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Abstract

To fully understand sequential effects on learning in humans, we

need a comprehensive theory of cognition. Such a theory should be

complete enough to perform the task of interest and to learn like

humans while doing so. These theories, called process models or

cognitive models, can be broken down into aspects that do not

change between tasks — the architecture — and aspects that do

change — the knowledge. Where such models have been used to

understand sequence effects on learning, they have proven to be very

powerful. As an example, we present a model of behavior on a

simple task that shows how an appropriate order can lead to

significantly (16%) faster learning. However, despite their power,

process models remain difficult to apply routinely. In response, we

also discuss an alternative approach — abstract models — that may

be more appropriate in some contexts.



1 Introduction

Science is concerned not only with data, as we discussed in the previous

chapter, but with models or theories that explain those data. Because

human cognition is dynamic and involves change over time, accounts of

cognition often take the form of process models, which are sometimes also

called cognitive models. In this chapter we review the form such models

have taken and their relation to order effects in learning.

We begin by discussing the connection between artificial

intelligence (AI) systems (e.g., as reviewed by Cornuéjols, Chapter 3),

including those from machine learning and computational models of

human behavior, including some illustrations of the latter. After this, we

present a computational model of order effects on a cognitive task, cast

within a particular but simplified theoretical framework. Next, we explore

more broadly the possible sources of order effects within such models, and

then briefly consider an alternative approach that models human behavior

at a more abstract level. We close with some open problems in the area of

modeling order effects and a charge to new modellers.

2 Process models in cognitive science

Many sciences use process models to explain the behavior of complex,

dynamic systems. For example, physics often uses the formalism of

differential equations to describe the relationships among quantitative

variables (say, heat and temperature in a furnace) over time. Process
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models of human behavior have somewhat different requirements, as

what changes over time are not primarily continuous variables, but rather

qualitative structures in short-term and long-term memory as well as in

motivational state.

Fortunately, computer languages provide formalisms that can be

used to model the symbolic aspects of human cognition in the same way

that differential equations are used in physics. Moreover, the field of AI

has developed a variety of representations, performance mechanisms, and

learning methods that can operate on many of the tasks that confront

humans. Some AI work has little relevance to cognitive science because it

makes no effort to constrain its methods to match psychological

phenomena, but other AI systems have been developed with this goal

explicitly in mind, and one can use them as computational models of

human behavior. Indeed, some of the earliest AI systems, including EPAM

(Feigenbaum & Simon, 1984) and GPS (Newell, Shaw & Simon, 1962) fall

into this category.

2.1 The advantages of formal models

The advantage of formal models over informal ones is the same in

cognitive science as in any other field. Rather than being sufficiently

vague to handle almost any empirical result, detailed models of the

processes that generate behavior lead to specific predictions that can be
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shown to be incorrect.1. Such results can thus lead to improved models

that account for problematic findings and that make new predictions,

leading to iterative progress towards more complete theories. Formal

models also let us examine the internal states and mechanisms in the

model that gave rise to the observed behavior, such as order effects. This

lets us predict the effects of different conditions, such as alternative

orders, without running subjects.

Another advantage of having a model’s detailed behavior at hand is

that it assists in analysing a subject’s behavior. In particular, it lets us

partition behavior into portions that the model can explain and those that

it cannot, thus identifying anomalous observations. This in turn helps

indicate where the model is incorrect and suggests where to improve it.

Finally, a well developed, parameterized model can be used to classify

subjects by their characteristics (e.g., Daily, Lovett & Reder, 2001),

providing an account of individual differences.

