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Summary. The model presented here gradually learns
how to perform ajob-shop scheduling task. It uses Soar's
chunking mechanism to acquire episodic memories about
the order of jobs to schedule. The model was based on
many qualitative (e.g., transfer effects) and quantitative
(e.g., solution time) regularities found in previously
collected data. The model was tested with new data where
scheduling tasks were given to the model and to 14
subjects. The model generally fit these data with the
restrictions that the model performs the task (in simulated
time) faster than subjects, and its performance improves
somewhat more quickly than subjects. The model provides
an explanation of the noise typically found in problem
solving times—it is the result of learning actual pieces of
knowledge that transfer more or less to new situations but
rarely an average amount. Only when the data are averaged
(i.e., over subjects) does the smooth power law appear.
This mechanism demonstrates how symbolic models can
exhibit a gradual change in behavior and how the apparent
acquisition of general procedures can be performed without
resort to explicit declarative rule generation. We suggest
that this may represent atype of implicit learning.

1. Introduction.

Soar is a candidate unified theory of cognition (Newell,
1990). There are several aspects of the architecture that
particularly influence and support learning. These can be
illustrated with a model, that performs a job-shop schedul -
ing task (i.e., a task of optimally scheduling work on
different machines). The model matches data showing that
symbolic learning (in particular, production learning using
the chunking mechanism in Soar) can account for power-
law effects, and that learning on the knowledge level
within a symbolic architecture that matches human perfor-
mance does not have to be represented explicitly. Instead,
the power law of learning can arise from individual learn-
ing events when performance is aggregated across trials or
subjects. Whereas similar claims are implicit in Newell
(1990), they are not examined in as much detail.
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VanLehn (1991, p. 38) differentiates between learning

events (where changes occur in procedural knowledge) and
rule acquisition events (where changes occur on the knowl-
edge level). Explicit learning mechanisms are easier to
understand and model, but understanding how acquisition of
rules on the knowledge level can occur slowly is likely to
be important as well. We will explore here how acquiring
partial episodic rules can slowly approximate rule-based
procedural behavior, that is, learning events that lead grad-
ually to rule acquisition. In this paper, chunking is the
basis for arguing that aspects of human learning often
characterized as subsymbolic or numeric can be represented
symbolically and thereby provide detailed process accounts
for phenomena like the decision to seek advice. We will
cover in turn, Soar, the task and initial regularities, the
model, and testing the model with new data.
1.1 Overview of Soar. Soar is an architecture that
provides a small set of mechanisms for simulating and
explaining a broad range of phenomena as different as
perception, reasoning, decision making, memories, and
learning. It is this restriction on one hand side and the
breath of intended—nbut only partially yet realized—appli-
cations that renders Soar as an candidate unified theory of
cognition (Newell, 1990). Unified does not mean that all
behavior must be expressed by a single mechanism
(although Soar uses relatively few), but that the mecha-
nisms must work together to cover the range of behavior.

There are extensive explanations and introductions to
the architecture (Lehman, Laird, & Rosenbloom, 1996;
Norman, 1991), with some available online (Baxter &
Ritter, 1998; Ritter & Young, 1998), so we will only
briefly review Soar, as shown in Figure 1.

Soar is best described at two levels, the symbol level
and the problem space level. Behavior on the symbol level
consists of applying (matching) long-term knowledge
represented as production rulesto the current state in work-
ing memory (including the context stack). This level
implements the problem space level.

The problem space level represents behavior as search
through and in problem spaces of states using operators.
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Fig. 1: The main processes in Soar.

(In previous versions of Soar, problem spaces were explic-
itly represented, in version 7 they can be implicitly repre-
sented.) Operators are created and implemented using the
symbol level.

In routine behavior, processing proceeds by a repeated
cycle of operator applications. When there is a lack of
knowledge about how to proceed, an impasse is declared.
An impasse can be caused, for example, by the absence of
operators to apply, by an operator that does not know to
make changes to the state (no-change), or by tied operators
(i.e., if there are more than just one operator that is appli-
cable at atime). In animpasse, typically further knowl-
edge can be applied about how to resolve the problem.
States S2 and S3 in Figure 1 are impasse states. As prob-
lem solving on one impasse may lead to further impasses,
a stack of impasses often results. An impasse defines a
context for problem solving, that is, what knowledge is
required for progress based on the architecture of choosing
operators and applying them to states. For S2, the
impasse is that two operators cannot be differentiated, and
knowledge is required to differentiate them or to accept
them as equivalent. For S3, is it that the operator could
not be directly implemented; knowledge is required to
implement it. The stack changes as impasses get resolved
through problem solving or when new impasses are added.

