
393

Nichols, S. & Ritter, F.E. (1995) A theoretically motivated tool for automatically generating command
aliases. In Proceedings of CHI '95. 393-400.

 Theoretically Motivated Tool for Automatically
Generating Command Aliases

Sarah Nichols & Frank E. Ritter
ESRC Centre for Research in Development, Instruction and Training

Department of Psychology
University of Nottingham

University Park
Nottingham NG7 2RD

E-mail: ritter@psyc.nott.ac.uk
ABSTRACT
A useful approach towards improving interface design is to
incorporate known HCI theory in design tools. As a step
toward this, we have created a tool incorporating several
known psychological results (e.g., alias generation rules
and the keystroke model). The tool, simple additions to a
spreadsheet developed for psychology, helps create
theoretically motivated aliases for command line interfaces,
and could be further extended to other interface types. It
was used to semi-automatically generate a set of aliases for
the interface to a cognitive modelling system. These
aliases reduce typing time by approximately 50%.
Command frequency data, necessary for computing time
savings and useful for arbitrating alias clashes, can be
difficult to obtain. We found that expert users can quickly
provide useful and reasonably consistent estimates, and that
the time savings predictions were robust across their
predictions and when compared with a uniform command
frequency distribution.

KEYWORDS
HCI design tools; Keystroke-Level Model; design problem
solving.

INTRODUCTION
Card, Moran and Newell [1] noted that the action is in the
design. While some work has gone into tools for design
that incorporate their and others’ theories (see, for example,
Casner and Larkin [3]), most of interface design is still done
by hand, and without direct recourse to known HCI theory.

The Rationale for Theoretically Motivated
Design
This situation is unfortunate, for there are now numerous

HCI results that could be applied, for example, about good
and bad HCI interfaces [1, 11], about problem solving and
interface use [7, 8], and about perceptual processes [3].
These results offer the opportunity to improve interface
design at an early stage. However, it may be beyond the
grasp of a designer with a deadline to apply all these results,
particularly if the designer has to find the results and then
apply them by hand.

The Need For a Tool to Apply Theory to Design
The appropriate approach, it appears to us, is to incorporate
theories into a tool or set of tools to either design interfaces
or to quickly inspect designs. For an HCI tool to be
beneficial, the utility has to be easy to use, cheap,
automatic, honest, and complete for the task at hand. The
tool must also be flexible to incorporate additional results.
This affords fast implementation of psychological theory in
an accessible and testable environment.

One often used and easily approached way to improve
interfaces is by introducing aliases — abbreviations of
command names. The use of aliases reduces the work
required to execute a command and thus also lowers the
possibility of error in expert users (for errors that are
simply related to workload). It is also an area where there
are known constraints that can inform design, both from
empirical research and from HCI theories [1, 7].

Command line interfaces are a worthy area to serve as an
example application of such a tool. They are ubiquitous,
and as we shall show, the payoff can be quite large. The
commands are often needlessly long, and typing mistakes
can require a lengthy command to be re-entered. We also
chose this type of interface because it is easy to work with
and, in this case, has practical use in our daily work.

The use of aliases is not a new concept, but as far as we are
aware, there have been no tools put forward to create aliases
automatically. It would be useful to have tools that help in
HCI related tasks in general — some screen layout tools are
available [3] but they are not used much. If this lack of
application is caused by the difficulty in applying the
theory to a task at hand easily and quickly, a step toward

394

remedying the lack of application of theory to design is to
create a tool to make this process easier.

We have created a tool incorporating several known
psychological constraints for creating theoretically
motivated aliases for command line interfaces. The tool
described here has been applied to the command line
interface of Soar, a cognitive modelling system [8]. A set
of principles for abbreviation method have been
incorporated into an alias generating function, and the
predicted execution times of the created aliases have been
compared with the existing commands using the Keystroke-
Level Model.

THE THEORIES IN THE TOOL
We incorporated two sets of psychological theories into our
alias design tool. The first predicts how long it will take to
enter the command set when they are weighted by
frequency. The other is used to derive a set of aliases.
They are brought together in a programmable spreadsheet.

