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ABSTRACT: We present a novel way to monitor and analyze the time course of adversarial networks through a 

simulation tool and supporting mathematical analysis. Recent work on social networks has been used in the analysis 

of adversarial networks and their underlying structure with hopes of detecting and preventing future activity. In this 

paper we consider an adversarial network to be a network subgroup that works against the interests of the group 

studying it. ANA, the software package presented here, can portray the structure of such networks and allow analysts 

to find patterns and key players in the network while watching the network evolve. Finally, this work uses output from 

ANA to study how a simulated adversarial scenario grows in structure and compares it to more traditional social 

networks on standard measures and also analyze the changes over time of this network on those same dimensions. 

 

 

1. Introduction 

 

We present a novel tool to monitor, analyze, and 

examineadversarial social networks through a 

visualization tool and supporting mathematical 

analysis.  This tool is demonstrated by presenting a 

simulated adversarial network that was used to guide 

the development of the visualization tool. Finally, we 

analyze how this network evolved and present the 

implications for education, network science, social 

network analysis and measurement.  

 

1.1 Motivation 

 

Social network analysis and visualization of adversarial 

networks is a very powerful method of understanding 

networks and keeping track of relevant information 

about the network as it evolves and becomes more 

defined.  Recent events and political pressures have led 

to a lot of research into adversarial networks and their 

identification. This, combined with recent popularity of 

social network analysis, has made a network centric 

analysis of these networks interesting and useful. 

Throughout this work we look at allowing users to take 

mock intelligence gatherings on the communications 

and individuals involved in a possible adversarial 

network and keep track of this information while 

visualizing it and performing statistical analysis.  

 

After describing the background to this work, we 

present a visualization tool in Section 2, tailored 

specifically at the style of data that intelligence 

agencies capture that allows the user to store the 

information and visualize the graph as it changes. Once 

this information is entered and visualized, the tool 

provides additional features to allow this data to be 

analyzed over its evolution and new patterns detected. 

Section 3 looks at this analysis for the adversarial 

network created by intelligence data with analysis 

found on more traditional networks seen in the 

literature. 

 

The adversarial network viewed in this paper is a series 

of intercepted communications in a mock terrorist plot 

(Shemanski, 2011). The communications are made to 

appear as intelligence reports from various national 

agencies and present links between the various actors 

in the plot. This tech report is used in security and risk 

analysis classes for students to analyze in the College 

of Information Sciences and Technology at The 

Pennsylvania state University.  

 

1.2 Background 

 

Social network analysis has been a growing field since 

the work done by Moreno (1978) and others 

(Anthonisse, 1971; Beauchamp, 1965; Freeman, 1979; 

Holland & Leinhardt, 1971, 1972; Sabidussi, 1966) to 

establish measures and calculations of the field in the 

1950’s to the 1970’s.  With the adoption of the Internet 

and growth of social network platforms this analysis 

has become even more widespread and been applied to 

a variety of fields.  

 

Communities of authorship (Albert & Barabasi, 2002; 

Barabasi, Jeong, Nelda, Ravasz, Schubert, & Vicsek, 

2002; Newman, 2003; Qiu, Ivanova, Yen, Liu, & 

Ritter, 2011), Economic communities and online 

games (Bakshy, Simmons, Huffaker, Teng, & Adamic, 
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2010), and many other fields have benefited from the 

application of network science and graph theories. In 

the past 20 years there has been some focus at looking 

at how adversaries and competition inside social 

networks (e.g., Baldwin, Bedell, & Johnson, 1997) 

changes a network’s performance and influences it.  

 

This competition and rivalry was studied in classroom 

settings (Yang & Tang, 2003), and also became a crime 

prevention and understanding topic in the early 2000s 

with the September 11th terrorist attacks.  Krebs (2002) 

was the first to look at the terrorist plot as a social 

network and to diagram it out and present it to the 

world as a social network between the terrorists. At the 

same time Klerks (2001) looked at organized crime and 

mapped out the social network and money flow 

networks of criminal organizations. While it is difficult 

to understand these networks, the ability to target 

particular nodes in the network and disrupt the entire 

network is a very powerful feature of social network 

analysis (Carley, Lee, & Krackhardt, 2002). These 

specific applications to crime and terrorism are just a 

small portion of work done in adversarial networks.  

 

We use this foundation to analyze incoming 

intelligence reports about a mock terrorist plot and 

view the entire organization as a social network with 

leaders and subgroups.  

 

Most work in the analysis of social networks takes a 

snapshot of an existing network and analyzes this 

network based on multiple centrality measures, 

distance measures, existence of power law patterns 

transitivity and clustering values.  In this paper, 

however, we find that looking at a static view of the 

network is not as informative and useful as viewing 

how the network evolves over time. The evolution of a 

network is hard to analyze in most work due to 

difficulty in obtaining the data at different times or 

difficulty in observing the social network through its 

growth.  