When knowledge about how to resolve an impasse
becomes available from problem solving within the
context of the impasse, a chunk (a newly acquired produc-
tion rule) is created. This acquired rule will contain as its
condition part the knowledge of the higher context that has
been used for resolving the impasse and as its action part
the changes that happened during resolving the impasse.
In addition, the conditions and actions will be generalized
by replacing constants with variables. Thus, the chunk
will recognize the same and similar situation in future
problem solving and—by applying the chunk's actions—
problem solving will proceed without an impasse.

Figure 2 provides a simple example of how learned
rules (chunks) are acquired. In thisexample, the operator
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then Sum is 10

Sum is 10

Fig. 2: How chunking encodes a new rule. Adapted from
Howes and Y oung (1997).

Compute-sum has been selected, but immediate knowledge
is not available to implement it by providing the answer.
An operator no-change impasse is declared by the architec-
ture, because Compute-sum made no change to the state.
Based on this impasse and its type, knowledge about
counting in a counting problem space is proposed, and
counting is performed. A value (the number 10) can be
returned as the result of Compute-sum. When the result is
returned, anew rule, Chunkl, is created. It will have asits
conditions the information from the higher level context
used to solve the impasse. |In this case, it will include the
name of the operator and its arguments. The action of
Chunk1 will be the results passed back to the higher
context, in this case, that the answer was 10. In the
future, when Compute-sum is selected with the same
arguments, Chunk1 will match, providing the result and an
impasse will not occur.

1.2 Forms of learning in Soar. Soar's chunking
mechanism is well-constrained by psychological data and
theory and has proven predictive in a number of cognitive
applications. These qualities make it an important and
general tool for analyzing learning processes. There have
been many higher-level forms of learning implemented
using it. Work with this chunking mechanism began with
the Xaps production system (Rosenbloom & Newell,
1987) and continued in Soar with simulations of the Seibel
task and the R1 Vax configuration task (Newell, 1990).
The type and meaning of the impasses differentiate the
forms of learning. If the impasses are on operators to
retrieve an association from memory, the results look like
declarative learning. If the impasses are on a set of tied
operators, the results look like search control knowledge.
If the impasse is structured like in Figure 2, the result is
speedup due to caching.

Many of these learning approaches have been part of Al
or cognitive models that have not been tested closely
against human data, with the exception that the models
exhibit behavior that humans generally exhibit as well,
such as learning through reflection. These include models
that learn through instructions (Huffman & Laird, 1995),
reflection (Bass, Baxter, & Ritter, 1995; Nielsen &
Kirsner, 1994), analogy (Rieman, Lewis, Young, &
Polson, 1994), and abduction (Johnson, et al., 1991; John-
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son, Krems, & Amra, 1994). Further examples are avail-
able (Baxter & Ritter, 1998; Rosenbloom, Laird, &
Newell, 1992).

There are, however, several learning models in Soar
that have had their predictions compared with human learn-
ing data, starting with some of the earliest work with Soar
(Rosenbloom & Newell, 1987). Many of these models are
in the field of human computer interaction (HCI).
Altmann and John (in press) have looked at learning and
interaction; John, Vera, and Newell (1994) have looked at
reflecting after interacting. Numerous models of computer
users that learn have been developed. One model illustrates
how mappings between tasks and actions are acquired
(Howes & Young, 1996). There are also models that learn
through external scanning and internal comprehension
(Rieman, Young, & Howes, 1996), and through explo-
ration to recognize states and information near the target
(Howes, 1994). Diag (Ritter & Bibby, 1997) learns which
interface objects to examine and how to implement its
internal problem solving more efficiently.

There are also models outside of HCI that have been
compared with data. Able-Soar, Jr. (Ritter, Jones, &
Baxter, 1999) simulates the novice to expert transition in
solving physics problems using Larkin's (1981) transition
mechanism. Driver-Soar (Aasman & Michon, 1992)
drives asimulated car. It learnsto compile plans for activ-
ities and how to control the car more accurately. SCA
(Miller & Laird, 1996) learns concepts by starting with
very general classification rules and learns more specific
rules to classify novel stimuli. Chong and Laird (1997)
have created a series of models that become better at solv-
ing a dual task using a model of interaction called Epic
(Meyer & Kieras, 1997). There are also models of abduc-
tion (Johnson et al., 1994) and concept acquisition in
development (Simon & Klahr, 1994).