2.2 Types of process models

Before examining how computational models can explain order effects

observed in human learning, we must briefly review the major types. Early

process models were compared to psychological data, but they

incorporated rather idiosyncratic mechanisms and structures that were

rarely shared within the research community. Over the past decade,

1Moreover, AI models actually carry out the tasks they address, which opens many
possibilities for applications(e.g., Anderson & Gluck, 2001; Ritter et al., 2003).
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researchers have imposed an increasing number of theoretical constraints

across sets of models. These often take the form of cognitive architectures

(Newell, 1990), which posit the structures and mechanisms of the

cognitive system that are common across tasks. A cognitive architecture

provides a framework for describing the sources of thought and behavior,

including order effects.

Although there exist numerous computational models for aspects of

cognition like categorization and long-term memory retrieval, we will

focus here on frameworks for modeling more complex sequential tasks

like problem solving and natural language. One widespread class of

architectures used for such tasks is known as production systems (Jones,

Ritter & Wood, 2000; Neches, Langley & Klahr, 1987; Young, 1979). This

framework includes a long-term memory that contains productions or

condition-action rules, which changes only slowly with learning, and

short-term or working memory, which is far more dynamic. What varies

across models in this framework is the contents of long-term memory.

A production system operates in cycles, on each step matching its

rules against the contents of short-term memory (which may include

representations of the environment), selecting one or more rules to apply,

using their actions to alter short-term memory or the environment, and

then iterating. Various learning methods exist for combining, generalizing,

specializing, or otherwise modifying the rules in long-term memory. For

example, a common approach involves making a larger rule out of several

smaller rules that applied in sequence. This new rule can reduce the load

on working memory and increase the speed of processing. If the choice of
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which smaller rules to apply was learned from extensive problem solving,

the new rule can also constitute new knowledge about how to constrain

future behavior. Examples of production systems that learn include

Pavlik’s ACT-R model (Chapter 10) and Ohlsson’s HS system (Chapter 11).

A second well-studied framework for modeling sequential behavior

is recurrent neural networks (for an introduction see Bechtel &

Abrahamsen, 2002). Such models include a long-term memory composed

of nodes, directed links connecting nodes, and weights on the links, with

short-term memory consisting of temporary activations on the nodes.

What varies across tasks are the number and connectivity of the nodes and

the weights on links. Lane (Chapter 5) reviews this approach in more

detail. A recurrent network also operates in cycles, on each cycle using the

activations on ’input nodes’ (at the lowest level) and the weight of links to

compute the activations of higher-level nodes, ultimately calculating

activation levels for output nodes that determine actions. The activations

for some higher level nodes then replace those for the input nodes, and

the next cycle begins. Learning typically occurs by propagating errors

(differences between the desired and output values) downward through

the network and modifying the weights to reduce these errors in the

future.

Although production systems and recurrent neural networks are

not the only classes of models used to model sequential human behavior,

they are certainly the most widely used. Other architectural frameworks,

including case-based and probabilistic ones, differ in their assumptions

about representation, knowledge retrieval, and learning, but can be
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described using the terms of cognitive architecture and knowledge.

Indeed, the most remarkable aspect of these architectures is not their

differences but their similarities. All operate in cycles, in some sense

matching against the contents of memory, taking actions to alter it, and

then repeating the process. Their learning methods, despite their

differences in operation, also tend to give similar effects, such as

mastering simpler structures before more complex ones. We will return to

this observation later in the chapter.

3 A simple model of order effects

An example model that produces an order effect in learning will clarify

how one can use a cognitive architecture to understand human behavior

and ground the rest of the discussion in more concrete terms. We first

present the model’s structure and mechanisms, after which we explain its

behavior on a simple task that shows how order effects can arise.

We will assume that the example model is based upon a simple

architecture that incorporates ideas from two existing frameworks,

notably Soar (Newell, 1990) and ACT-R (Anderson, Bothell, Byrne,

Douglass, Lebiere & Qin, 2004). Figure 1 shows the components of this

generic architecture, which includes a long-term memory encoded as

production rules, which matches against the current goal stack and the

contents of short-term memory. The rules are strengthened when they

match or when they resolve problems within the goal stack, such as

achieving or filling in some goal. A structural learning mechanism adds
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Long−Term Recognition Memory

P1: C1 & C2 & C3 −−> A1, A2
P2: C3 & C4 & C5 −−> A1, A4

Pn: . . . −−> . . .

active goals

focus of attention
. . .

goal stack

Working Memory

Learning

P3: . . . −−> . . .