The Keystroke-Level Model
We used the Keystroke-Level Model [1] as a measure of
design efficiency as it predicts the time taken for a set of
commands or aliases to be executed based on sub-task
speeds and frequency of tasks. It is a useful and practical
simplification of GOMS (Goals, Operators, Methods and
Selection) analysis at the level of individual keystrokes [1],
when the user’s interaction sequence can be specified in
detail, as it can here. The Keystroke-Level Model has been
shown to predict user performance with between 5 and 20%
error [2, 5].

There are several basic assumptions and restrictions
associated with the Keystroke-Level Model that this domain
and our approach satisfy:

• The acquisition time and execution time for a task are
independent.

• The users are experts.

• No account is taken of errors or error recovery.

The total time taken for one task is considered to consist of
the time taken to acquire the task (which is not addressed
here) and the execution time. The main components of
command execution that are considered here are the physical
motions required to input the command (in the case of a
command line language this is keystrokes) and the number
of mental operators that are necessary to remember and
correctly execute the commands. Our current model is
adaptable for typing speed, but does not include the effect of
different typing speeds for different letters. The inclusion of
mental operators is governed by heuristics specified by Card
et al. [1], specifically rule 2 in Figure 8.2.

An important question to be considered is the increase in
burden on memory and mental operators that the

introduction of aliases might impose. The Keystroke-Level
Model does make several suggestions about how the aliases
should be generated consonant with the generation
guidelines below. If a rule set is used to generate the
aliases, once the initial (very small) rule set has been
learned only a single mental operator is required to enter a
command alias and that behaviour can become automated
more quickly — rather than having to learn by rote each
alias, a rule can be applied [1].

The Keystroke-Level model does not specify where the rules
or keystrokes come from, or how they are mapped onto the
task. This leaves the interface builder with a classic design
problem of creating a set of aliases that are easily learned
and quickly entered.

Existing Guidelines for Alias Set Generation
While the Keystroke-Level Model does not tell us how to
create commands themselves, there are some results that
make strong suggestions for how to create aliases of
existing commands. There are two main techniques
commonly used for abbreviating command names —
truncation and contraction (although other rules have also
been used [7]). Truncation involves deleting the last few
letters of the original command name, and contraction
involves removing letters from the middle and end of the
word. In order to avoid confusion, the abbreviation length
can be governed by a minimum-to-distinguish system,
where a sufficient number of letters are used to form the
abbreviation to ensure that the abbreviation is unique.
However, this means that users must know how many
letters are required for each individual command. Research
into techniques of abbreviation has shown that
abbreviations formed by truncation are more easy to encode
(i.e., produce the abbreviation on presentation of the word)
than abbreviations formed by contraction [4]. It has been
suggested that this is because it is easier to have
consistency between commands abbreviated by truncation
(e.g., with the rule always use the first three letters) as
opposed to contraction. A GOMS analysis [7] has also
shown that two letter truncation and minimum-to-
distinguish are the most efficient forms of abbreviation.

Watts [11] emphasises the need for consistency of
abbreviation format within a system, and notes that it is
vital to avoid confusion between aliases. If all commands
are to be shortened to single letters, then although time
would undoubtedly be saved at a keystroke level the
memory burden would be greatly increased as the user
would have to remember which of the commands were
abbreviated to a single letter and which were exceptions.
Ehrenreich and Porcu [4] state that if abbreviations are
generated by a simple rule then the memory load is greatly
reduced. If rules are learned then once the rules are known
by the user then their access becomes automated and there is
no increase in mental operator time.

395

Payne and Green [9] have proposed a theory of learnability
based on writing a task action grammar (TAG). In their
case, different types of subtasks would have different
syntax, which would provide a basis for using different
abbreviation mechanisms or rules for different types of
subtasks. This should decrease the number of clashes and
make the resulting aliases more memorable. Aliases
presumably would then indicate their category, which would
lengthen them. However, if exceptions do occur, then they
have to be dealt with using rules similar to the rules above,
such as vowel deletion. Since different rule generating
mechanisms can be used across subtasks, the user must
remember which category the command is in to retrieve the
exception rule. An experiment that they performed
compared aliases generated for two interfaces, one with a
fairly uniform TAG, and with a less uniform TAG. The
aliases for the more uniform interface yielded fewer errors, a
lower rate of use of a help facility, and a more efficient
solution of the problem than the less uniform interface.
But their paper by no means states the method supported by
Ehrenreich and Porcu [4] produces bad aliases, merely that
the command language itself should be regular as well.