 

By using a social network that evolves from the 

communication of terrorists we can view the network 

from the beginning as it is seen through the intelligence 

reports about it. This allows us to look at standard 

social network measures mentioned earlier but with 

respect to how they change over time. This paper 

proposes these measures as being more interesting to 

analyze with respect to time, and also presents some 

inherent difficulties that exist in most social network 

analyses but that are not apparent until you view them 

with respect to time.  

 

2. Adversarial Network Analyzer (ANA)  

 
To best see these networks evolve and meet the 

requirements of the data set, this paper presents a graph 

visualization tool tailored to handling the simulated 

adversarial network. The Adversarial Network 

Analyzer (ANA) is a Java applet that allows users to 

input new connections about the graph and visualizes 

the state of the graph at all-time intervals. To provide 

powerful graph visualizations ANA is written on top of 

the Prefuse visualization toolkit (Heer, Card, & 

Landay, 2005). This feature-rich library provides a 

visualization library useful for displaying many aspects 

of datasets. The feature most commonly used in ANA 

is the use of graph visualization through Nodes and 

Edges. Prefuse handles all the calculations and work to 

layout and render the graph.  

 

The application is a Java UI applet so that it could best 

be used by developers and analysts interested in 

network evolution or adversarial networks.  

 

ANA 1.0 is planned to be used in the spring of 2012 by 

a security and risk analysis course taught in the College 

of Information Science and Technology at the 

Pennsylvania State University. The students who will 

be using this software will be studying simulations like 

the Shemanski (2011) dataset to understand an 

adversarial plot and identify it.  

 

The UI shown in Figure 1 is broken down into four 

distinct sections, each providing a useful interface to 

managing the network graph. The various panels map 

to the supported tasks of ANA, described in Table 1, 

with some functionality moved into the menu.  

 
Table 1 ANA 1.0 Supported Tasks 

(a) Visualize graph 

(b) Add nodes to existing graph 

(c) Add edges to existing graph 

(d) Modify existing edges and add more details 

(e) Modify existing nodes and add more details 

(f) Playback of graph expanding from the first node 

(g) Save and reload graph 

(h) Export state of graph to standard XML for 

mathematical analysis by ORA 

 

An important part of the visualized data set is the 

requirement to handle unknown and incomplete data. 

As communications are intercepted and found by 

various intelligence organizations nobody knows the 

full layout of the cell network or the identities of 

everybody involved. The network has to be able to 

accept incomplete data and allow us to later fill in the 

blanks as more information becomes available. This is 

the reason behind allowing all information to be edited, 

and why nodes are added to the graph one at a time.  
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Figure 1 ANA 1.0 User Interface 

Social networks do not just appear with hundreds of 

nodes and interconnections; they evolve slowly from 

nodes connecting to each other and new 

communications between actors showing up. We 

monitor this slowly from intelligence gatherings and 

intercepted communications. 

 

ANA records all changes made in the graph, as edges 

and nodes are added or modified. This change 

detection and recording gives ANA the ability to play 

through the evolution of a graph from the beginning 

and animate it for the benefit of the user.  

 

To run the mathematical analysis on any network 

created in ANA we built an exporting feature in ANA 

that allows the network to be output any time slice to a 

standard file format that tools such as the Organization 

Risk Analyzer, ORA (Carley & Reminga, 2004)  can 

read. From here the calculations and analysis provided 

in Section 3 can be quickly computed.  

 

3. Network Analysis 

 
For the work in this section we entered the entire 

contents of the Shemansky (2011) simulation into 

ANA in order of how the intelligence reports appear. 

This simulation of 73 incident reports and 15 

background reports were used to build the social 

network of the terrorist plot, as any analyst looking at 

the plot would see. We then exported the simulation to 

an ORA file format to compute the network statistics. 

The network created contained 30 nodes connected by 

46 edges over a total of 117 time frames. We exported 

the state of the graph at intervals of 10 frames to 

visualize the time course of networks inside ORA. 

Figure 2 presents this final network with labels and 

added color coding of the subgroups in the network.  

 
Figure 2 Final network of the Shemanski (2011) 

adversarial network simulation 

3.1 Static Measures, Global and Local 

 

In Table 2 we present the results of this analysis both 

on a global scale of the entire network, but also on a 

local scale where we look at particular agents and see 

how their position in the graph changes over time.  The 

two players are Fateh Kamel, and Shaker al-Abssi who 

are the respective playmaker and leader of the plot.  