Figure 1. The components of a prototypical architecture.

new rules to long-term memory, which alters future performance.

3.1 The simple lights and buttons task

To illustrate some of these concepts, consider a task that involves pushing

buttons underneath lights that are on. A simple version uses four lights

and four buttons, two per hand. If a light is on, the subject presses the

corresponding button, as shown in Figure 2. In total, there are 16

different patterns of lights that require 16 different responses, assuming

that not pushing all four buttons is a possible response. Seibel (1963),

who studied a more complex version of this task, found that subjects

become faster at this task the longer they practiced it.
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on off off onLights

Buttons

Figure 2. An example task that involves pressing buttons where the light is
on.

3.2 The model

Our model in the prototypical architecture assumes a hierarchical

decomposition of the task and of the knowledge to perform it. To master

the task with both hands, subtask for each hand, mastery for each button

must be achieved; to master a button, the light must be checked and the

appropriate action done to the button (pressed if the light is lit, or not

pressed if it is off). Figure 3 depicts this organisation by grouping the

lights by pairs. We have based this simple model on a previous one

(Newell & Rosenbloom, 1981; Rosenbloom & Newell, 1987).

The model predicts that the time taken to press the appropriate

lights depends on the production rules available in long-term memory, and

also that learning occurs in a cumulative manner, in that combined

responses across fingers can be acquired only when the subresponses are

known. The lowest level response, for an individual light, is atomic and

thus always known. Learning combined responses requires acquiring new

rules denoted by nodes e, f, and g in Figure 3. At the outset, the first set of

lights thus takes a total of seven steps. The model takes one step to do

each of the four lights, one step to compose each of the two pairs, and one
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atomic response
(given)

two-light pattern response
(to be learned)

four-light pattern response
(to be learned)

lights (on/off)

Figure 3. A simple example model of the Seibel task.

step to compose the four-light set. Recognizing each pair saves two steps,

and recognizing the whole four-light set saves six steps.

Defining the task knowledge and how it is used lets us describe

how to create a good learning sequence. An efficient training order for

this model draws as much as possible on what is known and provides

opportunities for acquiring the maximum number of rules each time. In

contrast, a poor learning sequence provides less opportunities for

learning. For instance, repeatedly practicing the same two-light pattern on

one of the hands while the other hand learns a new two-light pattern does

not lead to acquistion of higher level knowledge (four-light pattern) as

quickly as with the more efficient order where new patterns are learned by

both hands each trial.

Table 1 gives an example of an efficient and less efficient learning

sequence for the task. In general, the most efficient approach for this
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architecture on this task, at least with this knowledge and representation,

is to keep the learning mechanism busy. Less efficient sequences let the

subtasks be repeated without learning, particularly precluding higher level

learning occurring. For example, when the remaining eight unseen items

are presented, the learner with the bad sequence must be shown three

additional trials to catch up with the efficient sequence, giving a total of

19 instead of 16 trials, which amounts to a 16% slower learning rate.

Table 1. How two different sequences with the same items but in different order
can lead to different learning.

An efficient sequence for learning Less efficient sequence for learning
Stim.# Stimuli Patterns learned Stim.# Stimuli Patterns learned

0 oo oo ooL ooR 1 oo ox ooL oxR
5 ox ox oxL oxR 2 oo xo xoR

10 xo xo xoL xoR 3 oo xx xxR
15 xx xx xxL xxR 0 oo oo ooR

1 oo ox ooox 4 ox oo oxL
2 oo xo ooxo 5 ox ox oxox
3 oo xx ooxx 10 xo xo xoL
4 ox oo oxoo 15 xx xx xxL

Learned: 8 two-light patterns Learned: 8 two-light patterns
4 four-light patterns 1 four-pattern

% learned 50% % learned 37.5%

Note. There are 24 things to learn in this simple world (8 two-light pat-
terns and 16 four-light patterns). The symbol ’x’ indicates lights that are on,
whereas ’o’ indicates lights that are off. Stimuli numbers are based on the set
of 16 different four-light patterns.