In the development and application of this tool we were not
prepared to include the redesign of command sets, which the
application of TAG encourages, and which Payne and Green
note may have to be done before alias creation. We are not
sure how easily the Soar commands would lend themselves
to being divided up into different types of tasks, as would
be necessary if a TAG approach was taken. TAG grammars
and semantics (such as destructive commands) could be
included as a future extension, by providing a column to
indicate a semantic category of each command, and a
function that uses that category when automatically creating
the alias set.

It can be difficult to apply these principles consistently and
time-consuming to implement them by hand. The
Keystroke-Level Model notes that command frequency data
needs to be gathered, new aliases need to be devised, and in
order to assess how useful the aliases are, the time savings
need to be computed. Therefore the next step would appear
to be to provide a flexible and extendible facility to create
and assess aliases automatically.

Dismal — a Motivated Tool for HCI
Dismal [10] is a spreadsheet that was explicitly developed
for manipulating psychology data. Dismal is written in
GNU-Emacs Lisp, making extensions and modifications
such as computations based on the Keystroke-Level Model
easy to incorporate. This approach could be used within
any programming language, but we prefer a spreadsheet to
display the aliases. This visual presentation and the use of
functions to compute and display the expected times makes
the process easy to follow and provides updates
automatically to the designer. We believe that recent
versions of commercial spreadsheets now often include a
full programming language providing the necessary

functionality, but we would be less able to distribute the
complete tool, because Emacs is free and can now be run on
both UNIX systems and Macs.

The HCI theories were implemented by using two Lisp
functions which were added to the Dismal spreadsheet. The
first — key-val — took a command and calculated the
number of mental operators and keystrokes used in the
execution of the command. It then used the estimated
typing speed to calculate a time prediction for the execution
of the command according to the Keystroke-Level Model.
The second function — make-alias — used the specific
rules noted below to automatically generate commands
aliases. However, human input was still needed to decide
the best way to arbitrate clashes between aliases given the
large command set examined here.

EXAMPLE APPLICATION
The command set initially optimised with this tool was
taken from Soar [8], a unified theory of cognition realised
as a cognitive modelling language. It has previously been
command line driven, and over 50 commands are available.
In the past year, a Soar Development Environment (SDE)
[6] has been developed, which is menu and keystroke
driven. The command line interface remains an important
part of SDE however, as some members of the Soar
community still prefer a command line interface. Also,
some Soar users cannot use SDE due to the limitations of
the hardware that they use to run Soar.

The ideas behind the alias creation could in fact be applied
to any command set, but Soar was a suitable candidate for
modification for several reasons.

• The ‘alias’ command recently added to Soar allows
aliases to be added quickly, easily and cheaply.

• The Soar language is currently being used within our
local environment and therefore it is worthwhile
enhancing the system for both local users and the Soar
community world-wide.

• There is potential to get command use frequency
information and usability feedback from the local users.

• It is fair to assume that most Soar users can be
considered “expert users” and are highly familiar with
the commands.

• Some of the commands that exist within Soar are quite
long — this suggests that users of the Soar Command
Line interface would benefit greatly from the
introduction of aliases.

Devising the Aliases
The aliases were devised with the generating function noted
above incorporating the alias generation guidelines in the
literature (primarily truncation, which means that the

396

abbreviation is the first two letters of the original
command). The function aimed to minimise keystrokes
while avoiding ambiguity. The characteristics of the
command language itself were also considered —
particularly with reference to the fact that many of the
commands consisted of several words. Therefore, we added
the following additional guidelines to create a consistent
alias set:

• Include in the alias the first letter of each word in the
case of multi-word commands.

• If the length of the command is 5 letters or less, a one
letter alias may be provided if clashes do not occur as a
result of the new abbreviation. In general this means
that already short, abbreviated commands (e.g., pwd),
do not get shortened to one letter, but short one word
commands (e.g., watch) do get abbreviated to a single
letter.

The value for the mental operator M was taken from Card,
Moran, and Newell [1] as 1.35 s. The speed of typing was
assumed to be 40 wpm (average non-secretary typist), or
280 ms/keystroke.