 
Table 2 Static measures of the graph and key players 

Measure Graph 

Average 

Fateh 

Kamel 

Shaker 

al-Abssi 
Degree Centrality .053 .207 .034 

Distance Centrality .146 .305 .225 

Betweenness 

Centrality 
.048 .430 .012 

Clustering 

Coefficient 
.080 .042 .000 

Distance 3.440   

Transitivity .047   

 

The playmaker, Fateh Kamel, remains a more central 

node in the network than the average of the network 

and, more importantly, than the leader of the network. 

 

This network is highly decentralized and spread out to 

protect the identities of its nodes. Compared to more 

traditional networks studied in the literature (e.g., co-

authorship in various fields, World Wide Web, and 

movie actors) it has node degrees that are an order of 

magnitude smaller than some networks, and also 

clustering coefficients that are an order of magnitude 

smaller than previously studied social networks. 
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Distance in the network remains rather small both due 

to the size of the network and the connectivity of the 

playmaker. This network is much more similar to 

networks of things like the World Wide Web and 

power grids that are non-social networks.  

 
Table 3  Comparison of Shemanski adversarial network 

with more standard social networks (Albert & Barabasi, 

2002).  

Network Size Average 

Degree 

Average 

Distance 

Clustering 

Coefficient 
Shemanski 

Network  
30 1.53 3.44 .080 

WWW 153,127 35.21 3.10 .1078 

Movie 

Actors 

225,226 61 3.65 .79 

LANL co-

authorship 

52,909 9.7 5.90 .43 

MEDLINE 

co-

authorship 

1,520,251 18.1 4.60 .066 

SPIRES co-

authorship 

56,627 173 4.00 .726 

NCSTRL 

co-

authorship 

11,994 3.59 9.70 .496 

Math. Co-

authorship 

70,975 3.9 9.50 .59 

Neurosci. 

Co-

authorship 

209,293 11.5 6.00 .76 

Power Grid 4,941 2.67 18.70 .08 

 

3.2 Global Dynamic Measures 

 

Rather than just comparing snapshots of the network, 

we analyze how it changes over time for various global 

measures of centrality and clustering of the network.  

 

Figure 3 a, b, c presents the results for the change in 

centrality values over the time course of the network 

evolution. These values are already small, less than 

50%, for all of the measures but present an interesting 

pattern of decreasing over the time of the simulation. 

Degree centrality and distance centrality show how 

both values decrease once the graph achieves a size of 

greater than 5 nodes, and then stabilize at a very small 

value. The deception forces inside this network keep it 

from becoming too centralized so that it may maintain 

its cell like structure remains hard to detect or infiltrate.  

 

For the non-centrality based measures, clustering 

coefficient, transitivity, and average distance, presented 

in Figure 3 we see very similar patterns of the graph 

aiming to be more spread out and less tightly connected 

as more actors are brought into the network.  

 

The clustering coefficient does increase between frame 

40 and 50 due to a few connections developing. These 

connections bring the finance and weapons subgroups 

closer together so they can more effectively work 

inside of their subgroup. Over time this clustering 

coefficient does not continue to grow and the groups 

grow farther apart. These changes may be indicative of 

normal network growth or may be an artifact of this 

simulated network.  In any case, the changes suggest 

that studying the time course of network growth can be 

interesting.   

 

Distance across the network continues to increase over 

the entire time course of the network as more nodes are 

added to the far ends without connecting them to the 

center of the graph for quick communication paths. 

This keeps the two far ends of the network far apart 

and allows one end of the network to remain safe if 

anything were to compromise the other end. 

 

Finally, transitivity only increases when weapons and 

finance subgroups become connected but decreases 

afterwards similar to the clustering coefficient. This 

shows that very few ties are created between triads of 

actors and instead the network chooses to communicate 

through the longer pre-existing chains of command and 

communication.  

 

3.3 Local Dynamic Measures 

 

Many of the values calculated in the previous sections 

can be calculated for particular actors. In Figure 4 we 

show a comparison between centrality and clustering of 

the two key players of the network, Fateh Kamel and 

Shaker al-Abssi. The important pattern seen in all of 

these graphs is that while both actors have low values 

for all of these network measures, the leader tries to 

remains less central and less visible compared to the 

playmaker. The leader, Shaker, is always looking to be 

more obscured by the surrounded network, while the 

playmaker, Fateh Kamel, is at times looking to grow 

more connections so that he can more quickly work 

with the various subgroups and leaders of those 

subgroups. Surprisingly, the leader’s distance 

centrality in the graph becomes lower over time. 

 

The betweenness centrality, degree centrality, and 

clustering coefficient for the playmaker actually 

increase in the graph as he becomes more tightly 

coupled to some of the people he is directing and 

organizing.  This allows him to be effective, and yet 

leave the actual leader less detectable. 
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Figure 3 Global Dynamic Measures a) Degree Centrality b) Distance Centrality c) Betweenness Centrality d) Clustering 

Coefficient, e) Transitivity f) Distance of the entire network measures over the development period of the network.

