought 

that some tasks require the procedural knowledge or perceptual-motor skills should be trained in a 

massed or somewhat massed way to get better performance. However, we can generate numerous 

similar practice schedules, such as 3-2-1-1-0-0-0-0 or 2-4-1-1-0-0-0-0, and among these possible 

schedules we cannot choose the best one without any theoretical supports. Thus, we need theories 

to predict the performance of procedural or perceptual-motor tasks.  
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Among the four tasks, I made ACT-R models for one task, the Japanese vocabulary task. 

The inverted pendulum type task could not be modeled because of the limitation of the current 

ACT-R’s perceptual-motor component. The other tasks, the Permutation problem-solving task 

and the Tower of Hanoi puzzle, will be modeled and compared with the human data.  

The number of participants (N = 40) and some outliers in each practice schedule may 

result in failing significant differences among the schedules. For example, the proportion correct 

in the Japanese vocabulary test was not significant difference among the practice schedules, 

however, when I excluded the outlier in the massed practice group, I found the significant 

difference between the distributed and the massed group. Thus, I will recruit more participants to 

get better results. 

   !



 

 

References!

Anderson, J. R. (1976). Language, memory, and thought: Lawrence Erlbaum. 
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-406. 
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press. 
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum. 
Anderson, J. R. (2007). How can the human mind exist in the physical universe? New York, NY: 

Oxford University Press. 
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An 

integrated theory of the mind. Psychological Review, 111(4), 1036-1060. 
Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Hillsdale: Erlbaum. 
Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). Practice and retention: A unifying 

analysis. Journal of Experimental Psychology: Learning, Memory & Cognition, 25(5), 
1120-1136. 

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum. 
Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition 

and its relation to visual attention. Human-Computer Interaction, 12(4), 439-460. 
Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86, 

124-140. 
Atkinson, R. C. (1972). Optimizing the learning of second-language vocabulary. Journal of 

Experimental Psychology, 96, 124-129. 
Bahrick, H. P. (1979). Maintenance of knowledge: Questions about memory we forgot to ask. 

Journal of Experimental Psychology: General, 108(3), 296-308. 
Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P. E. (1993). Maintenance of foreign 

language vocabulary and the spacing effect. Psychological Science, 316-321. 
Bahrick, H. P., & Phelps, E. (1987). Retention of Spanish vocabulary over 8 years. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 13(2), 344-349. 
Bloom, K. C., & Shuell, T. J. (1981). Effects of massed and distributed practice on the learning 

and retention of second-language vocabulary. Journal of Educational Research, 74(4), 
245-248. 

Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. 
International Journal of Human-Computer Studies, 55(1), 41-84. 

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Lebiere 
(Eds.), The atomic components of thought. Mahwah, NJ: Erlbaum. 

Calfee, R. C. (1985). Experimental methods in psychology. New York, NY: Holt, Rinehart and 
Winston. 

Cepeda, N. J., Coburn, N., Rohrer, D., Wixted, J. T., Mozer, M. C., & Pashler, H. (2009). 
Optimizing Distributed Practice. Experimental Psychology (formerly" Zeitschrift f¸r 
Experimentelle Psychologie"), 56(4), 236-246. 

Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in 
verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132(3), 
354. 

Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in 
learning: A temporal redgeline of optimal retention. Psychological Science, 19(11), 1095-
1102. 



140 

 

Chong, R. S. (2004). Architectural explorations for modeling procedural skill decay. In M. 
Lovett, C. Schunn, C. Lebiere & P. Munro (Eds.), In Proceedings of the Sixth 
International Conference on Cognitive Modeling. Mahwah, NJ: Erlbaum. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences: Lawrence Erlbaum. 
Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of 

Experimental Psychology A: Human Experimental Psychology, 33(4), 497-505. 
Dinges, D. F., Rogers, N. L., & Baynard, M. D. (2005). Chronic sleep deprivation. In M. H. 

Kryger, T. Roth & W. C. Dement (Eds.), In Principles and practice of sleep medicine 
(pp. 67-76). Philadelphia: W. B. Saunders. 