Other Aliases Included in Our Set
The alias set generated automatically was augmented for
distribution with aliases generated with several additional
principles in mind. Computation of time saved, however,
was done solely with the main set.

Aliases for experts and novices. While most of our
expected users will be experts, every expert used to be a
novice, so aliases should be available for use by both. A
rule based system for developing aliases is appropriate for
both of these categories of users. However, for the
purposes of analysis, the times are only applicable to the
experts’ behaviour, as the Keystroke-Level Model can only
be used to predict the speed of an expert completing a task.
The alias set is still useful for novices, but this cannot be
quantitatively shown using the Keystroke-Level Model.

For experts, once the rules have been learned, no additional
knowledge is required in order to be able to use the aliases
and so time is instantly saved in the form of keystroke
reduction without an increase in mental load from having
different abbreviations to remember for different commands

For novices, the meanings of the original commands can
still be retained — the aliases are both syntactically and
semantically compatible. This can be contrasted with
control keystroke command type of aliases, which although
reducing time, remove any semantic component of the
original command. This is particularly important when
considering Soar, which is both a theory and a language,
but is also relevant when considering other command line
languages.

Aliases — reducing errors. We can reduce how the long
commands within Soar can lead to errors in two ways. (a)
The number of keystrokes required means that errors are
more likely to occur than with shorter commands.
Therefore by shortening the command names we expect
both to save time and reduce the likelihood of simple
typing errors. (b) We included several common
misspellings of commands (e.g., init-saor for init-soar).

Estimations of Task Frequency
The Keystroke-Level Model uses task frequency to balance
the time it takes to do each task in a set of unit-tasks. An
initial analysis of approximately two hours of actual
subject data was performed to compute these frequencies. In
this session, commands were used while a specific problem
was solved. Perusal of additional transcripts suggested that
command usage was highly dependent on the task, there
were large individual differences, and in order to generate
meaningful frequency data enormous amounts of keystroke
logs would be required (we estimate on the order of hundreds
of hours). Steps have been taken to log this data in the
latest version of the Soar Development Environment [6].

In an attempt to generate useful frequencies more quickly,
four expert Soar users, all with more than three years
experience working with Soar, were asked to provide
frequency estimates for their own use of the original
command set. These were easy to provide, although they
do not correlate very well with each other (mean pair-wise
correlation of 0.49). In future work we expect to validate
this approach as an approximation to complete logs.

RESULTS
The automatic function generated 80% of the final aliases,
where the rules could be strictly adhered to, and the
exceptions were manually adjusted according to frequency
information and the conventions shown in Table 1. The
complete alias set is shown in Table 2.

Figure 1 shows the estimated time savings based on the
time to perform the original command set and the alias set
balanced for each individual’s frequency distribution. The
time taken to execute the original command set is
represented by 100%. This total time, based on the
normalised command frequency distributions, varied
between 245 s (flat frequency) to 458 s (User 3). When the
keystroke values of the commands and aliases were
calculated and weighted using a uniform command
distribution (i.e., assuming all commands were used equally
often), it was found that the aliases provided a 55% saving
in time over the original command set.

397

Table 1 - How Exceptions Were Dealt With.
The letters here are included as footnotes in Table 2,
indicating how the various aliases that could not have
automatic aliases created were adjusted.

(a) These commands were already of length <= 3 letters
and if they had been shortened any more then clashes
would have occurred

(b) The alias q rather than e is used to prevent accidental
exit from Soar as so many other commands have the
initial letter e. If e is typed then the echo command will
be executed — this is not a dangerous situation.

(c) The commands load and log are both short, but are
abbreviated by contraction rather than truncation to avoid
confusion between the two — if the abbreviation lo is
typed then a warning is echoed to the screen advising the
user to type ld or lg. The same principle applies to
warnings and watch with a warning being displayed if wa
is typed.

(d) The command memory-stats is shortened to mems
rather than ms to avoid confusion with the already
existing Soar command ms (which means “list the rules
that match”). However, if the user follows the rules then
the result is not dangerous.

Command frequency distribution

Pe
rc

en
ta

ge
 o

f
or

ig
in

al
 c

om
m

an
d

se
t

ex
ec

ut
io

n
tim

e

0

10

20

30

40

50

60

70

80

90

100

F
la

t

U
se

r
1

U
se

r
2

U
se

r
3

U
se

r
4

Figure 1 - Comparison of Predicted Benefits of
Generated Aliases for Different Command
Frequency Distributions.