3.4 Summary 

 

Adversarial networks maintain a much smaller degree 

centrality than other networks. They are not interested 

in having each person be connected to as many other 

people in the network as possible. Each person is only 

connected to one, perhaps two other people that are 

strictly necessary to accomplish tasks.  Additionally the 

clustering coefficient is small to minimize triangles of 

connections between actors. 

 

In terms of dynamic measures, these networks do not 

follow a simple pattern of increasing connectivity, 

centrality, and clustering. The values actually decrease 

over the time of the network, and the average distance 

between members of the network increases. The 

networks push to be more spread out and increase the 

distance between recruits with high risk of being 

compromised and the leaders and playmaker of the 

network that carry out key actions. 

 

The leader of such a network remains hidden from 

almost all members of the network. While this dataset 

does not specifically say how many people inside the 

network could identify the leader, our information and 

analysis of this shows that almost nobody would be 

able to identify the leader. Shaker al-Abssi remains 

nearly invisible from all but one or two members of the 
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network. These members are the playmaker who 

actually carries out all of his orders and missions, and 

an additional buffer person. These covert strategies 

allow the playmaker to be the most visible person in 

the network. If he was to be compromised, he could be 

easily replaced by another member to carry out the 

orders of the leaders and bring the various functions 

together for a successful plot. The leader knows 

operational details of the group but does not actively 

use the existing links in the network. 

 

  

  
Figure 4  Local Dynamic Measures a) distance centrality b) betweenness centrality c) degree centrality d) clustering 

coefficient of the key players in the network measured over the development period of the network. 

4 Conclusions 

 
This paper introduced a new way to look at social 

networks, in particular adversarial networks and to 

analyze them for new patterns. These networks are 

seen through the eyes of a new animated visualization 

tool, ANA, that can build the network as information 

about its actors and connections emerge. One such 

network, the Shemanski (2011) simulation of an 

adversarial plot, is visualized through ANA, and using 

ANA’s interface to standard file formats it is 

mathematically analyzed through social network 

measures. 

 

In a time-wise analysis of the social network for two 

important actors, this analysis of these two actors 

shows additional differences between them. The leader, 

as expected, avoids building more connections and 

rather allows himself to be less and less central to the 

network as the network evolves. He is always less 

central and connected than the playmaker. The 

playmaker while not being heavily connected must 

build a number of connections between actors so the 

functional subgroups can work together.  

 

Time-based analyses of adversarial social networks 

show concretely how these differ fundamentally from 

normal social networks. The network does not evolve 

to be more connected, nor does it evolve to be more 

central. The actors remain spread far apart so that each 
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subgroup is separated and protected from problems that 

may occur in other parts of the network. 

 
4.1 Limitations 

 

Social Network analysis of these types of networks is a 

challenging task due to the nature of the networks. The 

network itself is adversarial and remains covert or tries 

to hide its underlying structure to improve its own 

performance. This causes error in the data that is 

obtained about the network and can complicate the 

analysis of such a network. 

 

The observation methods used to record and look at 

social networks suffer from an inherent lag that can 

cause error in the analysis. All analysis is done on the 

network evolution of when we observe connections to 

be created. This is an analysis of our understanding of 

the social network rather than an analysis of the 

underlying evolution of the social network. Not all of 

the connections that are appearing through 

communications between actors are the first interaction 

between them. Many of these connections could have 

been formed days, months, or even years earlier but 

only been called into action when we observed it. 

 

Inherent differences between our view of the network 

and the underlying structure of the network presents a 

source of error and remains as something to be looked 

at in future time-based analyses of social networks. 

Even work that does not study adversarial networks 

suffers from such a lag.  Connections on popular social 

networks (Facebook, Twitter, LinkedIn) are not formed 

in a vacuum and are usually representative of an earlier 

interaction between actors. The same limitation applies 

to studies of publication networks that are frequent in 

network science. These publication databases suffer 

from a lag between when those researchers met each 

other and began sharing ideas and working together 

and the time when a collaborative paper is published. 

 

4.2 Future Work 

 

ANA in its current state does a good job of fulfilling a 

use case for students and intelligence analysts with a 

very simple interface and easy to use features. Future 

improvements can add more strength to ANA by 

providing support for more types of networks. The 

three additional types of networks that should be 

supported by future versions of ANA include networks 

with positive and negative relationships, directional 

relationships, and multi-mode networks (Qiu, Ivanova, 

Yen, Liu, & Ritter, 2011) to support the inclusion of 

events, and multi-person meetings. These features 

would allow more complete modeling of the 

interactions of an adversarial network but would have 

to be carefully implemented as to not overly 

complicate the interface and visualization of the 

network. 
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