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Abstract

We use an ACT-R model of a complex task to explore the
implications of ACT-R’s learning and forgetting mechanisms
to better understand learning and retention. The model
performs a task that has 14 non-iterated subtasks that takes
approximately 25 min. to perform the first time. The results
show that a typical learning curve is generated by the model
that is well fit to human data. When decay is examined we
find that the retention curves basically match the shapes
predicted by the KRK theory, and that training and testing
have been confounded in many studies. From these results
we see that the previously hypothesized mixed declarative
procedural stage of learning actually starts on the first trial
and is never completely exited, so we will need to propose
other thresholds to mark transitions between declarative,
mixed, and proceduralized knowledge. We predict based on
this model that learning and retention will vary greatly by
task components, practice schedule, and learner’s strategy.
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Introduction

Kim, Ritter, and Koubek (2013) provided a summary of
learning theories in a review paper. Their summary theory
is based on learning theories by Fitts (1964), Anderson
(1982), Rasmussen (1986), and VanLehn (1996). It is also
consistent with further work reviewed by Kim et al. (2013),
as well as other theories of learning (e.g., Posner, 1973) and
data on learning (e.g., Seibel, 1963)-the diagrammatic
representation of this theory is shown in Figure 1.

In this paper we first briefly review the work this theory is
based upon to suggest how to better test it. We then use the
ACT-R cognitive architecture to make predictions about
learning and forgetting, including where the stages might
appear. We then test the predictions of the theory using data
(Kim & Ritter, 2015), and use the model to design a further
empirical study to test and illustrate the theory’s predictions.

The KRK Theory

This review starts with the KRK theory and its predictions.
Some of the data and theories that it was based on and some
further work, both empirical and theoretical is examined to
find further support and limitations. Implications for further
development are provided in a summary.
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Figure 1. The KRK theory of learning. This represents a
summary theory of predictions 1-5 from Table 1. Taken
from Kim, Ritter, and Koubek (2013).

The KRK theory was developed as part of Kim’s PhD
thesis (Kim, 2008). The theory, shown in Figure 1, makes
several predictions implicitly. Table 1 explicitly shows
predictions from Figure 1 and new predictions. In a larger
paper we explain these predictions in more detail (Ritter et
al., forthcoming). Here, we simply summarize them before
testing them.

Of the nine hypotheses in Table 1, items 1-6 are basically
supported in the Kim et al. (2013) review paper. Items 7-9
are new and come from the inclusion of perceptual-motor
and recognition memory. The empirical support for the
hypotheses are piece-wise and often on simple tasks (e.g.,
Choice Reaction Theory, Seibel, 1963). The forgetting
curves often are from single points of learning (e.g., Kim
2008). That is, we do not know of a single study that
predicts all these curves, and most of the studies that are
used to derive and support these hypotheses use simple
tasks, such as word association.

It would be useful to explore these predictions with a
complex, multi-step task and to explore the whole set of
predictions with a single empirical study with longer reten-
tion intervals. This study would be a large undertaking. So
we will use a model of a complex task in an architecture
with learning and forgetting that has multiple skill repre-
sentations to explore the study first and see what the
model’s predictions are for learning and retention.
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Table 1. Human performance hypotheses from the KRK
theory. Items 1-6 are supported by Kim et al. (2013). 7-9 are
new predictions from incorporating new memory types.

Prior Predictions
(1) Learning follows the power law curve of learning
Time = A + BN (A, B, C are constants)
(2) Three stages of knowledge:
a. Acquiring declarative and procedural knowl-
edge
b. Consolidating the acquired knowledge
c. Tuning the knowledge towards overlearning
(3) Retention of declarative knowledge decays
quickly and catastrophically
(4) Retention of mixed declarative and procedural
knowledge decays moderately
(5) Retention of proceduralized knowledge has least
decay
(6) Recognition and perceptual-motor knowledge
have different learning curves than procedural or
declarative.

New Predictions
(7) Ideal training schedules will vary by knowledge-
type; perceptual-motor may require minimum
training block size
(8) Retention of perceptual-motor knowledge appears
to decay little
(9) Recognition memory is (probably) not fragile

Method

We will first describe a complex task that we use and for
which we have some data and a running model that learns.
We will then describe the architecture and the model, which
serves as a subject in this simulated study. We then
describe the human data, and how we ran the model.

The Dismal task

The Dismal task, illustrated in Figure 2, is a spreadsheet
task that can be used to measure procedural knowledge and
skills learning and decay (Kim & Ritter, 2015). The Dismal
task was created to be done in the Dismal spreadsheet
(Ritter & Wood, 2005). Dismal is an open source, extend-
able spreadsheet in Emacs.