Although each user had different preferences regarding which
commands they used (or thought they used) to perform
tasks, when savings were calculated with these frequency
estimates, the time savings for individual users for the
complete command set ranged between 38 and 53%. When

the unchanged command names were omitted from the
analysis, the average time savings across all the
distributions increased to 62%.

DISCUSSION AND CONCLUSIONS
Overall, this tool appears to be a robust and inexpensive
way of applying simple HCI theories to design to reduce
command execution time. Aliases can be constructed and
tested very easily, and, with the use of an HCI tool, the
principles behind the forms of command aliases can be
applied routinely and uniformly. Savings estimates can
also be documented directly and used to guide design by
hand when it is necessary or desirable. The use of a system
using guidelines to generate aliases means that the alias
forms are easy to learn and can generally be predicted
without the particular alias being specified. The local Soar
user group has found the alias set to be generally useful,
and the aliases have also been distributed to the Soar
community at large. Aliases improve the interface at quite
modest cost, there appears to be no reason not to take this
efficiency gain.

Successes and Implications
Several successes can be drawn from this initial attempt at
creating and applying a tool that incorporates an HCI
theory. Some of these concern the tool and the theory it
incorporates, and others have implications for such theory-
based design tools in general.

Comparison with automatic command completion. A n
analysis using Dismal, Emacs and the existing alias set
suggests that automatic command completion would be
inferior to this alias set. Command completion would not
reduce the keystrokes in this set of commands as much as
the aliases do, and would not decrease the mental operators
at all.

Implications from the Keystroke Model — The effect of
mental operator time. One of the factors that increased the
Keystroke-Level Model’s time predictions for the original
command names was the number of mental operators in the
original commands, one for each word. Using single word
or acronym aliases are faster not only because they are
shorter, but because they require fewer mental operators to
perform. In the future, it may be more appropriate to
include different types of mental operators for different parts
of the task as occurs in the GOMS models [1].

Implications for the Keystroke Model — Task frequency
generation and use. Command frequency distributions are
used to arbitrate alias clashes and compute expected savings.
Ideally, one might assume that these logs should come
from actual users. For large command sets, this appears to
be unnecessary and considerably expensive. All four of our
expert users had different patterns of command use but they
all showed a considerable and nearly equal decrease in

Table 2 - Predicted Execution Times for Original Commands and Aliases.
See Table 1 for full explanation of exceptions noted as footnotes. Data imported from Dismal spreadsheet, values rounded to

two decimal places.

Original Command Predicted
time (s)

Alias Predicted
time(s)

Time
Saving

 1 add-wme 4.87 aw 2.17 56%
 2 agent-go 5.13 ag 2.17 58%
 3 cd (for chdir) 2.17 cda 2.17 0%
 4 chunk-free-problem-spaces 12.42 cfps 2.70 78%
 5 d 1.90 d 1.90 0%
 6 default-print-depth 9.46 dpd 2.43 74%
 7 echo 2.70 e 1.90 30%
 8 excise 3.24 ex 2.17 33%
 9 excise-all 5.67 ea 2.17 62%
10 excise-chunks 6.49 ec 2.17 67%
11 excise-task 5.94 et 2.17 64%
12 exit 2.70 q b 1.90 30%
13 firing-counts 6.49 fc 2.17 67%
14 go 2.17 g 1.90 13%
15 help 2.70 h 1.90 30%
16 init-soar 5.40 is 2.17 60%
17 learn 2.98 le 2.17 27%
18 list-chunks 5.94 lc 2.17 64%
19 list-help-topics 8.64 lht 2.43 72%
20 list-justifications 8.10 l j 2.17 73%
21 list-productions 7.60 lp 2.17 70%
22 load 2.70 ld c 2.17 20%
23 log 2.43 lg c 2.17 11%
24 matches 3.51 ma 2.17 38%
25 max-elaborations 7.30 me 2.17 70%
26 memory-stats 6.21 mems d 2.70 57%
27 ms 2.17 ms a 2.17 0%
28 object-trace-format 9.46 otf 2.43 74%
29 p (for print) 1.90 p 1.90 0%
30 pgs 2.43 pgs a 2.43 0%
31 preferences 4.59 pr 2.17 53%
32 print-all-help 8.10 pah 2.43 70%
33 print-stats 5.94 ps 2.17 64%
34 ptrace 3.24 pt 2.17 33%
35 pwd 2.43 pwd a 2.43 0%
36 quit 2.70 q 1.90 30%
37 r (for run) 1.90 r 1.90 0%
38 remove-wme 5.67 rw 2.17 62%
39 rete-stats 5.67 rs 2.17 62%
40 schedule 3.79 sc 2.17 43%
41 select-agent 6.21 sa 2.17 65%
42 soar-news 5.40 sn 2.17 60%
43 sp 2.17 sp a 2.17 0%
44 stack-trace-format 9.19 stf 2.43 74%
45 stats 2.98 s 1.90 36%
46 time 2.70 t 1.90 30%
47 unptrace 3.79 un 2.17 43%
48 user-select 5.94 us 2.17 64%
49 version 3.51 ve 2.17 38%
50 warnings 3.79 wr 2.17 43%
51 watch 2.98 wt 2.17 27%
52 wm 2.17 wm a 2.17 0%
TOTAL (Using flat weighting) 245.17 132.58 55%