There exist computational models of learning besides
Soar (e.g., case-based or comprehension-based systems)
where models learn gradually using a strengthening
approach and that have been compared with data (e.g.,
Anderson & Lebiere, 1998; Kitajima, Soto, & Polson,
1998; Rumelhart et al., 1986; Siegler & Shrager, 1984,
Weber, 1996). Many of these models are successful quan-
titatively but can be opague qualitatively and do not always
provide a detailed analysis of the associative knowledge and
controlled processing involved in learning. For a compre-
hensive overview and comparison of different learning
approaches including an example model that was refined
and extended incrementally by successive empirical tests
see Schmalhofer (1998).

Many of these models compared with data simulate
learning that could be categorized as explicit or as complete
learning, that is, learning that is based on a correct and
complete domain theory or which work on a subsymbolic
(i.e.,, numeric) level to match behavior, and where the
learner knows that it is learning, knows why competence
and performance have improved, where performance can
become correct, or where several of these features are true.
Most such models also have either not predicted reaction
times or had them tested, although for numerous counter-
examples, see Anderson and Lebiere (1998).

The model we propose deals with procedural learning in
atask in which human subjects improve incompletely and
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implicitly, that is, they improve with a less explicit learn-
ing mechanism without knowing why and how; they use
an incomplete domain theory; and they do not learn to do
the task perfectly. The model should perform the task and
improve in performance both qualitatively and quantita-
tively, and in a way similar to human subjects using a
partial domain theory. We will confirm this by comparing
it with human behavior acquired explicitly to test it.

First, however, we will describe the task and prior
empirical regularities. These regularities will serve as
initial empirical constraints on the model. The validity of
the model will be scrutinized in a further empirical study
using, among other regularities, reaction times. Ultilizing
model predictions, we will examine subjects performance,
including learning in this domain in a principled, detailed
way.

2. Skill acquisition in scheduling.

From a psychological point of view, planning can be
considered a problem-solving activity where an ordered
seguence of executable actions has to be constructed in a
prospective manner. In a more formal sense, this means
specifying a sequence of operators with well-defined condi-
tions and consequences that transform a given state into a
goal state. For interesting problems, the entire problem
space cannot be searched, and heuristics must be used to
guide the search.

Scheduling problems are a specific, important subset of
planning. Here the task of the problem solver isto find an
optimal schedule based on the given constraints (e.g.,
minimal processing time). Factory scheduling (so-called
job-shop scheduling) is a further subset of scheduling
tasks, namely, to find the optimal ordering of activities on
machinesin afactory.

Job-shop scheduling has direct, practical importance.
Over the last two decades algorithms have been derived that
produce optimal (or near optimal) solutions for scheduling
tasks using operations research techniques (e.g., Graves,
1981) as well as non-learning Al techniques (e.g., Fox,
Sadeh, & Baykan, 1989). Other Al based approaches have
used the general learning mechanisms in PRODIGY
(Minton et a., 1989) and Soar (Akyurek, 1992; Prietula,
Hsu, Steier, & Newell, 1993). These systems rely on the
assumption that general methods for efficient problem
solving can be discovered by applying large amounts of
domain knowledge with alearning mechanism.

In psychology, on the other hand, little is known about
how scheduling is performed as a problem solving activity
and about the acquisition of scheduling skills. For a coun-
terexample and earlier call to arms, see Sanderson (1989).
2.1 The job-shop scheduling task. The task—for
the subjects as well as for the computational model—is to
schedule five actions (jobs) optimally, as a scheduler or
dispatcher of asmall factory. Figure 3 illustrates our task.
Thus, one out of 5! possible sequences of actions has to be
suggested. Jobs had to be scheduled to run in order
through two machines (A and B). Each job had to be run
in a fixed order, first A and then B, requiring different
processing time on each machine for each job.