Durmer, J. S., & Dinges, D. F. (2005). Neurocognitive consequences of sleep deprivation. 
Seminars in Neurology, 25(1), 117-129. 

Ebbinghaus, H. (1964). Memory: A contribution to experimental psychology. New York: Dover. 
Fishman, E. J., Keller, L., & Atkinson, R. C. (1968). Massed versus distributed practice in 

computerized spelling drills. Journal of Educational Psychology, 59(4), 290-296. 
Fitts, P. M. (1954). The information capacity of the human motor system in controlling amplitude 

of movement. Journal of Experimental Psychology, 47(6), 381-391. 
Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of human 

learning (Vol. 47, pp. 381-391). New York: Academic Press. 
Fleishman, E. A., Quaintance, M. K., & Broedling, L. A. (1984). Taxonomies of human 

performance: The description of human tasks: Academic Press. 
Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., Smith, C. D., 

& Satava, R. M. (2005). Virtual reality simulation for the operating room: proficiency-
based training as a paradigm shift in surgical skills training. Annals of Surgery, 241(2), 
364. 

Glenberg, A. M. (1976). Monotonic and nonmonotonic lag effects in paired-associate and 
recognition memory paradigms. Journal of Verbal Learning and Verbal Behavior, 15(1), 
1-16. 

Gray, W. D., & Altmann, E. M. (2001). Cognitive modeling and human-computer interaction. In 
W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors. New 
York: Taylor & Francis, Ltd. 

Gunzelmann, G., Cluck, K. A., Price, S., Van Dongen, H. P. A., & Dinges, D. F. (2007). 
Decreased arousal as a result of sleep deprivation: The unraveling of cognitive control. In 
W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 243-253). New York, NY: 
Oxford University Press. 

Gunzelmann, G., Gluck, K. A., Van Dongen, H. P. A., O'Conner, R. M., & Dinges, D. F. (2005). 
A neurobehaviorally inspired ACT-R model of sleep deprivation: Decreased performance 
in psychomotor vigilance. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), In 
Proceedings of the Twenty-Seventh Annual Meeting of the Cognitive Science Society (pp. 
857-862). Mahwah, NJ: Erlbaum. 

Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F. (2009). Sleep deprivation and 
sustained attention performance: Integrating mathematical and cognitive modeling. 
Cognitive Science, 33(5), 880-910. 

Jastrzembski, T. S., Addis, K., Krusmark, M., Gluck, K. A., & Rodgers, S. (2010). Prediction 
intervals for performance prediction. In D. D. Salvucci & G. Gunzelmann (Eds.), In 
Proceedings of 10th International Conference on Cognitive Modeling (pp. 109-114). 
Philadelphia. 

Jastrzembski, T. S., & Gluck, K. A. (2009). A formal comparison of model variants for 
performance prediction. In D. P. A. Howes, R. Cooper (Ed.) In Proceedings of the 9th 
International Conference of Cognitive Modeling. Manchester, UK. 



141 

 

Jastrzembski, T. S., Gluck, K. A., & Gunzelmann, G. (2006). Knowledge tracing and prediction 
of future trainee performance. In Proceedings of the 2006 Interservice/Industry Training, 
Simulation, and Education Conference (pp. 1498-1508). Orlando, FL: NTSA. 

Jastrzembski, T. S., Gluck, K. A., Rodgers, S., & Krusmark, M. (2009). The predictive 
performance optimizer: Mathematical modeling for performance prediction. In 
Proceedings of the 18th Conference on Behavior Representation in Modeling and 
Simulation (pp. 141-142). Sundance, UT. 

Kieras, D. E., & Meyer, D. E. (1996). The EPIC architecture: Principles of operation. 
Unpublished manuscript from ftp://ftp.eecs.umich.edu/people/kieras/EPICarch.ps. 

Kim, J. W. (2008). Procedural skills: From learning to forgetting. Department of Industrial and 
Manufacturing Engineering, The Pennsylvania State University, University Park, PA. 