The overall task length and subtask variety make Dismal
a relatively complex task. There are 14 different subtasks in
Dismal (Table 2). The subtasks contained attention shifts,
encoding of information, attending to information, key
presses, and mouse moves/clicks. Previous work using
Dismal allows comparison to human data and model
predictions.

These tasks can be done with two different interfaces—
(a) a keyboard with key-based commands, or (b) a mouse or
vertical mouse. The vertical mouse provides new motor
skills to learn and forget because it requires a different hand
posture.

Table 2. The 14 Dismal spreadsheet subtasks.

Dismal task sequence

(1) Open a file, named normalization.dis under the “experiment’

folder

(2) Save as the file with your initials

(3) Calculate and fill in the frequency column (B6 to B10)

(4) Calculate the total frequency in B13

(5) Calculate and fill in the normalization column (C1 to C5)

(6) Calculate the total normalization in C13

(7) Calculate the length column (D1 to D10)

(8) Calculate the total of the “Length” column in D13

(9) Calculate the Typed Characters column (E1 to E10)

(10) Calculate the total of the “Typed Characters” column in E13

(11) Insert two rows at AQ cell

(12) Type in your name in A0

(13) Fill in the current date in Al using the command

(14) Save your work as a printable format

Figure 2. Dismal interface with initial state (top) and final
state of the task (bottom).

The two interface modes can be used to study different
types of knowledge: recall of keystroke commands and
recognition of menu-based commands.

ACT-R

ACT-R is a theory of the mechanisms that make up cog-
nition. It is an example of a unified theory of cognition
(Byrne, 2012; Newell, 1990), in that intends to predict and
explain human behaviour by simulating the steps of cogni-
tion with a fixed set of mechanisms. ACT-R predicts
behaviour and activation of brain regions by using mecha-
nisms including procedural and declarative knowledge, and
working memory as activation, to perform tasks.

We briefly review ACT-R’s components and then the
memory equations; other more complete treatments are
available (e.g., Anderson 2007; Anderson 1982). Thus, we
briefly review ACT-R’s components and then the memory
equations.



The architecture components

ACT-R consists of modules and buffers. Modules are
responsible for processing one kind of information and are
the mechanisms for modifying and implementing a buffer;
buffers are contents that are visible to other modules. The
modules descriptions and roles include:

the Visual module is for identifying objects in the visual
field. Visual objects and their identities are located in the
visual buffer and visual location buffer and monitoring
attention and visual objects such as scanning a computer
screen.

the Manual module is for controlling the hands; the man-
ual/motor buffer handles controlling and monitoring hand
movement such as typing on a keyboard.

the Declarative module is for retrieving information from
memory, and a Goal module is for keeping track of current
goals and intentions. The Goal buffer stores the current sub-
goal step and its next step.

A central production system is a rule-based system that
performs the matching, selection, and execution of produc-
tion rules. Also, it coordinates the communication and per-
formance of these modules through the application of
production rules. The central production system works in
parallel with modules and constantly updates and queries
the buffers’ data.

The memory equations

Throughout the task completion by an ACT-R model, each
declarative memory used will have its base-level activation
increased. Presentation of an item (or chunk), and thus
subsequent changes in base-level activation, can occur at
three points in the process: at item/chunk creation, at the
time when two items are merged, and when the chunk itself
is retrieved.

This process has two mutually exclusive options for how
to calculate learning for chunks during the task procedure:
the Optimized Learning Equation (OL), and the Base-Level
Learning Equation (BL),. These are shown in Equations 1
and 2. Parameters (e.g., :bll) refer to specific values set
within ACT-R’s base configuration.

Equation 1: The Optimized Learning Equation (OL)
n
Bi =In (ﬁ) —d * ln(L) + Bi

n: The number of presentations for chunk i
d: The decay parameter set using the :bll parameter
pi: A constant offset set using the :blc parameter

Equation 2: The Base-Level Learning Equation (BL)
n
— —-d
B, =1In (ztj + 8)
J=1

L: The lifetime of chunk 7 (the time since its creation).

ti: The time since the jth presentation. A presentation, or
reference, is either the chunk’s initial entry into DM or
when another chunk is merged with a chunk

Unlabeled variables in BL are shown in Equation 1.

The two equations differ in their accuracy and computa-
tional cost. BL is costlier because it accounts for time
through the ¢ parameter (with associated repeated
exponential computations based on ¢’s), while OL
simplifies the equation to primarily rely on the number of
presentations.

The model

Herbal, a high-level behaviour representation language,
creates ACT-R source code (Ritter et al., 2006). Herbal has
been used to build several ACT-R models of this
spreadsheet task that ranged in expertise from novice to
expert. Further details about the mode can be found in Paik,
Kim, Ritter, & Reitter (2015). We used the novice model
with 9 initial rules and 520 declarative memory elements
because it starts the task using declarative knowledge.