399

execution time when aliases where used. The effect of the
new command set appears to be robust across the various
frequency predictions, and indeed, even if a flat distribution
is used. In order to make this approach more tractable, we
suggest using frequency estimates instead.

The Effect on Errors. No users type perfectly, and
decreasing command length, if it is consistent, may also
decrease errors for expert users (where expert users are those
who are familiar with Soar, the command abbreviation rules
and the aliases themselves). While we do not have
empirical evidence of this yet for our alias set, we can
derive a simple prediction. Our alias set reduced the number
of keystrokes by 68%. (This is greater than the time
savings because the alias generation algorithm removes
more keystrokes than mental operators.) The simplest
prediction is that the simple typing errors are related to the
number of keystrokes, no matter what the users' typing
accuracy or speed. Although words are inherently easier to
type, these aliases should be fairly easy to type. The
semantic component of the command is retained and they
are generated in a regular way. This suggests that the
number of simple typing errors should significantly
decrease as well.

Remaining Problems
While we were generally pleased with the tool and the alias
set it generated, three problems remain that need to be
acknowledged.

Could the Tool Have Generated More Aliases
Automatically? If the rules for devising the aliases had been
increased in size then more of the aliases could have been
generated automatically. However, the trade-off between
increase in the size of the rule set and decrease in the
number of exceptions must be considered. If an additional
rule had been introduced (e.g., “if truncation to the first two
letters of the command leads to a clash, use the first and
third letters as the alias instead”), then some of the
exceptions would have been automatically generated, but
this would have been at the expense of an increase in rules
to be learned. It is beyond the scope of this paper to
consider the different cognitive burdens that these would
impose.

One cannot enumerate all the causes of exceptions — we
suspect that this is an open set. We found several here
(e.g., usage frequency, clashes, common existing
conventions for usage) and do not feel that we have even
started to enumerate all the possible causes. This is a
problem that is likely to remain, and so while the use of
automatic generation should be maximised, the ability for
easy manual intervention, such as is provided here with the
use of an accessible and flexible spreadsheet, must be
retained.

Could the Alias-Generating Tool Have Been More Powerful?
As noted above, there are some differences in opinion about
which alias generation rules are best, and we have ignored
the possibilities of command frequency forcing
inconsistencies as well. The point of this paper and tool
was not to provide the definitive alias generating function
but to show how such a system would work, and provide
the means for creating such a function. In other words, the
focus should be on our approach, not the specific details of
our situation. Since aliases are now cheap and easy to
customise, it is not difficult to create additional alias sets
for individual users to either adapt our set or create a new
set based on their preferred generating rule based on their
own cognitive style.

Some points about the Soar aliases do need to be clarified.
The Soar command set is a fairly small command set,
which has two major implications. First, there were not
many clashes formed by the automatic alias generation
rules, and second, expert users, for whom aliases are created
for, are likely to know all the commands in the set. When
a larger command set is being considered, then the need for
use of frequency data as a method of arbitration between
alias clashes is increased.