Kim, J. W., Koubek, R. J., & Ritter, F. E. (2007). Investigation of procedural skills degradation 
from different modalities. In R. L. Lewis, T. A. Polk & J. L. Laird (Eds.), In Proceedings 
of 7th International Conference on Cognitive Modeling (pp. 255-260). Triesta, Italy: 
Oxford, UK: Taylor & Francis/Psychology Press. 

Kim, J. W., Ritter, F. E., & Koubek, R. J. (in press). An intergrated theory for imporved skill 
acquisition and retention in the three stages of learning. Theoretical Issues in Ergonomics 
Science. 

Lebiere, C., & Best, B. J. (2009). Balancing long-term reinforcement and short-term inhibition. In 
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society. Austin, 
TX: Cognitive Science Society. 

Mackay, S., Morgan, P., Datta, V., Chang, A., & Darzi, A. (2002). Practice distribution in 
procedural skills training. Surgical endoscopy, 16(6), 957-961. 

Martin-Emerson, R., & Wickens, C. D. (1992). The vertical visual field and implications for the 
head-up display. In (pp. 1408-1412). Human Factors and Ergonomics Society. 

Meyer, D. E., & Kieras, D. (1997). A computational theory of executive cognitive processes and 
multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 3-
65. 

Moulton, C. A. E., Dubrowski, A., MacRae, H., Graham, B., Grober, E., & Reznick, R. (2006). 
Teaching surgical skills: What kind of practice makes perfect?: A randomized, controlled 
trial. Annals of Surgery, 244(3), 400. 

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press. 
Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. 

In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1-51). Hillsdale, NJ: 
Erlbaum. 

Ohlsson, S. (2011). Deep learning: How the mind overrides experience. New York, NY: 
Cambridge Univ Press. 

Paik, J. (2011). A novel training paradigm for knowledge and skills acquisition: Hybrid schedules 
lead to better learning for some but not all tasks. Unpublished PhD thesis, Department of 
Industrial Engineering, The Pennsylvania State University, University Park. 

Paik, J., Kim, J. W., & Ritter, F. E. (2009). A preliminary ACT-R compilier in Herbal. In 
Proceedings of 9th International Conference on Cognitive Modeling (pp. 466-467). 
Manchester, England. 

Paik, J., Kim, J. W., Ritter, F. E., Morgan, J. H., Haynes, S. R., & Cohen, M. A. (2010a). 
Building large learning models with Herbal. In D. D. Salvucci & G. Gunzelmann (Eds.), 
In Proceedings of 10th International Conference on Cognitive Modeling (pp. 187-192). 
Philadelphia. 



142 

 

Paik, J., Kim, J. W., Ritter, F. E., Morgan, J. H., Haynes, S. R., & Cohen, M. A. (2010b). 
Building user models faster with Herbal. In Human Computer Interaction Consortium 
(HCIC) Workshop 2010. [unrefereed workshop paper/presentation]. 

Pavlik, P. I. (2007). Understanding and applying the dynamics of test practice and study practice. 
Instructional Science, 35(5), 407-441. 

Pavlik, P. I., & Anderson, J. R. (2003). An ACT-R model of the spacing effect. In Proceedings of 
Fifth International Conference on Cognitive Modeling (pp. 177-182). Bamberg, 
Germany. 

Pavlik, P. I., & Anderson, J. R. (2004). An ACT-R model of memory applied to finding the 
optimal schedule of practice. In Proceedings of Sixth International Conference on 
Cognitive Modeling (pp. 376-377). Pittsburgh, PA USA. 

Pavlik, P. I., & Anderson, J. R. (2005). Practice and forgetting effects on vocabulary memory: An 
activation-based model of the spacing effect. Cognitive Science, 29(4), 559-586. 

Pavlik, P. I., & Anderson, J. R. (2008). Using a model to compute the optimal schedule of 
practice. Journal of Experimental Psychology: Applied, 14(2), 101-117. 

Pew, R. W., & Mavor, A. S. (Eds.). (1998). Modeling human and organizational behavior: 
Application to military simulations. Washington, DC: National Academy Press. 
books.nap.edu/catalog/6173.html. 

Proctor, R. W., & Dutta, A. (1995). Skill acquisition and human performance. Thousand Oaks, 
CA: Sage Publications, Inc. 