Number of runs

Completion time curves were generated from the mean time
for a given data point based on multiple runs of the model
for the task (N=5). This number is sufficient because we are
observing broad trends rather than focusing on specific
effect sizes (Ritter, Schoelles, Quigley, & Klein, 2011).

Existing human data

Participants in Kim’s (2008; Kim & Ritter, 2015) study
(N=60) were divided equally into two groups: one used only
the keyboard (N=30), and another group used the combina-
tion of wvertical mouse and keyboard (N=30). They
completed the Dismal task and came back at 6, 12, or 18-
day intervals. We used the vertical mouse interface
subjects’ data. The human data for days 1-4 matches the
model predictions for trials 1-4 shown in Figure 3.

Results

We ran a series of models to explore how the ACT-R model
of the Dismal task predicts learning and decay. For each
test, the model was run with the OL and BL equations to
compare their predictions. We found similarly shaped
retention curves for both, but there were differences as well.

Predictions with Optimized Learning and Decay

Figure 3 shows a standard learning curve on task time where
the model was run over 10 trials without delays between
trials. Decay curves are shown for up to 5 days decay.

This is how most repeated trial ACT-R models are run.
They are run multiple times, with no time between trials in
the model, even if there is time between human trials for the
subjects, which there was for this data set—each trial was run
on a separate day.

These results are consistent with most of the predictions
in Table 1. (1) Task completion times on the solid black line
followed the shape predicted by the power law of learning.
(2) The three stages are there, but when examining the
model trace, we see that proceduralization starts in the first
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Figure 3: Predictions for task time with OL (black). For-
getting curves show task time after [1-5] days of decay after
a period of consistent practice.
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Figure 4: Predictions for task completion time with OL for
10 trials with 24-hour decay periods between each trial.

task of the first trial. (3) Declarative knowledge decays but
did not do so catastrophically for this model and task. (4 &
5) the decay of the mixed knowledge (middle trials) was
slower than the declarative knowledge but not as slow as the
procedural knowledge (later trials). We could not examine
the other predictions (7,8,9) with this task.

We found unexpected results from applying a decay
period in the model. After one practice and 24 hours of
decay, the task time was slower than during the first trial.
Decay caused a worse time than a novice’s first trial. The
mean task time for trial 1 was 1335 s. After the 24-hour
decay period, task time for trial 2 was 2228 s compared to
882 s for the normal curve. In short, decay causes memories
(and thus performance) to be worse than the very first trial
of the experiment.

So, we explored the effects of decay by including a 24-
hour decay period after each practice to simulate what the
subjects did, that is, practice and then wait a day until the
next practice. These results are shown in Figure 4.

Figure 4 shows a typical learning curve after trial 2. The
initial 24-hour decay causes performance to be longer on
day 2 than on the first day. The performance does not get as
fast as day 1 until trial 5. Including the time between prac-
tices does not improve our predictions. We do not include
forgetting curves because the learning curve is unusual.

Predictions with base-level learning equation

Next, we used the base-level learning equation for the same
process. Figure 5 shows the decay and retention curves
through 10 trials of practice with the base-level learning
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Figure 5: Predictions for task time with BL for ten trials of
practice (black). Forgetting curves show task time after [1-
5] days of decay after a period of consistent practice.
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Figure 6: Predictions for task completion time with BL for
10 trials with 24-hour decay periods between each trial.

equation instead of the optimized learning equation. Figure
5 is without time between trials and Figure 6 is with 24
hours between trials. In Figure 6 we do not include
forgetting curves to emphasize the unusual shape of the
learning curve.

Overall, the learning and retention curves with BL are
shaped similarly to the OL model predictions but start with
a higher mean task time at trial 1 (1901 s). The final task
time was 424 s, or 22% of the first trial. Again, this showed
that the performance on trial 2 following 24-hour decay was
worse than the initial time.

Predictions with initial day delay and day delays
inserted

We then considered applying a day delay in the initial
declarative knowledge before starting to perform the task.
This could represent less complete declarative learning of
the task knowledge. So, we set the model to run with a day
delay after the declarative knowledge has been first learned.

Figure 7 (top) shows three learning curves using the OL
equation, and the BL equation (bottom). The red dashed
curve is the learning curve without time decays; it is the
same as Figure 3. The blue dotted line is with 24 hours
between each trial, the same as Figure 4. The black solid
line has a 24-hour decay before the first trial and after each
trial.
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Figure 7: Predictions for task completion time with OL
(top) and BL (bottom) with 24-hour decay periods between
each trial and an initial 24 decay on the declarative knowl-
edge.