Sets of five jobs with randomly created processing
times (ranging from 10 to 99) were given to the subjects
on acomputer display. Subjectstried to find the order of
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Fig. 3: The task solved by subjects and the model:
Finding the sequence of jobs to minimize processing time?

jobs that produced the minimal total processing time,
determining which out of the five jobs should be run first,
which second, and so on. They were not otherwise
instructed in how to perform this task.

For this kind of scheduling task an algorithm to find
the optimal solution is available (Johnson, 1954). The
general principle requires comparing the processing times
of the remaining jobs and finding the job with the shortest
time on one of the machines. If thisjob is on machine A
than it has to be run in the next available time in the
schedule, if it is on B, then in the last remaining time in
the schedule. This principle is applied until all of the jobs
are scheduled. Suboptimal sequences result if only parts of
the general principle are used, for example, if only the
demands on Machine A are used for ordering the jobs.

For the sets of jobs in Figure 3, this algorithm would
first choose Job 4, with the shortest job on Machine A, to
put in the first slot in the schedule. Job 1 has the next
shortest time (12) on a machine. Thisis on Machine B,
so it scheduled in the last available slot in the schedule, at
this point the last slot. Job 2 has the next shortest time
(13). Itison Machine B, so it goes in the latest available
dot, or fourth. The remaining two jobs are scheduled in
the same way.

This task of modest complexity is a good task with
which to study learning because (a) it is simple enough to
assess the value of each trial's solution by comparing it to
the actual optimal solution, but (b) the task is hard
enough to be a genuine problem for subjects, who have to
solve it deliberately, and (c) to solve the task without
errors appears to require discovering and applying genera
principles.
2.2 What is learned in this task? In the Soar archi-
tecture, learning to solve scheduling tasks, like learning in
general, requires the acquisition as well as the storage of
rules in memory. In this task, acquisition is discovering
the general rule or inferring at least useful scheduling
heuristic rules while performing the task. This is what
Prodigy models do when they solve job-shop tasks.

If no rule on how to schedule jobs is available and the
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problem solver progresses through blind search and no
learning occurs, on average no improvement will occur
across trials. Only if the subject generates internal
hypotheses about the schedule ordering rules, and if feed-
back about the correctness of these assumptions is avail-
able, will the subject be able to discover efficient schedul-
ing rules. And then, only if a discovered rule is stored in
memory will the improvement be applied in later trials.
Asin impasse-driven learning theories (VanLehn, 1988), it
is assumed that rule acquisition particularly takes place
when subjects face a situation in which their background
knowledge is not sufficient to solve the problem immedi-
ately.

Of course, as in other domains, learning in scheduling
tasks depends on the amount of practice and it is highly
situated. An essential situational factor, which facilitates
or inhibits the acquisition of rules and thus the progressin
learning, is the interaction of the problem solver with the
environment. In thistask, interaction can provide feedback
about the quality of the solution and therefore about the
efficiency of their heuristics.

In previous experiments investigating this task, Krems
and Nerb (1992) had 38 subjects each generate 100 sched-
ules. Although the main focus of their work was to inves-
tigate the effect of different kinds of feedback on learning,
they also reported some general regularities. Aninitial set
of empirical results that can be used to constrain the design
of process models of scheduling skill acquisition is shown
in Table 1.

3. Sched-Soar.

Sched-Soar is a computational model of skill acquisition in
scheduling tasks. The architectural component—Soar—is
strictly separated from the task specific knowledge—in this
case, knowledge about maths, scheduling, and memorizing
strategies. The model predicts human reaction times,
learning, and transfer on this task. The rules it learns
while solving the task are used to examine and explain
transfer between problems. These learned rules, which are
created about once every simulated second (10 model
cycles) and a learning mechanism based on partial knowl-
edge, start to explain how rule-based behavior can arise
from apparently more chaotic behavior. The model is
available at http://www.psychologie.uni-freiburg.de/
signatures/nerb/sched-soar/

In addition to the empirical constraints, we include the
following general constraints that are consistent with or
based on the Soar architecture. (a) The task is described
and represented in terms of problem spaces, goals and oper-
ators, as a Problem Space Computational Model (Newell,
1990). All knowledge is implemented as productions.
Soar's bottom-up chunking mechanism is used for learn-
ing, which means that chunks were built only over termi-
na subgoals. This has been proposed as basic characteris-
tic of human learning (Newell, 1990, p. 317).