Qin, Y., Carter, C. S., Silk, E. M., Stenger, V. A., Fissell, K., Goode, A., & Anderson, J. R. 
(2004). The change of the brain activation patterns as children learn algebra equation 
solving. Proceedings of the National Academy of Sciences of the United States of 
America, 101(15), 5686. 

Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory. Psychological 
Review, 88(2), 93. 

Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: Application of 
the SAM model. Cognitive Science, 27(3), 431-452. 

Rasmussen, J. (1986). Information processing and human-machine interaction: An approach to 
cognitive engineering: Elsevier Science Inc. New York, NY, USA. 

Ritter, F. E., Schoelles, M. J., Quigley, K. S., & Klein, L. C. (in press). Determining the number 
of model runs: Treating cognitive models as theories by not sampling their behavior. In S. 
Narayanan & L. Rothrock (Eds.), Human-in-the-loop simulations: Method and Practice: 
Springer. 

Ritter, F. E., & Schooler, L. J. (2001). The learning curve. In International encyclopedia of the 
social and behavioral sciences (Vol. 13, pp. 8602-8605). Amsterdam: Pergamon. 

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet for sequential data analysis and HCI 
experimentation. Behavior Research Methods, 37(1), 71-81. 

Rohrer, D., & Taylor, K. (2006). The effects of overlearning and distributed practise on the 
retention of mathematics knowledge. Applied Cognitive Psychology, 20(9), 1209-1224. 

Rumelhart, D. E. (1967). The effects of interpresentation intervals on performance in a 
continuous paired-associate task. Institute for Mathematical Studies in the Social 
Sciences, Stanford University. 

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say broke? A model of 
learning the past tense without feedback. Cognition, 86(2), 123-155. 

Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model 
complex skill acquisition. Human Factors, 45(1), 61-76. 

Training Magazine. (2009). Gagues & drivers: Industry report. Training Magazine, 16-34. 



143 

 

Vearrier, L. A., Langan, J., Shumway-Cook, A., & Woollacott, M. (2005). An intensive massed 
practice approach to retraining balance post-stroke. Gait & Posture, 22(2), 154-163. 

Wilson, M. S., Middlebrook, A., Sutton, C., Stone, R., & McCloy, R. F. (1997). MIST VR: a 
virtual reality trainer for laparoscopic surgery assesses performance. Annals of the Royal 
College of Surgeons of England, 79(6), 403. 

Young, J. L. (1971). Reinforcement-test intervals in paired-associate learning. Journal of 
Mathematical Psychology, 8(1), 58-81. 

Zbrodoff, N. J. (1995). Why is 9+ 7 harder than 2+ 3? Strength and interference as explanations 
of the problem-size effect. Memory and Cognition, 23, 689-689. 

Zhao, C., Paik, J., Morgan, J. H., & Ritter, F. E. (2010a). Validating a High Level Behavioral 
Representation Language (HERBAL):  A Docking Study for ACT-R. In First 
International Conference on Biologically Inspired Cognitive Architectures. Virginia. 

Zhao, C., Paik, J., Morgan, J. H., & Ritter, F. E. (2010b). Validating a high level behavioral 
representation language: Docking study between Herbal and ACT-R. International 
Journal of Machine Consciousness, 2(2), 383. 

 
 



 

 

Appendix A 
 

The Experiment Materials 

The Japanese Vocabularies and meanings (Pavlik & Anderson, 2005) 

chitai 
ushiro 
ginkou 
dodai 
keta 
itamae 
nendai 
sore 
fujo 
saishuu 
itonami 
yuubin 
keiro 
amari 
shiren 

area 
back 
bank 
base 

beam 
cook 
date 
fear 
help 
last 
life 

mail 
path 
rest 
test 

 

The Simple Permutation Problems (Rohrer & Taylor, 2006) 

abccc 
abcccc 
aabbbbb 
abbcc 
aaabbb 
aabbb 
aabb 
abbccc 
abccccc 
aabbbbbb 
abbcccc 
abcccccc 

20 
30 
21 
30 
20 
15 

6 
60 
42 
28 

105 
56 
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