Despite the simplicity of both task and model, they are complex

enough to exhibit order effects. Moreover, the task is similar to many

others that occur in the real world in which component knowledge must

be mastered before more advanced knowledge can be acquired. This
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effect can be found in existing Soar models of job shop scheduling (Nerb,

Ritter, & Krems, 1999), blood typing (Johnson, Krems, & Amra, 1994),

circuit troubleshooting (Ritter & Bibby, 2001), and language acquisition

(Lewis, 1998).

This simple example shows that several things—the structure of the

task, the internal representation, the performance process, the order of

stimuli, and the learning mechanism—interact to create order effects. A

complete account of such effects must specify each of these components.

4 Aspects of process models that can explain

order effects

Ideally, process models do not just explain but also predict data, including

the effects of training order. A well-crafted computational account of

human behavior can suggest novel conditions under which phenomena of

interest occur. One advantage of casting models within a constrained

theory of the cognitive architecture is that they are more likely to produce

such predictions.

Order effects can also arise from processing that leaves changes in

the process model’s state or mechanisms that interact with later processing

like soap left on poorly rinsed pots that influence later cooking. In this

section we consider five possible factors within cognitive architectures that

can explain and predict such effects: (a) forgetting, (b) not forgetting, (c)

memory overload, (d) changes to the internal processes, and (e) time
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constraints that arise in rapidly changing environments. Undoubtedly,

other sources of explanation are possible, but these seem likely to account

for many cases in which training order influences learning.

4.1 Forgetting

Order effects can occur whenever structures cannot be retrieved later, say,

due to decay over time or interference from other structures. A model may

also assume that activations decay over time or that retrieval can fail due

to shifts of attention. Order effects appear when an interaction between a

pair of cognitive elements that facilitates or hinders learning of these

elements, when those elements can get forgotten over time, or when the

time interval between processing the elements is not fixed. For example,

suppose one is learning about a country A and its capitol B. Knowing A

facilitates learning B and vice versa, but facilitation occurs only if A is still

active in memory when B is learned. Because forgetting is a function of

time, sequences in which A and B appear close to each other should

produce faster learning than ones in which A and B are distant. Pavlik’s

chapter (Chapter 10) explores this idea in some detail.

Many learning models rely on the cooccurence of elements in

dynamic memories. For example, the composition mechanism in ACT-R

(Anderson, 1993; Jones et al., 2000) uses information about the elements

matched by successively applied rules to create a new rule. Similarly, the

chunking mechanism in Soar (Newell, 1990) uses dependencies among

elements in working memory before and after it solves a problem to
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determine the content of new production rules. Finally, recurrent neural

networks (Elman, 1989) change weights on links only to the extent that

the nodes from which they emanate were active. Factors that influnce the

retrieval of either of such pairs will also influence learning.

4.2 Einstellung (not forgetting)

Another source of order effects is reliance on strategies that have proved

successful in the past. Once a person has found some way to solve a

problem, he often continues to utilize the same solution even when other

responses may work better in new situations. Such Einstellung behavior

occurs more often when the person encounters problems in certain orders.

The classical example for such effects are sequences of arithmetical

water jar puzzles. Luchins (1942) showed that, depending on the order in

which subjects solved such problems, subjects used more or less efficient

strategies to solve later problems (for a more recent demonstration of the

effect see Luchins & Luchins, 1991). If an individual is given a series of

problems (Set A) for which he acquires a strategy that works, he tends to

use the same strategy on other problems (Set B) even when a simpler

solution is possible. However, if a person is presented with problems from

Set B first, he nearly always finds the more elegant solution.