(b) Aninitial knowledge set about scheduling tasks is
provided as part of long-term knowledge (e.g., to optimize
a sequence of actions it is first necessary to analyze the
resource demands of every action). Also, basic algebraic
knowledge is included, such as ordinal relations between
numbers. Together this amounts to 401 production rules
implementing eight problem spaces.
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Table 1. Important regularities of behavior on this task
taken from Krems and Nerb (1992).

(a) Total processing time. The task takes 22.3 s, on
average, for anovice (minimum: 16 s, maximum:
26 9).

(b) General speed-up effect. On average, the process-
ing time for scheduling a set of jobs decreased 22%
from the first ten trials to the last ten.

(c) Improvement of solutions. The difference
between the subject's answers and the optimum
answers decreased more than 50% over the 100 trials.

(d) Suboptimal behavior. Even after 100 trials the
solutions were not perfect.

(e) Algorithm not learned. None of the subjects
detected the optimal scheduling rules (i.e., nobody
could give averbal description of the underlying prin-
ciple when asked after the trials), but most subjects
came up with some simple ideas and heuristics (i.e.,
they had some partial knowledge of the optimal algo-
rithm).

(c) The model is feedback-driven. If the availableinter-

nal knowledge is not sufficient to choose the next action to
schedule, the supervisor is asked for advice. These are
situations in which a human problem solver would have to
do the same or to guess. So when the type of impasse is
the inability to select between tied operators proposing
jobs to schedule, there is knowledge that suggests asking
for outside advice to resolve the impasse.
3.1 Processing steps. Sched-Soar begins with an
initial state containing the five jobs to be scheduled and a
goal state to have them well scheduled, but without
knowledge of the actual minimum total processing time.
Itsinitial knowledge leads to these main processing steps,
which are applied to scheduling each of the jobs as shown
in Table 2.

Learning thus mainly consists of episodic rules about
which job to schedule out of a set of jobs. There are also
minor speedups that occur through learning how to do the
bookkeeping and implement the calculations. These
contribute to the general speedup, and will also show some
small transfer effects. If given additional knowledge and
dependent on the exact knowledge and its organization, the
correct algorithm can be implemented with the same basic
mechanism, giving rise to a power law of learning, but
probably faster and better than subjects.

3.2 Sched-Soar's behavior. The model's behavior
can be examined like a subject's behavior, as individual
runs on sets of problems. Figure 4 shows Sched-Soar's
solution time on four series of 16 randomly created tasks.
These times include requests for advice, but this takes only
1 model cycle. Neither the power function (R2 = .55) nor
a simple linear function (R2 = .53) proves a good fit to
these data. However, when averaged these series fit a
simple power function well (T = 274*N~-3, with R2 = .95).

An assumption in Soar is that the learning rate should
be constant. In Sched-Soar, the learning rate (as chunks
per trial) indeed proved constant over all 4 x 16 trials
(Chunks (trial) = 15.48 * trial + 417.8; with R2 = .98).
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Table 2. The scheduling steps in Sched-Soar.

(1) Sched-Soar analyses the situation trying to find a job
to schedule. The analysisincludesrecalling the
amount of time on Machine-A that each remaining job
takes, ordering them based on this, and noting how
many jobs have been scheduled so far. An operator is
proposed for each remaining job to schedule, which
will often lead to an operator tieimpasse. Previous
knowledge, in the form of alearned rule (chunk), may
indicate which job should be scheduled next, allowing
the model to proceed directly to Step 3.

(28) If no decision can be made, despite examination of all
available internal knowledge, Sched-Soar requests
advice from the environment. The advice specifiesthe
job that is the optimal choice to schedule next in the
current set.

(2b) Sched-Soar reflects on why the advice appliesto the
current situation. Sched-Soar uses its scheduling and
basi c arithmetic knowledge to figure out what makes
the proposed job different from the others, using
features like the relations between jobs, the resources
required, and the position of the job in the sequence.

(2c) Based upon this analysis, Sched-Soar memorizes
explicitly the aspects of the situation that seem to be
responsible for the advice. Sched-Soar only focuses at
one qualitative aspect of the suggested job, namely the
ranking in processing time of the job on the first
machine. Restricting what is memorized to just one
feature of the situation clearly represents a heuristic
that tries to take into account the limited knowledge
and memorizing capability of humans. Thiskind of
memorizing is goal-driven and would not arise from
the ordinary chunking procedure without this delibera-
tion.