Overall effect of improving the command line interface.
While we can present a strong case for decreasing typing
time, and these aliases appear to increase user satisfaction
and reduce errors (although, we have only obtained anecdotal
evidence only so far), this result may have a smaller effect
on overall task time than might be implied for two reasons.
(a) Since the Keystroke-Level model was being used as the
analytic tool, the higher level processing was not
considered. In the user logs we examined, only a small
proportion of time was spent typing (again, this varies
largely across users and time, and requires extensive user
logs to measure). (b) It is also important to note that
several of the commands take arguments, such as files to
load or productions to examine. These are not considered
here — from a practical point of view, computing their
average length is a difficult problem where individual and
site differences will reign. Including some estimate remains
a necessary step, and the burden that we anticipate it to be
suggests that providing them automatically would be a
particularly fruitful action to include in the interface.

Future Directions
It is possible that this technique could be directly (although
perhaps not simply) extended to analyse menus and other
forms of input, as both the Keystroke-Level Model and
GOMS analysis could handle this level of complexity.
Indeed, the integrated and examinable nature of the menus in
the spreadsheet we used (or the other Soar interface)
suggests that this would be an appropriate and reachable
next step.

400

Simple Lisp functions were used to implement the
command set generation and their analysis. While not a
problem in this tool, incorporating additional knowledge
and extending the range of tasks that can be examined will
become a serious problem quite soon given this
representation. A higher level language for representing the
constraints on good design and a more complete time
prediction system (as could be provided in the future by an
extension of Soar itself), will also be necessary steps.

ACKNOWLEDGEMENTS
Support for this work has been provided by the DRA,
contract number 2024/004, and by the ESRC Centre for
Research in Development, Instruction and Training. Erik
Altmann graciously provided access to transcriptions of
Soar users. Four anonymous expert Soar users kindly
provided us with command frequency estimates. Paul
Tingle, Matt Southall and Rob Jones performed a
preliminary analysis suggested by Kate Cook that inspired
this work. The anonymous CHI reviewers contributed
comments that lead to greater clarity.

HOW TO GET DISMAL INCLUDING THESE EXTENSIONS
The latest versions of Dismal and the Soar alias command
set are available via anonymous FTP from host
unicorn.ccc.nott.ac.uk (128.243.40.7) in the directory
“/pub/lpzfr”.

REFERENCES

1. Card, S., Moran, T. and Newell, A. The psychology of
human-computer interaction. 1983, Hillsdale, NJ: LEA.

2. Card, S.K., Moran, T.P. and Newell, A. The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM, 1980.
23(7): p. 396-410.

3. Casner, S. and Larkin, J.H. Cognitive efficiency
considerations for good graphic design. In Proceedings of

the Annual Conference of the Cognitive Science Society.
1989. Hillsdale, NJ: LEA.

4. Ehrenreich, S.L. and Porcu, T. Abbreviations for
Automated Syatems: Teaching Operators The Rules, In
Directions in Human/Computer Interaction, A. Badre and B.
Shneiderman, Editors. 1982, Ablex: Norwood, NJ.

5. Haunold, P. and Kuhn, W. A. Keystroke Level
Analysis of a Graphics Application: Manual Map
Digitizing. In CHI '94, Human Factors in Computing
Systems. 1994. Boston, MA: ACM.

6. Hucka, M, The Soar Development Environment, 1994.
Artificial Intelligence Laboratory, University of Michigan:
Ann Arbor.

7. John, B.E. and Newell, A. Predicting the time to recall
computer command abbreviations. In CHI'87 Conference on
Human Factors and Computing Systems. 1987. New York:
ACM Press.

8. Newell, A. Unified Theories of Cognition. 1990,
Cambridge, MA: Harvard University Press.

9. Payne, S.J. and Green, T.R.G. Task-action grammars:
A model of the mental representation of task languages.
Human-Computer Interaction, 1986. 2: p. 93-133.

10. Ritter, F.E, Lochun, S, Bibby, P.A. and Marshall, S.
Dismal: A free spreadsheet for sequential data analysis and
HCI experimentation. In Computers in Psychology '94.
1994. York (UK): CTI Centre for Psychology, U. of York.

11. Watts, R.A. Introducing Interactive Computing. 1984,
Manchester: NCC Publications.