Cognitive scientists have developed a number of process models for

Einstellung that incorporate various learning mechanisms. These

composing sets of production rules into larger ones (Neves & Anderson,

1981) and analogical reasoning based on earlier solutions (Gick &
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Holyoak, 1980; Jones & Langley, in press). Scheiter and Gerjets (Chapter

14) examine a related concept. What these models have in common are

methods that create new long-term structures from individual

experiences, which they then prefer to utilize in new situations rather than

carrying out search for more efficient solutions.

4.3 Cognitive overload

A third factor that can underlie effects of training order is cognitive load.

Sweller (1988, 1994, Chapter 14) has developed the most extensive

theory of how demands on working memory affect problem solving and

learning. His account provides a framework for investigations into

instructional design by considering both the structure of information and

the cognitive processes that let learners interpret that information. The

theory assumes that working memory demands stem from three additive

sources: the material being learned (intrinsic cognitive load); the manner

in which information is presented (extraneous or ineffective load); and

resources devoted to learning and automation (germane or effective

cognitive load).

In this framework, a well-designed learning sequence maximizes

resources that can be devoted to germane cognitive load. Intrinsic

cognitive load depends on the complexity of the material being learned,

being high if relevant elements interact with each other and low if they

can be learned independently. Effective instructional design therefore

minimizes extraneous cognitive load during learning, as well as the load
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from interfaces themselves. In series of studies, Sweller and his colleagues

have shown how different cognitive loads imposed by external structuring

(including ordering) of tasks can facilitate or hinder learning. Of crucial

interest here are the kinds and timing of instructions and learning aids

that will encourage effective learning (Bass, Baxter & Ritter, 1995).

A further source for order effects within this framework has to with

intrinsic cognitive load, which was initially considered as given and static

as well as irreducible. A more recent view, however, assumes that intrinsic

cognitive load may itself be a function of the task-subject interaction. In

particular, the learner’s level of expertise may correspond to alterations in

intrinsic cognitive load. An interesting outcome of research in this area is

the so called expertise reversal effect indicating that instructional

techniques that are effective with novices can become ineffective when

used with more experienced learners (Kalyuga, Ayres, Chandler & Sweller,

2003, Renkl & Atkinson, Chapter 7). A recent overview about both the

theoretical and empircal status of the theory are given by Pass, Renkl and

Sweller (2003, 2004).

4.4 Changes to internal processes

At the moment, most architectures provide the same mechanisms and

information processing capabilities across situations and time. This

assumption is at odds with common sense and, more importantly, with

findings from psychological research. Fatigue is a simple and intuitive

example of how the way we process information changes: we process
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information differently in a vigilant than in a tired state. Likewise,

motivational and emotional states can change perception and information

processing. Order effects can arise because different sequences of training

material can lead to different emotional or motivational states. For

instance, a sequence might be more or less boring for learners influencing

their motivation for further learning and problem solving.

The work of Isen (2000) provides psychological evidence for effects

of mood on information processing. She showed that different moods lead

to different success in problem solving and learning. Positive mood leads

to more creativity (or at least more variance in behavior) and negative

mood leads to more accurate behavior. A good mood lets the problem

solver work more flexibly, whereas a bad mood makes the problem solver

eager to get positive reinforcement as soon as possible. The order of

problems can lead to these modes. For example, difficult tasks early in a

sequence can lead to frustration and other negative emotional states (see

Bower, 1981; Nerb & Spada, 2001; Thagard & Nerb, 2002, for further

psychological evidence that cognitions influence and are influenced by

emotions).