We call such alearned rule an episodic chunk. These
episodic chunksimplement search-control knowledge,
specifying what has to be done and when. An exam-
pleis: If two jobs are already scheduled, and there are
three operators suggesting different jobs to be sched-
uled next, and Job 1 has the shortest processing time
compared to the other jobs on Machine A, then prefer
the operator to schedule Job 1.

If in subsequent trials a similar situation is encoun-
tered, then Sched-Soar will bring its memorized
knowledge to bear. Of course, because the memorized
information is heuristic, positive as well as negative
transfer can result. Consequently, because only
explicit, specific rules are created, general declarative
rule-based behavior will arise slowly and erratically to
an outside observer.

(3) The job is assigned to the machines and bookkeeping
of the task and experiment is performed.

Note, however, as performance only improves as a nega-
tively accelerated power function, the newly learned chunks
are less | ess effective than the older chunks.

A closer look at Sched-Soar's problem solving process
shows that the variance in the individual trials comes from
two main sources: the negative transfer of chunked knowl-
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edge and the number of requests for advice. Negative trans-
fer results when an episodic chunk, built while solving a
previous task, suggests an action in a new situation that
appears similar, but it in fact requires a different action. If
thisis the case, Sched-Soar gets feedback that the proposed
action is not optimal. This requires the situation to be
evaluated again to find the proper job to schedule.

Finally, if there is no suitable knowledge, the model
still has to ask for advice. This explains why we found in
the model's performance that additional requests for advice
are often preceded by one or more instances of negative
transfer. Both negative transfer and asking for advice
directly lead to more processing time. Note, however, that
the rules that caused the negative transfer will not be
deleted from memory nor will they be corrected. Thereis
no distinct correction mechanism implemented within
Sched-Soar. On average, however, the newly created
acquired rules are quite useful and produce more positive
than negative transfer. Otherwise the model would not
improve over time.

While this reflective process is used to do credit
assignment, the process does not have a complete view of
the procedure being learned, or of the way that the
outcomes of the learning process accumulates to provide a
more complete scheduling skill. This learning process
suggests that learning on the symbol level may give rise
to behavior that follows higher level rules on the knowl-
edge level without the higher level rules being explicitly
represented. The results of this model demonstrate that
knowing the algorithm (for some definition of "knowing",
such as often behaving in the same way as an agent
following the correct algorithm) can be reduced to having
learned (sub)rules that each only partially implement the
algorithm, and the learning algorithm may only have local
knowledge.

This approach can be contrasted with learning mecha-
nisms that are both less explicit and those that are more
explicit. In the Altmann and John (in press) episodic
indexing model, learning is integrated with attention in a
way that is independent of what is attended and indeed of
the task itself. Learning in Sched-Soar, which involves a
deliberate cue-selection process, is qualitatively more
explicit, yet not completely explicit.
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This approach can also be compared with learning

mechanisms that reason explicitly about strategy shifts
with complete knowledge, such as those in solving the
Tower of Hanoi (Anzai & Simon, 1979), and instruction
taking (Huffman & Laird, 1995). Other models use
complete knowledge to change their behavior. The origi-
nal models of the Seibel task (Rosenbloom & Newell,
1987) shifted strategies from dealing with single lights to
dealing with sets of lights with a single operator. There
was no exploration, but processing changed because of
learning. In these models, the learning mechanism led
directly to correct, higher-level behavior.
3.3 Comparison with regularities. The empirical
constraints in Table 1 are met in general by the model.
(a) Solving the task requires 151 model cycles (decision
cycles), averaged over al trials and runs. The Soar archi-
tecture initially specified the rate of model cycles to be
between 30 ms to 300 ms (Newell, 1990). The model
performs dlightly faster than the log mean expected rate of
100 ms per cycle, but at 147 ms/cycle it is well within the
theoretical bounds.

(b) The speed-up of the model in 16 trials is greater
than the subjects' speedup. The model improves 56%
(from 270 cyclesin thefirst trial to 118 cyclesin tria 16),
compared with 22% by the subjects from trial one to ten.
The more comparable speed-up of the model from trial one
to ten was 51%. However, the model's greater learning
might be an effect of different modes of receiving feedback
(in the empirical study feedback was given after acomplete
solution, whereas Sched-Soar is advised immediately after
every single scheduling level decision).