Final model, base-level learning with day delays
and retention curves

The predictions in Figure 7 remain somewhat unsatisfac-
tory. They either leave out the decay between practice trials
(but fit the data fairly well), or they include the decay, but
over predict the task time. We thus tried an adjustment to
the decay parameter suggested by Lebiere (personal
communication, October 2017).

This adjustment provides different decay constants for
within and without an experimental situation. This change
probably represents the effect of proactive interference more
accurately in that during a study the task-related memories
are more similar in a time block in a study than they are
outside a study. With non-study time, the decay time is
reduced to be % of the actual delay time, that is, instead of
24 h between trials, only 6 hours is added as decay after
learning the task knowledge and between trials. Figure 8
shows this model’s predictions.

Discussion and Conclusions

This model provides several insights about learning and the
ACT-R memory equations.

Insight: There are no fixed learning stages

The results of the model’s learning show that there are no
crisp divisions between the learning stages, contrary to
predictions made in previous theories for the learning curve
— there are no points of inflection in the learning curve to
show the transition. In the knowledge used in the model
(declarative and procedural), there are also not inflection
points. The model thus predicts that there are not distinct
stages in this task at least, where the knowledge is
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Figure 8. Predictions for task completion time with BL with
24-hour decay periods between each trial and an initial 24
decay on the declarative knowledge, adjusted

all declarative or all procedural. Subtasks are more clearly
one or the other because only one type of knowledge might
be used in a smaller task. However, the model shows that
even during the first trial, knowledge is being not only
proceduralized, but also that the procedural knowledge is
being used. So, partway through the first trial, the model has
mixed task knowledge in some technical sense.

We suggest that the stages be relabeled into mostly
declarative, mixed, and nearly all procedural. This is in
contrast to [all] declarative, mixed, and [all] procedural.

Insight: the stages will vary by task and strategy

These stages will also depend on the task components and
the task distribution. If the task is primarily a declarative
task, it will basically stay a declarative task. If it is a
perceptual-motor task or a procedural task, it will transfer
into a proceduralized task.

This model also shows that location of these stages will
vary by task. Tasks with high declarative components will
remain in the mostly declarative stage longer, according to
this definition, because more parts that will stay declarative.

If an unusual task from the distribution of possible tasks
comes along, the learner may be shifted back towards more
declarative task knowledge, or as Rasmussen (1983) notes,
knowledge-based control knowledge. So, distribution of
tasks that all occur equally will have different learning and
stages than a distribution of same tasks (and knowledge)
where some only occur rarely.

Insight: implications for empirical studies

The model provides some implications for running a human
study in this area. To measure the decay curve, you must
have at least three decay points or two points and a strong
theory. A study with humans cannot reset the model to get
multiple decay measurements but will have to train a subject
and then can only measure decay once without retraining
occurring. To measure these points, you must train subjects
to standard, and then have them come back at a delay. You
can only have them come back once, because the measure is
a training. Thus, to measure the decay at three points, you
have to each data point be its own condition. To study
decay after training 1, 2, and 5 days, and decay at 4, 8, and
16 days, you require nine groups. Thus, the decay graph 9x



more expensive (assuming subject drop out does not
increase because of the delay) than the simple learning
curve. This is partly why these curves are studied less.

Insight: The decay curve at one day is practice on
the next day

Consider that you will be training every day and wish to
study the decay function after 1, 2, and 5 consecutive prac-
tice days. If you measure the amount of decay after one day,
the performance after one day of decay when you are
training once per day is the same as the group that is on the
training schedule. Thus, the decay curve in such
circumstance has a decrease in performance time with one
day decay (if the test includes training such as doing the
task), and then decreased performance on later days. This
may be like walking as being way of falling forward.

Insight: The subtask curves within most instruction
are a mix and have varied retention intervals

Very few real-world tasks will have this pure of a training
and retention schedule. In the real world, after an hour of
training, the learner will move into new material in later
sessions. Thus, the learning and retention curves will
include multiple small curves, and some subtasks will be
trained every session and get much faster, and some tasks
will occur only rarely and will have long decay times (if
learned early) or short decay times (if learned later). You
would need a computer to keep track of them!

Future Work: How to run a study of a complex
task to test the KRK theory

Based on these results, in our empirical test of the KRK
theory we will examine a complex task, a trouble shooting
task, with 1, 2, and 5 practice trials, separated by a day per
trial. We will look at performance at 3, 5, and 7 days decay
after the last practice. We will not have the full training
material at the decay tests, just the trouble shooting tests.
This will measure the decayed knowledge with little or no
relearning of it.
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