Recently however, we are experiencing a growing interest in the

study of emotions within Cognitive Science and expecially within Artificial

Intelligence (e.g., Cañamero & Hudlicka, 2004; Minsky, in prep.; Norman,

Ortony & Russell, 2003; Picard, 1997; Silverman, 2004). As a result of

these efforts, some computational models about the role of emotions

during reasoning and problem solving have emerged; example models are

Cathexis (Velásquez, 1998), EMA (Gratch & Marsella, 2004), HOTCO
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(Thagard, 2003), and DEBECO (Nerb, 2004). None of these models are

concerned explicitly with order effects. However, order effects in learning

will result if within these models emotions have lingering effects on

cognitive mechanims. Altogether, this is a fascinating new development

and a growing field of research that has huge potential for changing the

study of learning and problem solving (Kort, Reilly & Picard, 2001).

4.5 Time constraints in rapidly changing environments

The order in which a learner attempts tasks is often important in highly

interactive, externally paced environments that require timely responses.

If the situation is novel enough or if the response is complicated enough,

he will not be able to respond before the situation changes and he loses a

chance to learn from that context. For example, in video games, the player

must hit a target before it disappears. If he does do not accomplish this in

time, then he may not be able to acquire even a partial response and the

task can remain impossible.

One way to avoid this problem is to change the order of tasks. If

the learner encounters easier situations before harder ones, then he will

be able to respond more often and thus able to learn from the outcomes.

Moreover, learning on easy tasks can reduce the time needed to respond

in more complicated situations, thus allowing responses and learning on

them as well. For this reason, such part-task training, which presents

component tasks before the complete task, is a common approach to

training in real-time environments (Donchin, 1989).
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This account predicts part-task training would be beneficial in the

lights and buttons domain if the button pushes had a deadline. When a

task required pushing many buttons, a novice would not initially be able

to respond in time. However, presenting tasks that involve single light,

followed by those with pairs of lights, and so forth up to the full set would

allow learning on early trials. This approach would support learning on

the later trials because the partial responses would be available for

combination into more complex ones.

5 From concrete models to abstract models

As we have seen, process models in cognitive science typically take the

form of a running AI system that performs some task, and that also is

constrained to carry our the task in much the same way as humans.

However, two problems can arise with this approach that can be solved by

using a somewhat different form of process model.

The first problem is the difficulty in creating a complete AI model,

which is not always straightforward. Developing a system that performs

the task requires that one specify a complete algorithm and a way for the

model to interact with the task. The modeler must have substantial

programming skills. The model must also be run, which is usually

straightforward, but which can be time consuming if one applies it to a

wide range of tasks or if one desires expected or average behavior. One

may also have to interpret or code the results of the model’s behavior.
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The second problem is that, in order to develop a complete,

running model, one must often make arbitrary assumptions about

structures or processes that have no theoretical content. Even when the

model fits the data well, its success may not be due to its core theoretical

assumptions but rather to its arbitrary components. An example of this

occurred with context effects in letter perception, where the encoding of

the stimuli by the modellers appears to have been more important than

the processes used in the model itself (McClelland & Rumelhart,

1981; Richman & Simon, 1989).

A response to these difficulties is to develop an abstract process

model of the phenomena. Unlike the ’concrete’ information processing

models we have been discussing, an abstract model makes fewer

commitments about structures and processes, which means that it cannot

actually perform the task, but rather represents behavior at a coarser level.

Whereas concrete models characterize what the human will do and the

reasons, abstract models are often used to predict quantitative measures

such as the time to make choices and how much is learned.

Cognitive scientists have developed abstract models of learning and

problem solving (Atwood & Polson, 1976; Ohlsson, 1995; Schooler &

Hertwig, 2005), sensory-motor behavior (Langley, 1996), categorization

(Langley, 1999), and decision making (Young, 1998), but one of the

earliest is due to Rosenbloom and Newell (1987) for the lights and

buttons (Seibel) task described above. They initially presented a concrete

production system model to explain the power law of practice (how

reaction times decrease with practice but at a decreasing rate). For
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reasons of computational efficiency, they used a abstract model based on

the production system model to compute the reaction times for a series of

trials for comparison with the human data.