(c) The improvement in correctness cannot be explored
yet, because Sched-Soar was initially programmed to use
advice to produce always correct solutions. (d) Sched-
Soar's behavior is always suboptimal after 16 trials (and
negative transfer might still occur in later trials). (e) The
model did not discover or implement the general algorithm.
In order to validate and further improve the model, more
data are necessary that match more exactly the model's
situation, including how the model can learn through inter-
action and the tasks it solves.

4. Comparison of Sched-Soar with
additional data.

To make the model's and subjects' data more comparable,
we conducted an additional study where we assessed partici-
pants' behavior in solving the task under conditions that
were more equivalent to the simulation studies. For this
study, the model results can be considered more direct theo-
retical predictions about subjects' behavior because the
length of trials and form of feedback are more similar.

4.1 The experiment. The experiment was carried out
with 14 subjects, all undergraduate students at the Univer-
sity of Regensburg receiving course credit for participation.
In this study, participants were not told the scheduling
algorithm, but could get advice immediately after every
scheduling decision. This provides a more similar setting
to the model's situation.

Subjects were instructed to separate their decisions
based on knowledge from those based on guesses: they
were requested to ask for advice when they did not know
what to do. When they asked for advice, they were told
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where to schedule the next job. Each subject solved atotal
of 18 different scheduling problems. At the end of the
experiment, subjects were debriefed and asked whether they
had detected regularities within the task.

4.2 The comparison. The subjects processing time
for each task is shown in Figure 5. The time for asking
advice and getting the feedback was not included (as thisis
not fully modelled), but time thinking about the advice
was. The average processing times for trials 1 to 18 vary
between 99.4 and 36.3 s. The times are longer than the
times in Table 1 because subjects here did not have as
much practice and spent time receiving advice. We found

that a power function (T = 110 * N~-38) accounts best for
the averaged data (R2 = .82, compared with .71 and .73 for
linear or exponential functions). It appears that subjects
learn faster with more detailed feedback (the power law has
a steeper dope).

It has been noted before that cognitive models often
predict less time than subjects take (Kieras, Wood, &
Meyer, 1997). Like many cognitive models (e.g., Peck &
John, 1992), Sched-Soar performs the task more efficiently
than subjects do. Sched-Soar predicted times on these
tasks to be between 270 and 116 model cycles. To match
the subjects' time, one has to assume between 313 or 369
ms/model cycle, which is dightly above the region defined
by Newell (1990). The learning rate (power law coeffi-
cient) of the subjects is only somewhat higher than the
learning rate of the model (-.38 vs. -.30), suggesting that
the task was equally complex for subjects and model (see
Newell & Rosenbloom, 1981 for a discussion of this coef-
ficient).

If these time constraints are taken seriously, they indi-
cate that Sched-Soar is not doing as much work as subjects
are. Thisis amost certainly the case. Future extensions
to Sched-Soar should include more of the tasks that
subjects must perform, such as reading the jobs from the
screen and typing in the schedule. Subjects may also be
taking more time to comprehend and understand the advice.
This will take time to perform, but it will offer further
opportunities for learning, leading to both an increase in
average processing time and to a somewhat higher learning
rate because these are easy tasksto learn.
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Fig. 5. Processing time from trial 1 to 18 for two

sample individuas, the average solution time of all
subjects, and a power law fit (log-1og) to the average.
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We also found a correlation of .46 between processing
time by the subjects and the number of their requests for
advice due to lack of knowledge or wrong decisions. The
same behavior is exhibited by the model where negative
transfer of chunk knowledge leads to advice seeking. The
model's mechanism at least provides a partially sufficient
explanation of what prompted subjectsto ask for advice.

Interestingly, none of the subjects discovered the opti-

mal algorithm for solving the task. This is indicated by
their sub-optimal performance and their comments in the
debriefing session (i.e., they could not express the correct
scheduling algorithm or how they were improving, but
could recognize important features). Because subjects did
not detect regularities with the task but obviously
improved over time, aless than perfect and not completely
conscious learning mechanism is suggested. The quality
of the comparison suggests, however, that subjects used a
set of heuristics similar to those in Sched-Soar.
4.3 Relative strengths and weaknesses. Sched-
Soar has severa relative strengths. Sched-Soar's weak-
nesses in many ways mirror its strengths. As part of an
architecture, it should be able to be combined with other
Soar models to form a more unified theory. However,
models in cognitive architectures are not often combined.
This is true for Sched-Soar as well, although it did resuse
another model of maths and of memorization itself. It
provides principled predictions of reaction times over a
series of trials while learning that generally match human
behavior on this task. Not al of Sched-Soar's predictions
have been tested, such as individual series of reaction
times. This work has to be done by hand, and is tedious
and time consuming.