Abstract models can be much easier to use. Later work by Ritter

(1988) utilized another abstract model to compute the expected value for

each trial on this task. In each case, the predictions of the abstract model

were easier to manipulate, and could be derived around 100,000 times

faster (five seconds vs. 100 runs × 5 hours per run × 3,600

seconds/hour), than the concrete rule-based model that actually

performed the task.

One drawback of abstract models as typically used is that they

average over different training sequences and thus cannot account for

order effects. However, there is nothing inherent in the abstract approach

that forces such averaging over all tasks. If one’s goal is average learning

curves, they may be the only practical way to achieve this end. For

example, Nerb, Ritter, and Krems (1999) report a concrete model of

behavior on more complex problem-solving task that provides reasonable

timing predictions for sequences of problems for individual subjects. Each

trial takes over a minute to run, with learning taking place over a

sequence of 25 trials, and a hundred runs would be required to achieve

reliable average. An abstract modeling approach could achieve this result

far more efficiently.

To illuminate this point, let us consider an abstract model that

captures the essential features of the concrete lights and buttons model.
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Rather than running the concrete model repeatedly to compute the

expected average time across trials for the first two test trials, Trials 9 and

10, we can compute the expected time assuming a uniform distribution of

all the possible stimuli.

As shown at the top of Table 2, the efficient sequence starts with a

better knowledge base. It can recognize each of two-light patterns and a

quarter of the four-light patterns. The inefficient sequence can recognize

all the sub patterns, but not as many larger patterns. In trial 9, the

efficient sequence has a greater chance of applying a four-light pattern

than the inefficient sequence. The inefficient sequence, on the other hand,

has a greater chance to learn a new pattern. This effect carries into trial

10. With repeated trials, the two will converge, with the more efficient

sequence always being faster, but by an ever decreasing amount.

This abstract model provides several lessons. First, it illustrates

how seemingly similar but theoretically different sequences can lead to

different learning. Second, it illustrates how an abstract model can be

used, and how easily they can be used to represent a process model and

its predictions.

6 Concluding remarks

Although process models of human behavior, including learning, have

existed for almost five decades, considerable work still remains. In closing,

we briefly consider some open questions with respect to computational

22



Table 2. Expected time for stimuli 9 and 10 if they are presented randomly, along
with the stored knowledge after the training sequences in Table 1.

After the efficient sequence After the less efficient sequence
there are in the model: there are in the model:

8 two-light patterns 8 two-light patterns
4 four-light patterns 1 four-light pattern

On Trial 9:
[no learning situation] [no learning situation]

4 / 16 four-light patterns known 1 / 16 four-light patterns known
× 1 model cycle if matched × 1 model cycle if matched

[learning situation] [learning situation]
75 % chance of learning a 93 % chance of learning a
new four-light pattern new four-light pattern
12 / 16 unknown four-light patterns 15 / 16 unknown four-light patterns
× 3 model cycles (two-light patterns) × 3 model cycles (two-light patterns)

2.5 model cycles expected response time 2.97 model cycles expected response time
(.25 × 1 cycle) + (.75 × 3 cycles) (.065 × 1 cycle) + (.925 × 3 cycles)

After Trial 9:
8 two-light patterns 8 two-light patterns
4.75 four-light patterns 1.93 four-light patterns

On Trial 10:
[no learning situation] [no learning situation]

4.75 / 16 patterns known 1.93 / 16 pattern known
× 1 model cycle if all matched × 1 model cycle if all matched

[learning situation] [learning situation]
70 % chance of learning 88 % chance of learning
a new four-light pattern a new four-light pattern
11.25 / 16 unknown patterns 15 / 16 unknown patterns
× 3 model cycles (two-light patterns) × 3 model cycles (two-light patterns)

2.4 model cycles expected response time 2.76 model cycles expected response time
(.30 × 1) + (.70 × 3) (.12 × 1) + (.80 × 3)
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models of order effects that the reader may wish to explore on his own.

6.1 Experimental tests of predictions

One advantage of process models is that they let one make predictions

about behavior in new situations, which can then suggest additional

experiments that can either support or disconfirm the model. Some useful

activities of this sort would include:

• Identify situations in which the model’s predictions about the effects

of training order disagree with common sense and design an

experiment to determine which is correct. Results that agree with

the model provide more compelling evidence than ones for studies

that simply agree with intuitions. For example, in the lights and

buttons task, consider what would happen if half the stimuli were

not presented until after extensive practice (Simon, personal

communication, 1988). Most models would consider them as fairly

new stimuli, but would human subjects treat them in this way?

• Identify situations in which competing models make different

predictions about order effects and design an experiment to

discriminate between them. Such studies tell more about the nature

of human learning than ones in which the models agree. For

example, in the lights and buttons task, one could create two

different problem representations. If the two reprepresentations

predict different behavior an experiment might help resolve the
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apparent contridiction.

• Identify aspects of a process model that explain order effects (as

discussed in section 4) and design experiments that vary task

characteristics to determine which aspects are responsible. Such

studies can lead to gradual refinement of process models that can

make increasingly specific predictions.

• Identify situations in which a process model indicates that the

learner’s background knowledge will mitigate or eliminate order

effects and design experiments to test this prediction. Such studies

can reveal more information about the role of expertise in learning

than experiments focusing on simple novice to expert transitions. In

the lights and buttons task, one might expect pianists to exhibit

weaker order effects because they have extensive knowledge about

keys.

Of course, these types of experiments are not specific to the study of order

effects; they can be equally useful in understanding other aspects of

human behavior. But the empirical study of sequencing has been so rare,

in particular in the context of evaluating process models, that they seem

especially worthwhile.

6.2 Developing models and architectures

Because there are relatively few process models of order effects, another

important activity is the creation and refinement of such models. Some
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likely work of this sort would include:

• Identify a simple order effect and develop a model that explains it.

For example, create a model that explains the benefits of part-task

training (Mane & Donchin, 1989), which emphasises teaching the

component skills of a task before teaching how to integrate them.

After creating the model, consider what suggestions it makes for

instruction in the area. The model need not be concrete, but it

should be clear enough to predict implications like relative learning

rates.

• Identify an order effect that has not yet been explained and develop

a concrete process model that explains it within an existing

architectural framework. An even better approach would involve

modelling the effect within different architectures and, if they share

underlying features, designing an abstract model that subsumes

them.

• Identify places in an existing architecture where introduction of

resource or timing limitations would suggest new order effects, then

develop concrete models that instantiate this prediction for a specific

task or set of tasks.

Again, these types of activities apply to any class of psychological

phenomena, but order effects have received so little attention that they

seem an especially fertile area to use in constructing and constraining our

theories of the human cognitive architecture.
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6.3 General advice

In addition to the above suggestions on open problems in the study of

order effects, we can offer some general advice to erstwhile cognitive

modellers. First, we encourage researchers to select a theoretical

framework, ideally one that takes a clear position on the nature of the

human cognitive architecture, and to develop models within that

framework. If researchers are new to the area, then they should not work

in isolation, but rather attach themselves to a scientist or group

experienced with using that framework. At the same time, they should not

focus their attention on this framework to the exclusion of all others;

understanding alternative theories and their relation to one’s own is also

part of the scientific process.

Second, computational modellers should also remember that it is

essential to relate their systems to phenomena. A model should always

make contact with observations of some sort. Moreover, like other

disciplines, cognitive science operates not by attempting to confirm its

theories, but rather by gaining insights about ways to improve them

(Grant, 1962). The construction, evaluation, and analysis of process

models is an important means to this end.
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