5. Conclusions.

Sched-Soar provides a detailed account of how the power
law can arise out of apparently noisy behavior, how trans-
fer rules can be learned, and how the noise in reaction time
data can be explained by varying amounts of transfer of
knowledge. The model also explains how learning while
problem solving can lead to a slowly improving perfor-
mance, and how rule-like behavior can arise out of appar-
ently noisy behavior. Such a demonstration, in a new
domain and compared to data from a new experimental
paradigm, is a contribution if only because many instances
are necessary for us as cognitive scientists to infer and
confirm a complex concept such as human learning. This
complements the SCA model (Miller & Laird, 1996),
which dowly learns declarative (categorization) knowledge.
5.1 One way the power law arises. A magjor claim
of our analysis of Sched-Soar is that the power law of prac-
tice will appear when performing the kind of scheduling
task used in these studies, but that the smooth power law
curve will only appear when the data are averaged over
subjects or trials. We saw the model and subjects improve
in a non-linear and non-continuous way. Sched-Soar, like
other models of learning and transfer (e.g., Gobet, 1997,
Ritter & Bibby, 1997), suggests fairly clearly that some of
the variance in solution times is not due to noise in the
measurement process or variance in the processing rate of
the underlying cognitive architecture (which might have
been proposed for simpler, more perceptual tasks). Sched-
Soar strongly suggests that the variance in solution time
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in this case is due to how much learned knowledge trans-
fers to new situations. Sometimes a learned episodic rule
transfers very well, and sometimes it does not transfer, and
sometimes it transfers but isincorrect. Similar claims are
implicit in Newell (1990) and in Singley and Anderson
(1989), but are not examined in as much detail. Sched-
Soar provides a more complete explanation of how rules
that transfer can be learned.

These results are consistent with studies showing that

the power law of practice applies across strategies
(Delaney, Reder, Staszewski, & Ritter, 1998). Sched-Soar
goes further in that it suggests that the rate of improve-
ment in the task, the power law, arises out of individual
learning events. The improvements in problem solving in
this task at this time scale are not due to some form of
tuning, but due to knowledge compilation and transfer.
5.2 How rule-like behavior arises. Sched-Soar
shows how the gradual acquisition of rule-like procedural
behavior can be achieved in the Soar architecture. It learns
through the creation and storage of specific, context depen-
dent rules based on simple heuristics; it does not infer
general rules. In this way it is similar to EPAM
(Feigenbaum & Simon, 1984). It is slightly different
from Anderson's (1987) theory of skill acquisition of pass-
ing through declarative, procedural, and tuning stages.
Sched-Soar does problem solving to create procedural
knowledge from declarative information, and implements
tuning as additional procedural knowledge, to the effect that
the model reduces the final stage of tuning to the same
mechanisms underlying the previous stages.

This model does not know enough to become perfect.
Its representation and problem solving knowledge is too
weak. It does, however, know enough to improve with
practice. People exhibit this type of slow improvement in
many circumstances. This model suggests that in such
situations, people's behavior might be optimal—it is just
their knowledge that is incomplete rather than their
processing mechanisms or planning algorithms. For prob-
lem solvers like this, further improvements in task
performance will have to come with additional knowledge.

One bigger question is how to view this mechanism in
the context of larger tasks, for example, as a grammar
learning mechanism. This model shows how rule-like
behavior, such as language, could arise gradually even in a
symbolic architecture from a simple learning mechanism
with incomplete knowledge and non-explicit representa-
tions. The rule-like behavior is not defined explicitly as a
rule or definition, but implemented as an expanding set of
simpler rules implementing and arising out of a simple
algorithm. In line with findings from the field of implicit
learning (e.g., Haider & Frensch, 1996), the improvements
in this task come from recognizing regularities based on
simple heuristic knowledge and attention to a partial set of
necessary features while trying to minimize the use of
resources. In thisway, it is consistent with previous work
to learn grammars through chunking (Gobet & Pine, 1997;
Servan-Schreiber & Anderson, 1990).
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